

GCSE

Chemistry

Session: 1994 June

Type: Question paper

Code: 1375

MIDLAND EXAMINING GROUP

1375/1

General Certificate of Secondary Education CHEMISTRY

PAPER 1

Tuesday

14 JUNE 1994

Afternoon

1 hour

Additional materials:

Personalised answer sheet (Form MS4)

Soft Pencil

MIDLANDEXAMININGGROUPMIDLANDEX

TIME

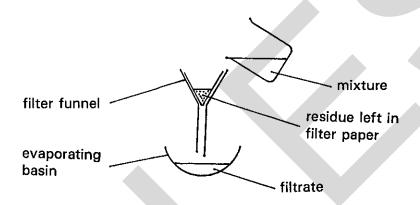
1 hour

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, Centre number and candidate number on the answer sheet in the spaces provided unless this has already been done for you.

There are **fifty** questions on this paper. Attempt **all** questions. For each question there are five possible answers labelled **A**, **B**, **C**, **D** and **E**. Choose the **one** you consider correct and record your choice in **soft pencil** on the separate answer sheet.


Read very carefully the instructions on the answer sheet.

INFORMATION FOR CANDIDATES

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Relative atomic masses are given in the Periodic Table of the Elements provided overleaf which should be removed before starting work.

- Which one of the following is a single compound?
 - A air
 - **B** alumina
 - C coal
 - D crude oil
 - E sea water
- The apparatus below can be used to separate some mixtures.

It could be used to separate

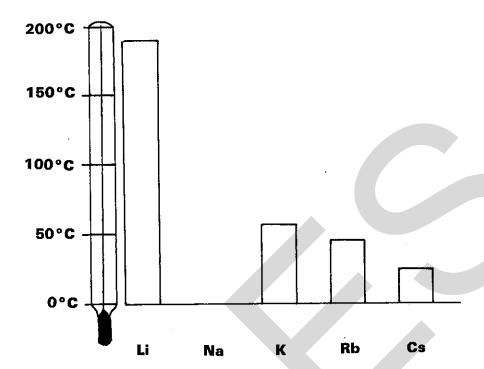
- A ethanol from a mixture of ethanol and water.
- B sand from a mixture of charcoal and sand.
- C sand from a mixture of water and sand.
- D common salt from sea water.
- E pure water from sea water.

PERIODIC TABLE OF ELEMENTS TEAR OUT THIS PAGE

MIDLAND EXAMINING GROUP

The Periodic Table of the Elements

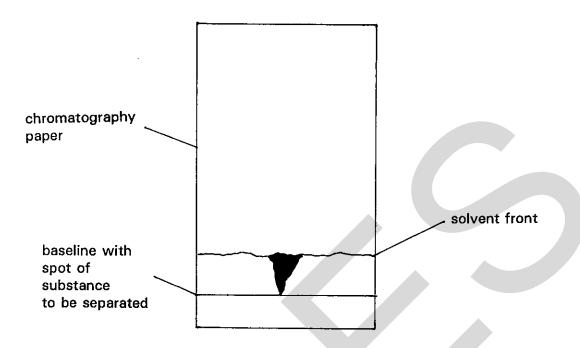
0	Helium	20 Neon	Ar Argon	84 Kr Krypton 36	Xenon S4	Rn Redon	
IIV	2	19 Fluorina 9	35.5 Chioring C 25.5	80 Br Bromine 35	127 	Astavine 86	
i,	'		32 Sulphur 16		128 Te Tellurium 52	Po Potonium 84	
>		N Nitrogen	31 Phosphorus 15	75 As Arsenic	Sb Antimony 51	209 Bis Bismuth 83	
5		Carbon	28 Si Silicon 14	73 Ge Germanium 32	So Tin	207 Pb Lead	
=			27 AI Aluminium 13	70 Ga Gallium 31	115 In Indium		
			,	65 Znc Zinc 30	Cd Cd Cedmium 48	201 Hg Mercury 80	
				Copper	Ag Silver	197 Au Gold 79	
Group				59 Nickel 28			
Ď				S9 CO Cobatt	103 Rh Rhodium 45	192 	
				Se roa	Ruthenium	190 Os Osmium 76	
				SS Manganese 25	Tc Technetium	186 Renium	
	H Hydrogen			52 Cr Chromum 24	96 Mo Molybdenum 42	184 W Tungsten 74	
				S1 Vanadium	Nobium	181 Ta Tantalum 73	_
				48 Ti	r J. u	178 Hf Hafnium 72	
				Scandium	89 Y Yttrium 39	139 La Lanthanum 57 *	Actinium 89 t
=		Be Beryllium	24 Mg Magnesium 12	Calcium	Strontium	Ba Barium 56	Ra Radrum Radrum 88
_		, Li Lithium	23 Na Sodium 11	39 K Potessium 19	Rb Rubidium	133 Csessum 55	Fr Francium 87


*58-71 Lanthanum series †90-103 Actinium series

Кеγ

£ 1	Thoric	8
a = relative atomic mass	X = atomic symbol	b = atomic number
æ	×	q

140	141	144		150		_		162		167	169	671	
సి	<u>r</u>	Ž	Pm	Sm	Eu	P5	1.6	δ	유	ŭ	E	γp	3
Cerium	Praseodymium	Neodymium	Promethium	Samarium				Dysprosium		Erbium	Thulium	Ytterbium	
28	59	8	61	62				99		89	69	20	
232		238								>			
£	Pa	>	Š	2	Am	క్ర	Bk	ŏ	Es	Fm	PΨ	ŝ	د
Thorium	Protectinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium		Mendelevium		Lewrencium
06	16	92	93	3.	95	96	97	96	86		101		103


The chart shows the melting points of the elements in Group I of the Periodic Table. The melting point of sodium is missing.

Which of the following is the most likely melting point of sodium?

- A 0°C
- B 23 °C
- **C** 63 °C
- **D** 98 °C
- E 183 °C

A student tried to separate a mixture of food dyes by chromatography. Separation was poor, as shown in the chromatogram below.

Which change to the process would improve the result?

- A using enough solvent to cover the baseline
- B using a smaller piece of chromatography paper
- c putting a larger spot of the dye mixture onto the paper
- D allowing the solvent to rise further up the paper
- E using a larger piece of chromatography paper
- The element with atomic number 17 will form an ionic compound with the element whose electronic structure is
 - A 2,4
 - **B** 2,8,6
 - C 2,8,7
 - **D** 2,8,8
 - **E** 2,8,8,1

6 An ion of an element is represented below.

What is the element?

- A aluminium
- **B** cobalt
- C neon
- **D** nitrogen
- E silicon
- 7 The table below gives the melting points and boiling points of five elements. Which element is a liquid at 2500 °C?

E	lement	Me	elting Point /°C	Boil	ing Point /°C
Α	Aluminium		660		2470
В	Bromine		-7		59
C	Chlorine		-101		-35
D	iron	4	1540		2750
E	Mercury		-39		357

- What is the mass of calcium in 28 g of calcium oxide (CaO)? (Relative atomic masses: O = 16, Ca = 40)
 - **A** 8 g
 - **B** 16 g
 - **C** 20 g
 - **D** 40 g
 - **E** 56 g
- 9 Which one of the following chemical equations is correctly balanced?
 - A $Fe_3O_4 + 2H_2 \rightarrow 3Fe + 2H_2O$
 - $\mathbf{B} \quad \mathsf{H}_2\mathsf{O} \to \mathsf{H}_2 \,+\, \mathsf{O}_2$
 - $\mathbf{C} \quad \mathsf{H_2O_2} \, \rightarrow \, \mathsf{H_2O} \, + \, \mathsf{O_2}$
 - **D** $Mg(OH)_2 \rightarrow MgO + H_2O$
 - E $2Na + H_2O \rightarrow 2NaOH + H_2$

- A sample of coal was found to contain 32 g of sulphur per tonne. What mass of sulphur dioxide would be formed on burning 1 tonne of coal? (Relative atomic masses: O = 16, S = 32)
 - **A** 32 g
 - **B** 48 g
 - **C** 64 g
 - **D** 80 g
 - **E** 96 g
- 11 Magnesium reacts with oxygen as shown by the equation below.

$$2Mg + O_2 \rightarrow 2MgO$$

What volume of oxygen gas (O_2) measured at room temperature and pressure is needed to react completely with 12 g of magnesium? (Molar gas volume is 24 dm³ at room temperature and pressure. Relative atomic masses: O = 16, Mg = 24)

- **A** 2 dm³
- **B** 6 dm³
- **C** 16 dm³
- **D** 24 dm³
- E 48 dm³
- 12 Aqueous sodium hydroxide is added to an unknown solution.

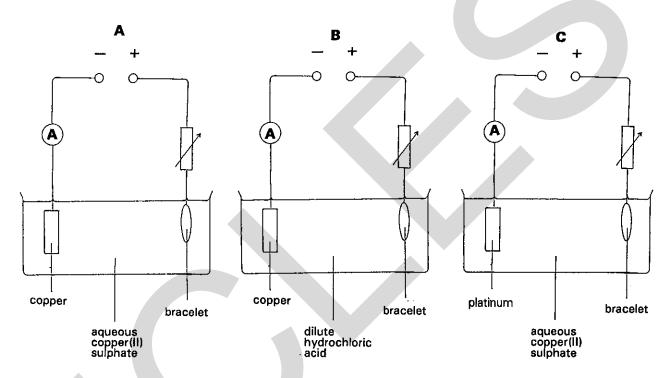
A white precipitate is formed which dissolves when more aqueous sodium hydroxide is added.

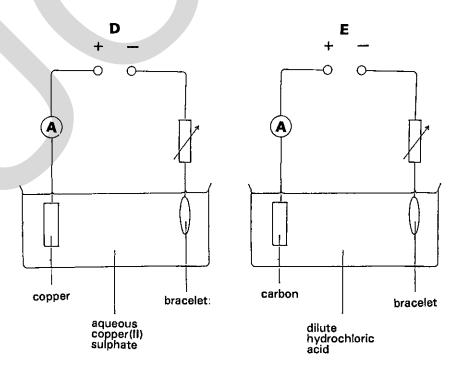
Which one of the following ions is present in the solution?

- A Al³⁺
- B Cu²⁺
- C Fe²⁺
- **D** Fe³⁺
- E NH₄⁺
- 13 Newly laid bricks sometimes become coated with a basic white deposit.

The best way to remove this deposit is to apply a mixture of detergent and a chemical which will react rapidly with the white deposit.

Which one of the following is the most suitable chemical to react with this deposit?

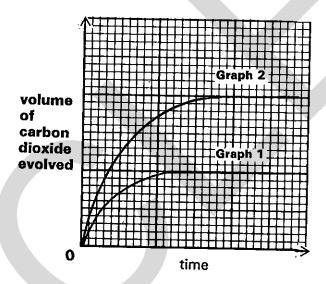

- A aqueous ammonia
- **B** ethanol
- C hydrochloric acid
- **D** limewater
- E aqueous sodium hydroxide


- 14 Indigestion can be caused by excess acid in the stomach. Which one of the following substances could an indigestion tablet contain to neutralise the acid?
 - A glucose
 - B lemon juice
 - C magnesium hydroxide
 - **D** sodium chloride
 - E sugar
- Sodium chloride is made from aqueous sodium hydroxide and hydrochloric acid. What is the correct sequence of steps in this preparation?

	Step 1	Step 2	Step 3	
Α	evaporation	neutralisation	cystallisation	
В	evaporation	crystallisation	neutralisation	
С	neutralisation	evaporation	crystallisation	
D	crystallisation	evaporation	neutralisation	
E	neutralisation	crystallisation	evaporation	

- 16 Which one of the following does NOT conduct electricity?
 - A dilute sulphuric acid
 - **B** graphite
 - C magnesium ribbon
 - D aqueous sodium chloride
 - E solid lead(II) bromide
- 17 The particles which travel through the external wires connecting a cell to the electrodes during electrolysis are called
 - A anions.
 - B cations.
 - C electrons.
 - D neutrons.
 - E protons.

- When aluminium electrodes are used in the electrolysis of dilute sulphuric acid, which process takes place at the positive electrode?
 - A analysing
 - **B** anodising
 - **C** decolourising
 - **D** displacing
 - E electroplating
- 19 A metal bracelet is to be electroplated with copper. Which circuit should be used?



20 0.1 g of magnesium ribbon was reacted completely with hydrochloric acid. How would the result differ if 0.1 g of magnesium powder had been used under the same conditions?

	Using 0.1 g magne	sium powder
	Volume of hydrogen	Rate obtained
A	more	faster
В	more	slower
С	less	faster
D	same	slower
E	same	faster

The graphs below were obtained when limestone lumps reacted completely in an excess of dilute hydrochloric acid. Graph 1 was obtained using 10 g of limestone lumps.

Which change of experimental conditions could give rise to Graph 2?

- A using twice the volume of acid
- B using acid which is twice as concentrated
- c using twice the mass of powdered limestone
- **D** using powdered limestone
- **E** measuring the volume at a higher pressure

22 The addition of hydrogen to a substance is

- A hydration.
- **B** hydrolysis.
- C neutralisation.
- D oxidation.
- E reduction.

23 Which equation represents a metal being oxidised?

A Cu0 +
$$H_2 \rightarrow Cu + H_2O$$

B
$$2PbO + C \rightarrow 2Pb + CO_2$$

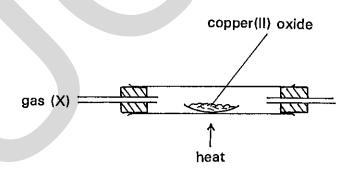
$$\mathbf{C} \quad \mathsf{Fe^{3+}} \, + \, \mathsf{e^{-}} \, \rightarrow \, \mathsf{Fe^{2+}}$$

D
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

E
$$3Ag_2O + 2NH_3 \rightarrow 6Ag + 3H_2O + N_2$$

24 Which product is obtained by oxidation of the raw material?

Ra	w material	Formula	Product	Formula
A	nitrogen	N ₂	ammonia	NH ₃
В	limestone	CaCO ₃	lime	CaO
С	sulphur	s	sulphuric acid	H₂SO₄
D	alumina	Al ₂ O ₃	aluminium	Al
E	ethene	C₂H₄	poly(ethene)	{CH ₂ - CH ₂ } _n


The element caesium (symbol Cs) is in the same group of the Periodic Table as sodium and potassium. Which one of the following is the formula for caesium chloride?

- A Cs₂Cl
- B CsCl
- C CsCl₂
- D CsCl₃
- E Cs₂Cl₃

26 Which set shows the elements in order of increasing reactivity?

	least reactive	>	most reactive
A	lithium	potassium	sodium
В	chlorine	bromine	iodine
С	sodium	potassium	lithium
D	iodine	bromine	chlorine
E	argon	neon	helium

- Use the Periodic Table to find the element which is in Period 4 and Group III. How many neutrons are in one atom of this element?
 - **A** 3
 - **B** 27
 - **C** 31
 - **D** 39
 - E 101
- 28 In which pair are both elements in the same period of the Periodic Table?
 - A calcium and carbon
 - B gold and silver
 - C helium and neon
 - D potassium and sodium
 - E silicon and sulphur
- 29 Which carbonate turns from green to black when heated to constant mass?
 - A calcium carbonate
 - B copper(II) carbonate
 - C lead(II) carbonate
 - **D** sodium carbonate
 - E zinc carbonate
- 30 Which gas (X) could be used to reduce copper(II) oxide to copper?

- A carbon dioxide
- **B** chlorine
- C hydrogen
- **D** nitrogen
- E oxygen

		12
31	Αt	ypical property of metallic elements is that they
	Α	form an anion by losing electrons.
	В	form a cation by gaining electrons.
	C	react with an acid to form a salt and water.
	D	react with an alkali to form a salt and water.
	E	react with oxygen to form a basic oxide.
32	X fo	ment X exists as molecules X ₂ . orms a cation X ⁺ . s a reducing agent. ich element best fits this description?
	A	chlorine
	В	hydrogen
	C	neon
	D	oxygen
	E	sodium
33	Wh	ich metal does not react with cold water, steam or dilute sulphuric acid?
	A	calcium
	В	copper
	C	iron
	D	magnesium
	E	zinc
34	Wh	ich substance is most likely to be the cause of permanent hardness in water?
	A	calcium carbonate

calcium hydrogencarbonate

sodium hydrogencarbonate

calcium sulphate

sodium carbonate

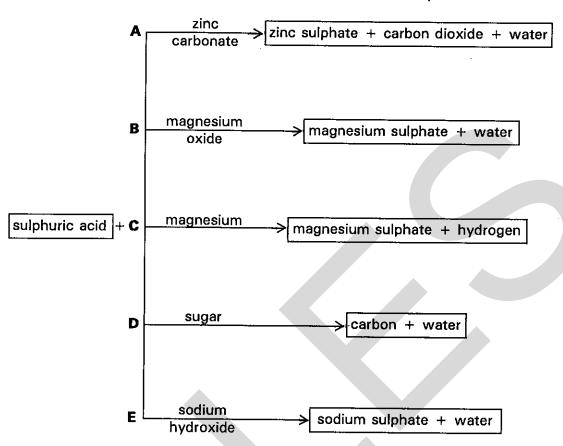
B C

D

E

35 Some compounds were dissolved in distilled water. The solutions had the same molarity. Equal volumes of these solutions were then shaken with three drops of soap solution. The height of lather formed was measured, and the results shown in the table below.

compound dissolved	height of lather/mm
sodium sulphate	20
sodium nitrate	19
potassium sulphate	20
calcium nitrate	1
calcium sulphate	1
magnesium sulphate	1


Which ions cause the hardness in these samples?

- A Ca²⁺ and NO₃⁻.
- B Ca²⁺ and SO₄²⁻.
- C Mg^{2+} and SO_4^{2-} .
- D Ca²⁺ and Mg²⁺.
- E Na⁺ and K⁺.

36 A major use for limestone is in the production of

- A aluminium.
- B chlorine.
- C iron.
- D petrol.
- E sulphuric acid.

37 Five reactions of sulphuric acid are shown below.
For which of the reactions, letter A to E, must concentrated sulphuric acid be used?

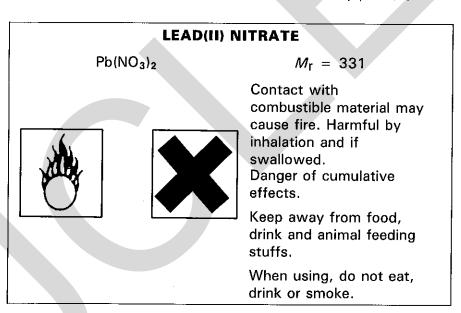
Which one of the following tests and results shows that a carpet cleaner Q contains an ammonium compound?

	Test	Result
A	Add dilute hydrochloric acid to Q	A gas is given off which turns limewater cloudy.
В	Add dilute hydrochloric acid to Q.	A gas that burns is given off.
С	Warm Q with aqueous sodium hydroxide.	A gas is given off which turns moist indicator paper blue.
D	Add aqueous sodium hydroxide to aqueous Q.	A white precipitate is formed.
Ε	Add aqueous sodium hydroxide to aqueous Q.	A green precipitate is formed.

- 39 The gas given off when dilute hydrochloric acid is added to magnesium is
 - A ammonia.
 - **B** carbon dioxide.
 - C hydrogen.
 - D nitrogen.
 - E oxygen.

Questions 40 to 42

Questions 40 to 42 are concerned with the following table which shows the number of protons, neutrons and electrons in some particles.


Answers may be used once, more than once, or not at all.

	protons	neutrons	electrons
A	1	0	1
В	2	2	2
С	3	4	2
,D	4	5	4
E	6	6	6

Which of these particles is

- 40 an atom with a mass number of 4?
- 41 an ion of an element with a charge of +1?
- 42 an atom with 4 electrons in its outer shell?
- Which one of the following pairs of substances contains all the elements that a farmer needs in NPK fertilisers?
 - A sodium nitrate and potassium nitrate
 - **B** sodium nitrate and ammonium nitrate
 - c ammonium phosphate and sodium nitrate
 - **D** ammonium phosphate and potassium nitrate
 - **E** ammonium phosphate and ammonium nitrate

- 44 Why is it a hazard to discharge acid waste into rivers?
 - A It combines with water and on evaporation forms 'acid rain'.
 - **B** It causes the pH value of the river water to increase.
 - C It causes harm to fish and plants in the rivers.
 - **D** It always discolours the water in the rivers.
 - **E** It raises the concentration of hydroxide ions in the rivers.
- '45 An element which burns to form a pollutant gas is
 - A calcium.
 - B hydrogen.
 - C magnesium.
 - **D** sodium.
 - E sulphur.
- 46 The 'HAZARD' label below is taken from a bottle of lead(II) nitrate.

The 'HAZARD' label means that lead(II) nitrate is

- A an oxidant and harmful.
- B an oxidant and radioactive.
- C flammable and harmful.
- **D** volatile and radioactive.
- E volatile and flammable.

Vinegar is used for pickling certain foods. It is a solution which contains 0.5 mol/dm ³ ethanoic acid (CH ₃ COOH: $M_r = 60$).
What mass of ethanoic acid is actually present in 4 dm ³ of vinegar?

|--|

B 60 g

C 120 g

D 240 g

E 480 g

48 Ethene (C₂H₄) reacts with steam to form

A carbon dioxide.

B ethane.

C ethanoic acid.

D ethanol.

E methane.

49 Which change involves only a substitution reaction?

A ethanol → ethanoic acid

B ethanol → poly(ethene)

C ethene → ethane

D ethene → ethanol

E ethane → bromoethane

Which one of the following is true about both ethene and ethane?

A They are members of the same homologous series.

B They are isomers of each other.

C They both have the same relative molecular mass.

They both contain covalent bonds.

E They are both saturated hydrocarbons.

	Centre	Candidate
	Number	Number
Candidate Name		
		•

MIDLAND EXAMINING GROUP

1375/2

General Certificate of Secondary Education CHEMISTRY

PAPER 2

Tuesday

21 June 1994

Morning

1 hour

Candidates answer on the question paper. No additional materials are required.

MIDLANDEXAMININGGROUPMIDLANDEX

TIME

1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer ALL questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks available is shown in brackets [] at the end of each question or part question.

Marks will be awarded for the accurate use of spelling, punctuation and grammar.

Relative atomic masses are given in the Periodic Table of Elements provided overleaf which should be removed before starting work

FOR EXAMIN	IER'S USE
Pages 2/3	
4/5	
6/7	
8/9	
10/11	
12/13	
14/15	
16/17	
Sub-Total	
SPG	
TOTAL	

_								-
7	(iive	either	the	name	Ωr	the	formula	a ot

(a)	a gas that relights a glowing splint.
(b)	an acid which contains sulphur.
(c)	a metal that does not react with water, steam or dilute sulphuric acid.
(d)	the colour of a piece of pH paper after dipping it in aqueous sodium hydroxide.
(e)	the element which has a relative atomic mass of 40.
(f)	a metal which forms an ion with one positive charge eg X ⁺ .

2 As part of a GCSE practical assessment a pupil compared the colourings in **Ravealon** and **Megalon** lipsticks. Samples of known colours were also used in the assessment. The chromatogram obtained by the pupil is given below.

Som	e known	colours	}	Ravealon	Megalon
1 2	3	4	5	Itavoalon	mogalon
			•	-	
		•		-	•

- (a) Use the chromatogram to help you answer the following questions.
 - (i) How many colours are there in **Megalon** lipstick? _____
 - (ii) How many of the colours in **Ravealon** lipstick could **not** be identified?
 - (iii) Suggest how the pupil could identify the unknown colours in **Ravealon** lipstick.

[3]

PERIODIC TABLE OF ELEMENTS TEAR OUT THIS PAGE

MIDLAND EXAMINING GROUP

The Periodic Table of the Elements

		a. E	m s . s	, 5	_ m 5	۶ م	
	0	Helium	Ne Neon 10 Ar Argon 18	84 Krypton 36	Xenon S4	Radon 86	
	IIΛ		Fluorine 9 35-5 CL Chiorine	80 Br Bromine 35	127 	At Astatine 85	
	1>		Oxygen 8 32 Sulphur 16	Se Selenium 34	128 Te Tellurium 52	Po Polonium 84	
	^		Nitrogen 7 31 Phosphorus 15	AS Arsenic	Sb Antimony 51	209 Bis Bismuth 83	
	2		Cerbon Cerbon 6 28 28 Si Silicon	73 Ge Germanium 32	Sn Sn Tin	Pb Lead	
	=		BBoron 5 27 Aluminium 13	Ca Gallium 31	115 in Indium 49	204 T1 Thallium 81	
			<u> </u>	65 Znc 2inc	Cd Cadmium	201 Hg Mercury 80	
				Copper	Ag Silver	197 Au Gold	
d				S9 Nickel	Pd Palladium 46	195 Pt Platinum 78	
Group				59 Co Cobalt	Rh Rhodium 45	192 r ridium	
				56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76	
				SS Mn Manganese 25	Tc Technetium	186 Re Rhenium	
		H Hydrogen		S2 Cr Chromium 24	Mo Monum	184 W Tungsten 74	
			J	51 V Vanadium 23	93 Spium	181 Ta Tantalum	
				48 Ti	2r Zirconium 40	178 Hf Hafnium 72	
				Scandium	& ≯ eoir	139 La Lanthanum 57 · *	Actinium 89 t
	=		Be Beryllium 4 24 Magnesium 12	40 Calcium 20	Strontium	Ba Barium Se	Ra Radium Radium
	-		Lithium Lithium 3 23 Na Sodium 11	39 K Potessium 19	Rb Rubidium	Csesium	Fr Francium 87

*58-71 Lanthanum series	t 90-103 Actinium series

a = relative atomic	X = atomic symbol	b = atomic number
•	×	q
	Key	

	a = relative atomic mass
×	X = atomic symbol
	b = atomic number

140	141	144		3				162		167	169	571	
లి	P	PZ	F	Sm				δ		ŭ	Ę	ą X	
Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
232 Th Thorium 90	Pa Protectinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium	BK Berkelium 97	Cf Celifornium 98	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	No Nobelium 102	Lr Lewrencium 103

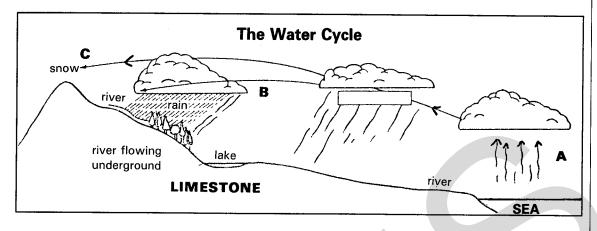
Question 2 - continued

- (b) Another pupil had to find out whether the pink colour in rose petals was a single colour or a mixture of colours. The pupil crushed the petals, then warmed them with ethanol to extract the colouring matter.
 - (i) Why did the pupil crush the petals before adding the ethanol?
 - (ii) Why is ethanol used when water is cheaper and readily available?
 - (iii) How could the colouring matter be separated from the insoluble crushed petals?

[3]

[6]

3 Part of the pH scale is shown below.


рН	1	7	14
	strong acids	neutral	strong alkalis

The table below shows the results of four experiments involving pH changes, but the experiments are not matched to the correct pH changes.

Complete the table by putting in the letter of the correct reaction in the box.

Experiment	pH at start	pH at end	Incorrect reaction	Letter of correct reaction
one	1	7	A Sugar being dissolved in water	
two	7	7	B Hydrochloric acid neutralised by sodium hydroxide	
three	7	9	C Excess alkali being added to a weak acid	
four	5	13	D Ammonia gas bubbled into water	

[4] [4] 4 (a) The diagram represents the water cycle.

(i)	What process of	occurs at A?		
-----	-----------------	--------------	--	--

(ii) What happens at B to produce rain?	(ii)	What	happens	at B	to	produce	rain?		
--	------	------	---------	------	----	---------	-------	--	--

(iii)	What change o	f state	occurs	at C	and	how	is	it brou	ght
	about?								_

		r 4 1
 		141

(b)	(i)	What problems could be created for households and
		factories in using the water from a limestone area?

(ii)	How is	water	treated	to	ensure	all	bacteria	in	it	are	killed	?
------	--------	-------	---------	----	--------	-----	----------	----	----	-----	--------	---

[2]

[6]

5 (a) Ethene is an unsaturated hydrocarbon with the following structural formula.

- (i) What is observed when ethene is bubbled through bromine water?
- (ii) Ethene is used to make poly(ethene). Give one major use of poly(ethene).

[2]

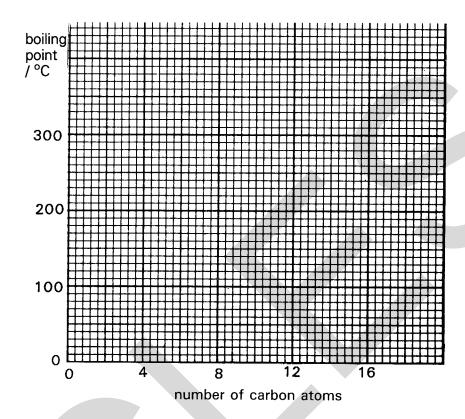
(b) The equation below shows the decomposition of the hydrocarbon decane.

$$C_{10}H_{22} \rightarrow C_8H_{18} + C_2H_4$$

decane octane ethene

- (i) Which important industrial process is illustrated by the equation?
- (ii) A catalyst is used in the reaction.
 What is the purpose of the catalyst?
- (iii) Ethene and steam react to form ethanol under suitable conditions.

Complete the equation below for this reaction.


$$C_2H_4 + H_2O \rightarrow [3]$$

(c) Below is a table giving some information about fuels obtained from crude oil.

Name of fuel	Typical number of carbon atoms per molecule	Typical boiling point/°C		
calor gas	4	0		
petrol	8	50		
paraffin	12	150		
gas oil	16	300		
		1		

Question 5 - continued

(i) On the grid below draw a line graph of the information in the table on page 6.

(ii) Use your graph to find the boiling point of a fuel with 14 carbon atoms per molecule.

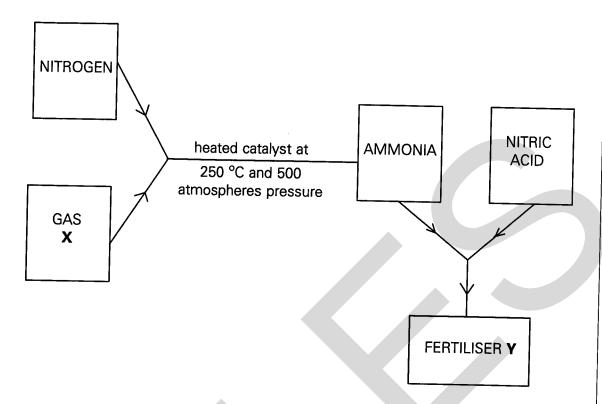
Show on the graph how you obtained your answer.

(iii) Suggest a relationship between the number of carbon atoms per molecule and the boiling point.

(iv) Suggest **ONE** reason why natural gas is used more as a fuel in North America and Britain than in Africa.

6 (a) The diagram below represents one atom of element X which has an atomic number of 5 and a relative atomic mass of 9.

- (i) How many protons are present in the nucleus?
- (ii) How many neutrons are present in the nucleus? _____
- (iii) To which Group in the Periodic Table does X belong?
- (iv) Write the symbol for the ion of X. ______[4]
- (b) The equation below shows the reaction that occurs when the oxide of X is heated with an excess of powdered magnesium.


$$Mg + X_2O_3 \rightarrow MgO + X$$

- (i) Insert the figures in the spaces to balance the equation.
- (ii) Explain the reaction in terms of oxidation and reduction.
- (iii) The reaction is exothermic. Explain what this means.

[4]

[8]

7 The diagram below shows how a fertiliser is produced.

Study the diagram and then use it to answer the following questions.

- (i) gas X
- (ii) fertiliser Y _______[2]
- (b) What would be the effect on the speed of the reaction between nitrogen and gas **X** if,
 - (i) the temperature is increased to 450°C,
 - (ii) a catalyst is not present?

[2]

Question 7 - continued

		Give two different reasons why fertilisers are used.	
		1	
		2	
	(ii)	Give one possible disadvantage of using fertilisers.	
	(iii)	Some fertilisers can be stored in plastic sacks. Give one advantage of using plastic sacks instead of paper sacks for the storing of fertilisers.	
		Sudice for the eterning of vertimeeter	
	(iv)	Other than cost, give one disadvantage of using plastic sacks to store fertilisers.	
			_
(a)	fire in	time ago, a large quantity of powdered magnesium caught a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white er.	
(a)	fire in magn	a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white	_
(a)	fire in magn powd	a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white er.	
(a)	fire in magn powd	a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white er.	_
(a)	fire in magn powd (i)	a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white er. Give the name and formula of the white powder. A member of the fire service said that the fire was worse because the magnesium was in powder form. Suggest a	_
(a)	fire in magn powd (i)	a warehouse in the USA. All that remained after the esium had completely burned was a large quantity of white er. Give the name and formula of the white powder. A member of the fire service said that the fire was worse because the magnesium was in powder form. Suggest a	


Question 8 - continued

(b) The table below compares the reactivity of four metals with cold water and steam.

Metal	Reaction with cold water	Reaction with steam		
calcium	a steady reaction	violent reaction without heating		
copper	no reaction	no reaction		
iron	very little reaction	reacts when strongly heated in steam		
magnesium	slightly more reactive than iron	burns brightly when heated in steam		

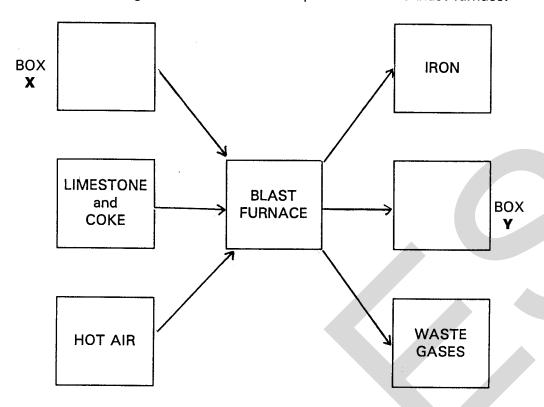
(i)	Use the reactions of the metals with cold water to place
	the metals in order of reactivity, the most reactive first.
	most reactive
	least reactive
(ii)	When calcium reacts with cold water, hydrogen gas is formed. Give a chemical test to identify hydrogen.
	Test
	Result
(iii)	Give the equations for the reaction between calcium and cold water.
	Word equation
	Symbol equation
(iv)	Suggest why the reaction of calcium and steam takes place at a quicker rate than the reaction of calcium and cold water.
(v)	Give one commercial use of copper which depends on the fact that it does not react with water or steam.

9 (a) The diagram represents a model of an apparatus used to treat the acidic liquid waste from a metal cleaning works.

- (i) What process is illustrated?
- (ii) What kind of material is being removed from the acidic liquid waste?
- (iii) Why is a plastic pot used in the apparatus rather than one made of steel?

[3]

Question 9 - continued


(i)	What is seen when the waste? Give a reason	the limestone is added to the n for your answer.	treated
(ii)		uld be done to show that the ralised by the calcium carbon	treated nate?
plant was	was found to contain	uid waste from the metal cle dissolved nickel compounds. lising the acid, by adding scr orks.	The nickel
-			
Equal were	Sample tested	Volume of aqueous	, C and D
Equal	neutralised with aqueo	Volume of aqueous sodium hydroxide/cm ³	, C and D
Equal	Sample tested (25 cm ³)	volume of aqueous	, C and D
Equal	Sample tested (25 cm ³)	Volume of aqueous sodium hydroxide/cm ³	, C and D
Equal	Sample tested (25 cm ³) A	Volume of aqueous sodium hydroxide/cm ³ 13	, C and D
Equal	Sample tested (25 cm³) A B C	Volume of aqueous sodium hydroxide/cm ³ 13 9 24	, C and D

(iii) Suggest why it was necessary to test unused acid.

[3]

[11]

10 The flow diagram shows how iron is produced in the blast furnace.

The equations for the reactions taking place in the furnace are given below.

$$A \qquad C + O_2 \rightarrow CO_2$$

$$B C + CO_2 \rightarrow 2CO$$

C
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

$$\mathbf{D} \qquad \mathsf{CaCO}_3 \rightarrow \mathsf{CaO} + \mathsf{CO}_2$$

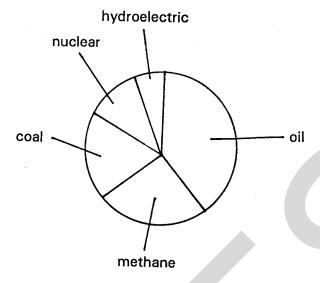
E CaO + SiO₂
$$\rightarrow$$
 CaSiO₃

(a) Complete the flow diagram by filling in the name of the raw material in Box X and the name of the product in Box Y

[2]

- (b) Give one code letter of an equation which represents
 - (i) a thermal decomposition.
 - (ii) the formation of slag.
 - (iii) the main source of heat for the reaction.
 - (iv) a reaction which is **not** a redox reaction. _____[4]

Question 10 - continued


(c) When steel products come to the end of their useful lives they can be recycled. About 80% of all steel available for recycling in the UK was actually recovered in 1991.

Complete the chart below by writing in

- (i) two advantages of recycling.
- (ii) two steel objects which can be recycled.

In 1991 the of steel rec recycling w of the steel	overed for as 80%	
RECYC	l	Objects which can be recycled 1. 2.
Advantages 1. 2.	of Recycling	

[4] [10] 11 The pie chart shows our main sources of energy.

- (a) (i) Which one of these energy sources produces no pollution?
 - (ii) Name a fuel which burns to produce carbon dioxide and water only.
 - (iii) Suggest a reason why plants for the production of aluminium are often situated in areas where energy is produced by hydroelectric schemes.

[3]

- (b) Fuels such as coal contain sulphur compounds as impurities. These sulphur compounds produce sulphur dioxide when the fuel is burned.
 - (i) Write the symbol equation for the reaction which occurs when sulphur burns in air to form sulphur dioxide.
 - (ii) How does sulphur dioxide produce "acid rain" in the atmosphere?
 - (iii) Give two different harmful effects of "acid rain".

1

2 _____

[4]

Question 11 - continued

- (c) A recent fuel conservation study in schools showed that when 3 tonnes of solid fuel were burned 10 tonnes of carbon dioxide were produced.
 - (i) Calculate the relative molecular mass of carbon dioxide.
 - (ii) A pupil using the relative molecular mass of carbon dioxide obtained in part (i) above calculated that 3 tonnes of carbon produced 11 tonnes of carbon dioxide when burned in air. Show how the pupil obtained this result.

[3]

[10]

Centre	Candidate
Number	Number

MIDLAND EXAMINING GROUP

1375/3

General Certificate of Secondary Education CHEMISTRY

PAPER 3

Friday

24 June 1994

Afternoon

1 hour 30 minutes

Candidates answer on the question paper.

No additional materials required.

MIDLANDEXAMININGGROUPMIDLANDEX

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

SECTION A

Answer all questions.

Write your answers in the spaces provided on the question paper.

SECTION B

Answer both the questions.

Tear out and keep pages 9 and 10.

Write your answers to this section on the pages provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks available is shown in brackets [] at the end of each question or part question.

Marks will be awarded for the accurate use of spelling, punctuation and grammar.

Unless otherwise stated, equations must be given wherever possible and diagrams where they are helpful. 'Equation' means a balanced, symbol equation. Names, not symbols, should be used in descriptive work for all reacting substances and for the products formed.

You should spend no longer than 60 minutes on Section A.

Relative atomic masses are given in the Periodic Table of Elements provided overleaf which should be removed before starting work.

FOR EXAMI	NER'S USE
Section A	
Section B	
Sub-Total	
SPG	
TOTAL	

SECTION A

Answer **ALL** the questions in this section.

A1 A student was trying to identify some salts. She carried out some tests and recorded her results. Here is the page from her notebook.

	Test	Observation
	Salt X	
1	Shake solid X with water	Does not dissolve
2	Heat solid X	Turns yellow when hot but returns to white when cold
3	Add hydrochloric acid to solid X	Gas given off
4	Test gas from 3 with limewater	White precipitate
	Salt Y	
5	Shake solid Y with water	Dissolves easily
6	Add aqueous sodium hydroxide to the solution from 5	No change
7	Warm the mixture from 6	A gas with a strong smell is produced. This gas turns red litmus blue
8	To an aqueous solution of Y add hydrochloric acid and barium chloride solution	White precipitate
	Salt Z	
9	Heat solid Z	Turns black. A brown gas is given off and a gas that relights a glowing splint
10	Shake solid Z with water	Blue solution formed
11	Add iron to a solution of Z	Pink solid produced in an almost colourless solution

(a)	For s	salt X, give	
	(i)	the name,	
	(ii)	the formula.	[2]
(b)	For sa	alt Y, give	
	(i)	the name	
	(ii)	a large-scale use	
	(iii)	write the equation for the reaction in 7.	

PERIODIC TABLE OF ELEMENTS TEAR OUT THIS PAGE

MIDLAND EXAMINING GROUP

The Periodic Table of the Elements

=								Ğ	Group			=	2	>	5	5	
Hydropen 1	Hydragen 1	H Hydrogen	H Hydrogen	H Hydrogen			r .					=	≥	>	>	 	Helium
Beching												= 00	2 U	2 2	₂ 0	21	Ne so
4												Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
24 Mg						1						77 Q (≈ :7	<u>π</u> Ω	33	35.5	07
Magnesium 12											÷	Aluminium 13	Silicon 14	Š	Sulphur 16	Chloring 5	Argon 18
45 48 51 52 55	48 51 52 55	51 52 55	52 55	55		95		65	SS.	3	9	02	23		67	8	28
Sc	Cr Min	Cr Min	Cr	E		Fe		ဒိ	Ž	<u>ಪ</u>	Zn	පු	ဗီ	As	Se	B	ķ
20 21 22 23 23 24 25 25 26	indirum vanadium Chromium Manganese	Vanadium Chromium Manganese	nadium Chromium Manganese 26 26	omium Manganese 26	92			Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton . 36
96	91 93 96	93 . 96	96	1		101		103	106	108	112	115	119	122	128	121	131
Y Zr Nb Mo Tc Ru	Zr Nb Mo Tc Ru	Nb Mo Tc Ru	Mo Tc Ru	Tc	2	2		R H	P	Ag	පු	드		Sb	_de	_	×
Strontum titrium Litronium Mobium Molybdenium lechnetium Ruthenium 38 39 40 41 42 43 43 44	irium Zirconium Niobum Molybdenium lechnetium R	Miobium Molybdenum Technetium R	obium Molybdenum Technetium R	lechnetium R	netium A	Ruthenium 44	-	Rhodium 45	Pattadium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
139 178 181 184	178 181 184 186	181 184 186	184	28 C	-	Ę (192	195	197	201	204		503			
HI Ke	HI Ke	, Ke	. Ke	۔ پ کو پ		S O	_	- :	<u>د</u>	٦	Hg	F	Pb	. <u></u>	Po	Ąţ	
56 57 * 72 73 74 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76	72 73 74 75 75 77 75 77 75 77 77 77 77 77 77 77	73 74 75 75 76 76	74 75 75 76 76	75 71 71 71 71 10 10 10 10 10 10 10 10 10 10 10 10 10	Engle	76 76		fradium 77	Platinum 78	79 Gold	Mercury 80	Thallium 81	Lead 82	Bismuth 83		Astatine 85	Radon 86
		-	-		-												
	Ac						_										
Radium Aginium 88 89 †	Actinium 89 †																
					7.70		J										
141 144	140 141 144	141 144	141 144	144			_	150	152	157	159	l	165		169	173	175
Cerium Praseodymium Neodymium	Cerium Praseodymium Nadymium	Prasepdyminm Neodyminm	Prasepdyminm Neodyminm			Programme		Sm	Ergonius Britanius	eggining.	<u>ا</u> له	٥	9 J		Ę		3
<u>«</u>	09 65 89	9 65	9 65			61		62	63	64	99	66	67	Erbium 68	EDWINU. 69	70 Tree Divin	Lutetium 71
						-	Γ										

58-71 Lanthanum series	t 90-103 Actinium series

a = relative atomic	X = atomic symbo	b = atomic numbe
•	×	٩
	ζeγ	

a = relative atomic mass	X = atomic symbol	b = atomic number
~	×	٩

~	a = relative atomic mass	232		238			
· >	×	f	Pa	>	Š	Pu	
<	A = atomic symbol	Thorium	Protectinium	Uranium	Neptunium	Plutonium	₹
,	b = atomic number		16	95	93	. 76	92

Lr Lawrencium 103

Fm Md No Fermium Mendelevium Nobelium

Einsteinium

Cf Californium 98

Bk Berkelium 97

Carium Curium

Americium

Question A1 - continued

(c)	For salt Z, write	
	(i) the formula	
	(ii) the ionic equation for the reaction in 11.	
(d)	Suggest a suitable pair of reagents and the necessary condition t	o prepare
	salt X.	
	Reagents and	
	Condition	
		Total
Her	e is a list of substances.	
	cium carbonate iron per(II) oxide lead(II) nitrate	
etha		
	nswering the following questions each substance may be used on n once, or not at all.	ce, more
Sele	ect from this list the substances that	
(a)	contain only covalent bonds.	
	and	
		
(b)	occur naturally in large quantities in the Earth's crust.	
	and	
(0)	have nine at me in their fermants	
(c)	have nine atoms in their formula.	
	and	
(d)	react with aqueous silver nitrate.	
	and	
(e)	have a relative molecular mass greater than 90.	
	and	
		Total

[Turn over

A3 The diagram shows a label from a bottle of household cleaner.

"Formic acid", properly called methanoic acid, has the formula H CO $_2$ $\underline{\text{H}}_{\text{.}}$ In reactions it is only the underlined H that causes acidity.

(a) (i) Calculate the relative molecular mass of methanoic acid.

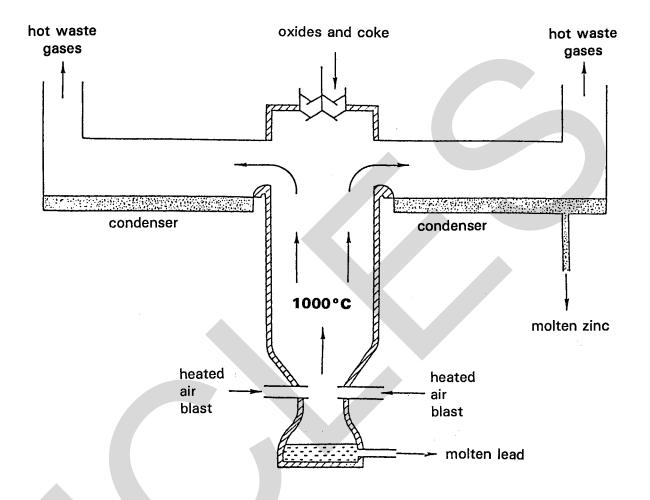
Question A3 - continued

	(11)	40 g of methanoic acid is present in 100 g of solution.	
		Assuming that the density of ATAKA is $1.00~\rm g/cm^3$, calculate the mass of methanoic acid present in the bottle of ATAKA which contains 250 ml of solution. (1 ml = $1~\rm cm^3$)	
	(iii)	Calculate the concentration, in mol/dm ³ , of methanoic acid in ATAKA.	
			[5]
o)	(i)	Give the chemical name for the scale that is formed in kettles.	
	(ii)	Write the equation for the reaction between scale and the acid in ATAKA.	
	(iii)	Suggest and explain a safety measure that must be taken after descaling the kettle.	
			[4]
		Total	[9]

A 4 The table below lists some metals and some of their properties.

Name	Symbol	Atomic Number	m.pt in °C	Density in g/cm³	Order of Reactivity	Abundance relative to others	Cost in £/tonne
aluminium	Al	13	660	2.7	3	83 000	700
copper	Cu	29	1083	8.9	6	68	1 000
iron	Fe	26	1535	7.9	4	62 000	400
lead	Pb	82	327	11.4	5	13	300
magnesium	Mg	12	650	1.7	2	27 640	1 400
potassium	κ	19	63	0.9	1	18 400	52 000
tungsten	w	74	3407	19.3	7	2	54 000

Use the information in the table and your own knowledge to answer the questions.


(a)	Iron is used for water pipes. Give an advantage and a disadvantage of iron compared with copper for this use.	
	Advantage	
	Disadvantage	[2]
(b)	Some North Sea divers have pieces of metal attached to their boots to stop them rising to the surface while working.	
	Suggest a suitable metal and give TWO reasons to support your choice.	
	Metal	
	Reason 1	
	Reason 2	[2]

011	etion	Λ1_	continue	d
wu		- 44	C2031111111111111	ш

	The section of			
Iron around 2500 BC Lead around 1000 BC Tungsten 1783 AD Potassium 1807 AD Suggest reasons for the order of discovery of the metals as shown by	ine table show	ws the dates when	four of the metals were d	iscovered.
Lead around 1000 BC Tungsten 1783 AD		Metal	Year discovered	
Tungsten 1783 AD Potassium 1807 AD Suggest reasons for the order of discovery of the metals as shown by		Iron	around 2500 BC	
Potassium 1807 AD Suggest reasons for the order of discovery of the metals as shown by		Lead	around 1000 BC	
Suggest reasons for the order of discovery of the metals as shown by		Tungsten	1783 AD	
		Potassium	1807 AD	
		ns for the order of (discovery of the metals as	s shown by
	Linese dates.			
	inese dates.			

A5 Zinc and lead ores occur together in nature. The two metals are obtained, at the same time, in apparatus similar to the blast furnace.

A mixture of the metal oxides, obtained from their ores, is fed into the top of the furnace, together with coke. Hot air is blasted into the bottom of the furnace.

The melting and boiling points of the two metals are given in the table.

	melting point /°C	boiling point /°C
lead	328	1751
zinc	420	908

Question A5 - continued

000	urnace must be maintained at a temperature of approximately °C.
(i)	Why is a lower temperature of 500°C not suitable?
(ii)	Why is a higher temperature of 2000°C not suitable?
(iii)	It is important to conserve energy in the process. Suggest how the air blast to the bottom of the furnace should be heated.

Question A5 - continued

- (c) Use the information below to help you place the four metals (chromium, strontium, rhodium and zinc) in order of reactivity.
 - A When zinc is heated with chromium(III) oxide, chromium is formed.
 - **B** Chromium reacts slowly with dilute hydrochloric acid to form chromium(III) choride.
 - C Strontium carbonate cannot be decomposed by heating with a bunsen burner.
 - D Hydrogen reduces rhodium oxide to the metal.

(i)	Order of reactiv	ity
	most reactive	
	_	
	•	
	least reactive	
(ii)	Briefly explain	our reasoning.

[4]

Total [10]

Section A [44]

SECTION B

Answer both the questions from this section.

Write your answers on the ruled pages that follow.

Tear out and keep this page.

B1 Read the passage below which may help you to answer the question.

Natural gas, which contains mostly methane, is a limited resource with **world** supplies (not just North Sea supplies) estimated to last sixty years. Crude oil will run out even sooner.

Imagine that in sixty years' time no more crude oil is available and natural gas is about to run out.

Describe the problems that would be encountered in the following areas:

- (i) road transport,
- (ii) power generation,
- (iii) chemicals currently made from hydrocarbons

and discuss the steps that could be taken **now** to minimise these problems.

[9]

- **B2** (a) Chlorine atoms can form both ionic bonds (for example, in sodium chloride) and covalent bonds (for example in chlorine molecules).
 - (i) Explain the difference between the formation of an ionic and the formation of a covalent bond.
 - (ii) Substances containing these bonds differ significantly in their melting point and in their ability to conduct electricity. State and explain these differences.

[7]

(b) Chlorine, bromine and iodine are three members of the halogen group in the Periodic Table.

Consider the elements and/or their compounds and state, with detail,

- (i) two ways in which they are similar.
- (ii) two ways in which they differ.

[4]

(c) Select two important substances which contain chlorine. For each one describe how it has been of benefit to society, and outline one disadvantage associated with its use.

[4]

Total [15]

Section B [24]