Attitudes to learning – questioning the PISA data

Tom Benton Principal Research Officer Cambridge Assessment

Outline of presentation

Review of OECD's report

The ABC of Gender Equality in Education: Aptitude, Behaviour, Confidence

"new gender gaps in education are opening" (page 13)

% earning a tertiary degree (OECD average)

PISA 2009 - % reading for an hour a day (or more) because they want to

Boys3...Girls71(OECD
(OECD
average)Boys10%Girls20%

CAMBRIDGE ASSESSMENT

PISA 2012 - % doing at least an hour a day of homework

PISA 2012 - % agreeing "school has been a waste of time"

PISA 2012 - % Level 4 in Science

Boys 54...Girls 14

PISA 2012 - % Level 4 in Maths

Boys 65...Girls 3

PISA 2012 - % Level 4 in Reading

Boys 0...Girls 68

	% (OECD average)
Boys	24%
Girls	35%

"in the top performing countries ...girls perform on a par with their male classmates in mathematics" (page 3)

Performance and gender differences in Maths

"in virtually all countries boys and girls use their free time in different ways;

...these differences have a significant impact"

(page 37)

Explanations for the reading gender gap (PISA 2009)	CAMBRIDGE ASSESSMENT
	OECD average gender gap (PISA points)
PISA reading	38
Factor	Extent of points difference explained (non-additive!)

Attitude to school ("school has been a waste of time")	4
Video games	5
Homework	8
Reading for pleasure	?

Distribution of reading scores in the UK (PISA 2009)

Distribution of scores split by how often read fiction (PISA 2009)

Explanations for the reading gender gap (PISA 2009)	CAMBRIDGE ASSESSMENT
	OECD average gender gap (PISA points)
PISA reading	38
Factor	Extent of points difference explained (non-additive!)

Reading fiction for pleasure	17
Reading enjoyment (factor score)	22

Thoughts

- Video games, homework and attitude to school may all partially explain gender differences
- Extent of reading for pleasure (particularly reading fiction) gives stronger link
 - But isn't this self-evident?
 - Doesn't explain gender gaps in countries like Korea and Japan.

"Individuals who are organised and can understand, summarise and filter large amounts of written material may be at an advantage. In most societies, <u>these individuals</u> <u>are usually female</u>, though <u>why that is so remains a</u> <u>mystery</u>" (page 58)

"girls have less confidence than boys in their ability to solve mathematics...problems" (page 14)

Confidence and anxiety in Maths

		OECD	
	average		
Percentage of students agreeing that	Boys	Girls	
I learn mathematics quickly	59	45	
I am just not good at mathematics	37	48	
I feel helpless when doing a mathematics			
problem	25	35	

• Further analysis shows that, with equal levels of confidence, girls perform at least as well as boys

Relationship between performance and lack of confidence

"Girls appear to underperform considerably when they are required to 'think like scientists'" (page 64)

Performance of boys and girls in science subscales (PISA 2006)

	Identifying scientific issues	Explaining phenomena scientifically	Using scientific evidence
Mean PISA score (OECD boys)	489	506	496
Mean PISA score (OECD girls)	506	491	499
Difference (B-G)	-17	15	-3
Number of released items	8	11	4
Number of released items where boys outperform girls (OECD)	0	6	2
Number of released items where girls outperform boys (OECD)	8	5	2

CAMBRIDGE ASSESSMENT

"Identifying scientific issues" – Example

of British scientists team Δ İS developing "intelligent" clothes that will give disabled children the power of "speech". Children wearing waistcoats made of a unique electrotextile, linked

Percentage of pupils answering correctly in OECD

"Explaining phenomena scientifically" – Example QUESTION 11.3

Why do you have to breathe more heavily when you're doing physical exercise than when your body is resting?

girls (40.8%) boys (49.3%)

Is it fair to say that girls are worse at "thinking like scientists"?

Specifics of what's being tested are quite important.

Summary

- PISA shows plenty of gender differences
- Equality different to overall performance
- Explanations of differences in performance incomplete
 - Direction of causality uncertain
 - Unknown real impact of policy responses
 - Lead to more questions to explain the causes
- Danger of sweeping statements missing some of the subtleties of gender differences