

A Level

Mathematics

Session: 2000 June

Type: Mark scheme

Code: 9200

Oxford Cambridge and RSA Examinations

AS/A LEVEL (former Cambridge linear syllabus)

A 9200 A 9220 AS 8473

MATHEMATICS/ FURTHER MATHEMATICS

MARK SCHEME FOR COMPONENTS TAKEN IN JUNE 2000

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2000

Any enquiries about publications should be addressed to:

Publications OCR Mill Wharf Mill Street BIRMINGHAM B6 4BU

MATHEMATICS 9200

Component threshold marks

Сотролен	Maximum Mark	A	В	C	D	E	N	U
1	120	82	71	61	51	42	33	0
2	120	89	79	68	58	48	38	0
3	120	85	75	66	57	49	41	0
4	120	91	82	72	62	53	44	0

Overall Threshold Marks

Option	Maximum Mark	A	В	C	D.	E	N	U
A (1,2)	240	171	149	129	109	90	71	0
B (1,3)	240	164	144	125	107	89	71	0
C (1,4)	240	171	150	131	113	95	77	0

The percentage of candidates awarded each grade was as follows

Grade	A	В	. . C	D	IC.	N	U
%	36.8	16.1	13.3	12.7	8.6	7.1	5.3
Cumulative %	36.8	52.9	66.3	79.0	87.6	94.7	100.0

The total candidature was 1395

Markscheme 9200/1 June 2000

9200/01 Linear A Level Mathematics

Question Number	Mark scheme details		Part Mark
1	Obtains $(r =)$ 5 OR $\sqrt{25}$; Obtains (centre) $(0,1)$ AEF	B1 B1	2
			<u>2</u>
2	Obtains $y = 3x - 1$	B1	1
	Substitutes correctly into own linear equation $[t/s^3 = 3(1/s) - 1]$	M1	
	Obtains $t = 3s^2 - s^3$ OR $t = -s^3 + 3s^2$ OR $t = s^2(3 - s)$ or other factorised form	A1	2
			<u>3</u>
3	(i) Obtains correct graph with numerical evidence for correct stretch s.f. ½	B1	1
	(ii) Obtains correct reflection in x-axis of given graph with numerical evidence	Bl	1
	(iii) Obtains correct reflection of given graph in line $y = x$ with numerical evidence	e B1	1
			<u>3</u>
4	(i) Obtains values 7,11,15	Ві	1
	(ii) Substitutes numbers in $u_n = a + (n-1)d$ OR $u_n = a + nd$	M1	
	Obtains $(u_n =) 3 + 4(n-1) OR 4n - 1 AEF$	A1	2
	(iii) States v_n convergent AND satisfactory reason such as		
	" u_n divergent" OR " v_n tends to zero" OR " u_n tends to infinity"	B1	1
			4
5	Method to obtain 1 ± 6 , with possible numerical or $x \leftrightarrow y$ errors only, seen or implie	d M1	
	Obtains $-5 < y < 7$ OR " $-5 < y$ and $y < 7$ " OR " $-5 < y$, $y < 7$ " CWD AEF (M1 A0 for $-5 < x < 7$ etc.)	A1	2
	Method to obtain $x \ln 2 = \ln y \checkmark OR x \ln 2 < \ln y \checkmark \text{ etc. } OR x \log 2 = \log y \checkmark$	M1	
	Obtains $\ln y \checkmark / \ln 2$ with no intermediate step involving $\ln (y \checkmark / 2)$ (FT only on $y > 0$)	A1✓	
	Obtains $x < \ln 7/\ln 2$ ONLY having obtained positive and negative roots in first part	A1	3
			5

Question Number	Mar	k scheme details		Part Mark
6	2-t	an1 = 0.4 AND 2.4 - tan 1.2 = -0.2 or better	B 1	
	Clea	r identification of sign change AND deductive statement	M1	2
	{f'(x)=} $2 - \sec^2 x$ AEF	B1	
	Atte	mpts $1.1 - f(1.1)/f^2(1.1)$	M1	
	Obta	ins 1.18 (=1.182243)	A 1	3
				<u>5</u>
7	Valid	d complete attempt to find partial fractions seen or implied	M1	
	Obta	ins $(1/2)/(x-2) - (1/2)/(x)$ AEF	A1	
	Integ	rates to form $A \ln(x-2) + B \ln x$ AEF	M1	
	Obta	ins $(1/2)\ln(x-2) - (1/2)\ln x$ or better	Al	
	Obta	ins $(1/2)\ln x-2 - (1/2)\ln x + c$ OR $(1/2)\ln 1-2/x + c$ AEF	Al	5
				<u>5</u>
8	(i)	Sine rule used AND attempt to obtain $\sin \theta$	M1	
		Obtains 0.4 OR 2/5	A 1	2
	(ii)	$\sin^2\theta + \cos^2\theta = 1$ OR Pythagorean equivalent used AND attempt to ob-	tain $\cos\theta$ M1	
		Obtains √21 / 5 AEEF (exact working only)	A1	2
	(iii)	Obtains cosBDC = 3/5 AND sinBDC = 4/5 AEEF	B1	1
	(iv)	Indicates intention to use $\sin\theta\cos\phi\pm\cos\theta\sin\phi$	M1	
•		Substitution of 3/5 (\checkmark for $\cos \phi$), 4/5 (\checkmark for $\sin \phi$) and own $\sin \theta$, $\cos \theta$ into attempted $\sin(\theta \pm \phi)$	M1	
		Obtains $(6 + 4\sqrt{21})/25$ AEEF	Al	3
				<u>8</u>
9	(a)	Obtains $(A =) 4$	B1	
		Sufficient equations for B, C, AND attempt to solve for B OR C	M1	
		Obtains ($B=$) 5; ($C=$) -1	A1 A1	4
		SR: only $B = 5$ or only $C = -1$ written down can score B1 for max B1	B1 M0 2/4	
	(b)	Obtains $y = 2$	B 1	
		Method to solve quadratic or cubic equation using correct formula or	otherwise M1	
		Obtains $y = 4/3$ OR 1.3; $y = 8/3$ OR 2.7	A1 A1	4
				<u>8</u>

Question Number	Marl	k scheme details		Part Mark			
10	(i) Obtains scalar product ± 5.05 OR obtains three correct lengths ² 25.01, 5.25, 20.16 B1						
		Obtains $\cos AOB = \pm (-3.1+4.2+0.1\times0.5)/\sqrt{[(-3)^2+4^2+0.1^2]}\sqrt{[1^2+2^2+0.5^2]}$ (=0 M1	.4407)				
		Obtains (AOB=) 63.851° with 3dp required (=63.85068)	A1	3			
	(ii)	Obtains (-3, 4, 0) AND (1, 2, 0) (allow position vectors or omission of 0)	B1	1			
	(iii)	Obtains $\cos A'OB' = \pm (-3.1+4.2)/\sqrt{[(-3)^2+4^2]}\sqrt{[1^2+2^2]}$	B1				
		Obtains $(A'OB' =) 63^{\circ}$ or better $(=63.43494)$	B1				
		Method for $\pm (AOB - A'OB') / A'OB'$	M1				
		Obtains 0.66% AG (=0.6553 OR 0.6557)	A1	4			
				8			
11	(i)	Obtains $(R =) 25$; $(\alpha =) 74^{\circ} (= 73.73979)$	B1 B1	2			
		Attempt to use inverse sine to find one value of $(\theta + \alpha)$ for $\sin(\theta + \alpha) = -3\alpha$	R M1				
		Obtains any θ satisfying $\sin(\theta + \alpha) = -3/R$ for own values of R and α	A1✓				
		Obtains $(\theta =) -81^{\circ}$; 113° $(= -80.631) (= 113.1523)$	A1 A1	4			
		SR: -A1 mark for all extra solutions in range					
	 (ii) (a	a)Method to add 10° to previous solution(s)	M1				
		Obtains $(x =)$ $\theta \checkmark + 10$ within range specified $(= 123^{\circ} = 123.1523)$	A1✓	2			
	(t	o)Method for $90 - y = \theta$	M1				
		Obtains $(y =) 90 - \theta \checkmark$ within range specified $(= 171^{\circ} = 170.639)$	A1✓	2			
		SR: Fresh starts for (a) and (b) earn M1 for full correct method, A1 correct	answer				
			. <u>.</u>	<u>10</u>			
12	Uses	$dx = \pm \cos \theta$ (d θ) correctly	M1				
	Obtai	$\sin \pm \sin^2 \theta \cos^2 \theta$ correctly	M 1				
	Chan	ge of limits and use of double angle formula to obtain given integral AG	A1	3			
	Obtai	$ \int a + b \cos 4\theta \ (d\theta) $	M1				
	Obtai	$ \sin \frac{1}{8} \left(\theta - \frac{1}{4} \sin 4\theta \right) \text{ AEF} $	A1				
	Obta	ins $(A =)$ $\frac{1}{8} \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8} \right)$ AEEF (=0.038386)	Al	3			
	Use	of $\int y^2 dx$ where $y = x^2 \sqrt{1 - x^2}$	M1				
	$\pi \int x$	$x^4(1-x^2)(dx) \text{ seen}$	A1				
	Atter	npts to evaluate $\left[ax^5 + bx^7\right]_0^{\frac{1}{2}}$	M1				
	Obta	ins ($V =) 23\pi/4480$ AEEF	A1	4			
				<u>10</u>			

Question Number	Mar	k scheme details		Part Mark		
13	(i)	Obtains $y - 6 = m(x + 1)$ for some m	M1			
		Obtains $m = -2$	B1			
		Obtains $\pm (2x + y - 4) = 0$	A 1	3		
	(ii)	Complete method to solve equations l and l ' simultaneously	M1			
		Obtains $x = 3$ AND $y = -2$	A1	2		
	(iii)	Complete method for magnitude of displacement from P to intersection (ii)	M1			
		Obtains correctly $4\sqrt{5}$ AG $(=\sqrt{4^2+8^2})$	A1	2		
	(iv)	Obtains $(QR =)\sqrt{320}$ AEEF	B1			
		Any complete method for area of triangle PQR	M1			
		Obtains 80 by an exact method	A1	3		
	OR	Any complete exact method for area of triangle	M1			
		Obtains A = $16 \times 13 - 3 \times 13 - 5 \times 5 - 8 \times 8$ AEEF or A = $\frac{1}{2}$ ((-1 × -7) + (-7 × 1) + (9 × 6) - (6 × -7) - (-7 × 9) - (1 × -1)) AEE	A1 F			
		Obtains 80 by an exact method	A1	3		
				<u>10</u>		
14	dm/dt	t = ; -km OR km with k < 0 stated AEF	B1 B1	2		
	NB: A	Allow B1 B0 if finds dm/dt from AG				
	Separ	ration of variables and attempt to integrate	M1			
	Obtai	$ns \ln m = \pm kt + c consistent \text{ with first part}$	A1			
	Obtains $c = \pm \ln m_0$ or equivalent and attempts to substitute and exponentiate correctly M1					
	Obtai	ns correctly $m = m_0 e^{-kt}$ AG	A1	4		
	OR	Uses $dm/dt \pm km = 0$ and find integrating factor $e^{\pm kt}$	M1			
		Obtains $me^{\pm kt} = c$	A 1			
		Obtains $c = m_0$ and rearranges	M1			
		Obtains correctly $m = m_0 e^{-kt}$ AG	A1	4		
	SR: C	Obtains $m = e^{-kt}$ can score B1 B1 M1 B1 max. 4/6	,	1		
	(i)	Graph with positive gradient and gradient decreasing	B1			
		Graph passes through $M(0) > 0$ and limiting from below (ignore all labels)	B1	2		
	(ii)	States that M tends to A	B1	1		
	(iii)	Uses $dM/dt = -dm/dt$ or equivalent	Ml			
:		Complete correct substitution to obtain given differential equation AG	Al	2		
				<u>11</u>		

Question Number	Mark	scheme details		Part Mark
15		Uses $r^2\theta/2$ and two radii	M1	
		Obtains $(A =) 14 \theta \text{ (cm}^2)$	A1	2
	(i)	Attempts to differentiate own A with respect to t and use 0.1	M1	
		Obtains 1.4 (cm ² s ⁻¹) CWD	A 1	2
	(ii)	$(P =) 2+2+8\theta+6\theta$ OR $4+14\theta$ OR NP + MQ = 14θ and MN, PQ constant	M1	
		Obtains 1.4 (cm s ⁻¹) from correct P CWD	Al	2
	(iii)	Uses completely correct cosine rule in triangle including $ heta$ and L	M1	
		Obtains $L^2 = 100 - 96\cos\theta$ AG	A1	2
		Uses $\frac{dL}{dt} = \frac{dL}{d\theta} \frac{d\theta}{dt}$	M1	
		Obtains 2L in denominator or $\frac{1}{2}(100-96\cos\theta)^{-\frac{1}{2}}$	B1	
		Obtains $96\sin\theta d\theta/dt$ OR $96\sin\theta (0.1)$ AEF	B 1	
		Substituting for θ , $d\theta/dt$	M1	
		Obtains $(6\sqrt{39})/65$ OR 0.58 (= 0.57646) (cm s ⁻¹)	A1	5
				<u>13</u>
16	(i) (a	Obtains $4p + 16q = 1$	B1	1
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) 2px + 4qx^3$	B 1	
		Substitutes to obtain $\sqrt{2} (a(4p + 16q))$	B 1	
		Demonstrates using $4p + 16q = 1$ that $2p(\sqrt{2}) + 4q(\sqrt{2})^3 = \sqrt{2}/2$ AG	B1	3
	(b)	Obtains $a = 5/36$ OR 0.14 (=0.13888)	B 1	1
		Obtains first term $ax^2 \checkmark (= 5x^2/36 = 0.14 x^2)$	B1✓	
		Obtains second non zero term $ax^4/9 \checkmark (= 5x^4/324 = 0.015 x^4)$	Bl✓	2
	(c)	Obtains $k = 0.181 \ (= 0.181015)$	B 1	1
		Attempt to substitute up to x^4 term for e^x AND, using $-x$, for e^{-x}	M1	
		Obtains $kx^2 + kx^4/12 + \dots$ or better (= 0.181 $x^2 + 0.0151 x^4$)	A1	2
	(ii)	Show clearly that 40 comes from 2×20 (where 20 can be assumed)	B1	
		Expands series with e^x and states $x = 0.1r$		
	OR	Shows sum of individual terms at start (before seeing summation sign) ie see $e^{0.1} + e^{0.2} + + e^{-0.1} + e^{-0.2} +$	B1	2
		Identifies a G.P. and its common ratio correctly	M1	
		Attempts valid method for both summations with 'r' = $e^{0.1}$ AND $e^{-0.1}$	Ml	
		Obtains (sum =) 6.4 (= 6.40)	A 1	3
				<u>15</u>

Markscheme 9200/2 June 2000

9200/02 A Level Linear Mathematics

1		Attempt quotient rule (or equivalent) allowing sign errors for this mark reversed only)	Ml	
		Obtain any correct unsimplified expression, e.g. $\frac{(2x+1)\times 1 - (x-2)\times 2}{(2x+1)^2}$	A1	
		Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	A1	
	[Product r	rule also requires chain rule (both applied correctly for M1)]		
	OR:	Express the function as $\frac{1}{2} - \frac{5}{2(2x+1)}$	B1	
		Use chain rule to differentiate $k(2x + 1)^{-1}$ (result $-k(2x + 1)^{-2}$ is M0)	M1	
		Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	A1	3
	[Accept fi	nal answer in the form $\frac{5}{4x^2+4x+1}$.]		
2	EITHER:	State or imply correct cosine rule (in any form) involving 2, 3, 4 and either B or C	M1*	
		Obtain $\cos B = -\frac{1}{4}$ (aef) or $B = 104.5^{\circ}$ or 104° or 105° or $\cos C = \frac{7}{8}$ (aef)		
		or $C = 29^{\circ}$	A1	
		State or imply correct formula for AD^2 involving 2, 4 and their numerical		
		$\cos B$ or 1, 4 and their numerical $\cos(180 - C)$ or $-\cos C$	M1 (dep *)	
	_	Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	A1	
	OR:	[E is the foot of the perpendicular from A to CB produced] Use Pythagoras in triangles ACE and ABE to obtain an equation for BE or AE		
			M1*	
		Obtain $BE = \frac{1}{2}$ or $AE^2 = \frac{15}{4}$	A1	
		Apply Pythagoras (or trig) with numerical BE and/or AE to find AD^2 (or AD)	M1 (dep *)	
		Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	Al	4
3		ply two relevant probabilities for a 'Yes' branch	M1*	
	Addı	the two relevant two-factor cases, i.e. $\frac{2}{3}p + \frac{1}{3}(1-p)$	M1 (dep *)	
	Obtai	in given answer $\frac{1}{3}(1+p)$ correctly	A1	3
	(ii) (Solv	$e^{\frac{1}{3}(1+p)}$ and) find $p = 0.05$	B 1	1
	Divid	le attempted P('No' and 'Truthful') by P('No')	M1	
	State	or imply answer is $\frac{\frac{2}{3}(1-0.05)}{1-0.35}$	Al ft	
		in answer 0.97 or $\frac{38}{39}$ or equivalent fraction	A 1	3
	[M1 is for	a fraction with numerical numerator $\frac{2}{3}(1-p)$ or denominator $1-0.35$		
		lent); ft only if $0]$		

4	(a) (i) State 'pie chart' or 'bar chart' or 'pictogram' or 'line diagram'	B1	1
	(ii) State 'histogram' or 'stem and leaf diagram' or 'frequency polygon' or]
	'cumulative frequency diagram'	BI	1
	(iii) State 'double bar chart' or 'two bar charts with common scales on a single	1	
	diagram'	B1	1
	(b) (i) Read off at least one relevant result	MI	l i
	Obtain any one answer 32, 38, 43	Al	
ľ	Obtain all three correct values of the median and quartiles, identifying the median	A 1	
	State interquartile range is 11	A1 A1 ft	
	(ii) Show linear scale from 0 to 60 with 0 and 60 marked and with ends of	Ain	4
	whiskers located at 5 and 60	B1	
	Show box extending between their quartile values	Bl ft	
	Show median line in box at their median value	B1 ft	3
	[Location of 5, medians and quartiles to be reasonably consistent with a linear scale.]		
5	EITHER: Use the connected formula $s = ut + \frac{1}{2}at^2$	M1 *	
		MI *	
	Obtain equation $6 = 15t - \frac{1}{2}gt^2$	A1	
	Solve a quadratic equation for t	M1 (dep *)	
	Obtain roots 0.47 and 2.6	Al	
	OR: Use the correct formula $v^2 = u^2 + 2as$ to find v	M1 *	
	State correct expression $\sqrt{(15^2-2g\times6)}$ for speed at height 6m	A1	
	Use a correct formula to evaluate a relevant time	M1 (dep *)	
	Obtain answers 0.47 and 2.6	A1	
	[Treat 'time above 6m' as a MR and give maximum possible on scheme.]	A1	4
6	(i) Show three corrected line segments with 2 correctly signed gradients	B1	
	Show or imply t and v axes with relevant points $(10, 40)$, $(15, 30)$ and $(20, 0)$		
	identified and graph of correct shape	B1	
	Carry out complete method for the area calculation, e.g. two triangles and one		
	trapezium (or equivalent use of constant acceleration formulas)	M1	
	Obtain answer 450	A1	4
	(ii) Sketch a graph starting at O having positive, decreasing gradient	B1	1
7	Equate total momentum before and after	M1	
	State or imply a correct equation $20000 \times 1.5 + 10000 \times 1 = (20000 + 10000)\nu$	A1	
	Obtain answer $\frac{4}{3}$, or equivalent, correctly	A1	3
	(i) State either $5000 = (\pm)30000a$ or both of $5000 - P = (\pm)10000a$ and		
	$P = (\pm)20000a$	M1	
	Obtain answer $(\pm)\frac{1}{6}$, or equivalent, for the deceleration	A1	2
	· ·	Ly i	
	(ii) Use a Newton II equation for one of the trucks with their numerical a (or		
	numerical v and t) to find P	M1	
	Obtain answer (±)3333 $\frac{1}{3}$ or 3300 only	A1	2
	[if g appears in the momentum equation deduct A1 but allow A1 for answer $\frac{4}{3}$ or		
	equivalent.]		

			
8	Resolve vertically, i.e. $2T\cos\theta = W$ or use trig in correct triangle or use Lami	Ml	
	Obtain answer 41° following correct use of $T = \frac{2}{3}W$	A1	2
	EITHER: Attempt a resolving equation, with 3 terms Obtain a correct equation in T and trig ratios of one angle, e.g. one of	M1*	
	$T\cos\theta + T\sin\theta = W$, $T\cos\theta - T\sin\theta = \frac{1}{2}W$, $T = \frac{1}{2}W\cos\theta + W\sin\theta$,		
	$T = W\cos\theta - \frac{1}{2}W\sin\theta \text{ (allow }\cos(90 - \theta)\text{ for }\sin\theta\text{ etc.)}$		
	Attempt a second independent 3-term resolving equation Obtain a second correct equation in T and trig ratios of previous angle Obtain an equation in θ (or T) only Obtain angle 18° or 72° Obtain $T = 0.79W$ or equivalent	A1 M1* A1 M1 (dep *) A1	
	OR: State resultant of W forces has magnitude $\frac{\sqrt{5}}{2}$ W or equivalent	A1	
	Combine T forces and equate resultants	B1	
	Obtain a correct equation, e.g. $2T\cos 45^\circ = \frac{\sqrt{5}}{2}W$	M1	
	Obtain $T = 0.79W$ or equivalent	A1	
	State resultant of W forces makes $\tan^{-1}(\frac{1}{2})$ with the vertical or $\tan^{-1}(2)$	A1	
	with the horizontal Equate directions and obtain an equation in θ, using 45° or 135° Obtain angle 18° or 72° [SR: Use of Wg for the weight W can score M1 A0 then M3 and an A1.]	B1 M1 A1	7
9	EITHER: State a correct equation from which T or $\frac{1}{2}$ T can be found,		
	e.g. $0 = V \sin \theta t - \frac{1}{2}gt^2$ or $0 = V \sin \theta - gt$	M1	
	Obtain any correct expression for R in terms of V, θ and g	A1	
	Obtain given answer $R = \frac{V^2 \sin 2\theta}{g}$ correctly	A1	
	OR: Using the equation of trajectory, state or imply equation		
	$0 = R \tan \theta - \frac{gR^2}{2V^2 \cos^2 \theta}, \text{ or equivalent}$	M1	
	Obtain any correct expression for R in terms of V, θ and g	A1	
	Obtain given answer $R = \frac{V^2 \sin 2\theta}{g}$ correctly	A1	3
	State any one suitable assumption, e.g. no air resistance, constant acceleration, etc	Bl	1
	(i) State both $D - 100 = \frac{U^2 \sin 60^{\circ}}{g}$ and $D + 100 = \frac{U^2 \sin 90^{\circ}}{g}$ or equivalent	Bl	,
	Eliminate D and solve for U^2	M1	
	Obtain given answer 121 correctly	A1	3
	(ii) Obtain $D = 1400 (1392.82)$	B1	
	Substitute values of U and D in range equation and solve for $\sin 2\theta$	M1	
	Obtain answer 34° (34.4547) or 35°	A1	3
	[SR: use of GA to show $U = 121$ and $D = 1400$ are consistent can get B1 M0 A0 B3	¹	
	MI A1.]		<u> </u>

10	(a) (i) State any one Newton II equation, e.g. $0.3g - T = 0.3a$, $T - 0.2g = 0.2a$,		
	0.1g = 0.5a State two of the above equations correctly	M1	
	State two of the above equations correctly Solve a relevant pair of equations to find T	A1	
	Obtain answer $T = 2.4$	M1	1
	(ii) State or use $a = \frac{1}{5}g$ in this part of the question	Al	4
	1	B1	
	Use $v = u + at$ with $u = 0$ and $a \neq g$ to find t Obtain answer $t = 2.0$	M1	
İ	[Answers to (i) and (ii) left as 6g/25 and 20/g are penalised once, scoring A0 A1]	A1	3
	[NB: if g is omitted only the M marks are available.]		İ
1	(b) EITHER: State equation or inequality, with 3 force terms, for motion parallel to		ł
	the plane for either particle	M1	
	Resolve perpendicular to the plane for either particle, and use $F = \mu R$	M1	
	State one correct equation/inequality, e.g.		
	$0.3g\sin 30^{\circ} - 0.3\mu g\cos 30^{\circ} - T = 0.3a \text{ (or > 0 or = 0)}$	A1	
	State a second correct equation/inequality, e.g.	41	
	$T - 0.2g\sin 30^{\circ} - 0.2\mu g\cos 30^{\circ} = 0.2a \text{ (or > 0 or = 0)}$ Eliminate Them a point of equations on inequalities and asked for	A1 M1	
	Eliminate T from a pair of equations or inequalities and solve for μ		17
	Obtain the given inequality $\mu < \frac{1}{5\sqrt{3}}$ correctly and not via decimals	A1	1
	OR: State 'system' equation or inequality involving both weight		
	components and both friction forces	M1	
	Resolve perpendicular to the plane for both particles, and use $F = \mu R$	M1	
	State any correct equation/inequality, e.g. $0.1g\sin 30^{\circ} - 0.5\mu g\cos 30^{\circ}$		1
	= 0.5a (or > 0 or = 0)	A2	
	Solve this equation/inequality for μ	M1	
	Obtain given inequality $\mu < \frac{1}{5\sqrt{3}}$ correctly and not via decimals	A1	6
11	State procedure A is better	B1	-
	Indicate that early customers may not be typical of customers in general	B1	2
	[for the justification mark, it's no good merely saying 'not random' or 'biased'.]		
]	State any sensible idea, involving e.g. useful criticisms from people who don't use		
	her shop, useful ideas for attracting new customers, etc, etc. [For this mark it is not enough march saying 'to be more rendem' or 'to evaid bios']	B1	1
12	[For this mark it is not enough <i>merely</i> saying 'to be more random' or 'to avoid bias'] Form an expression for $\Sigma x^2 p$	M1*	
	Subtract $(\Sigma xp)^2$ from the above	M1 (dep*)	
	Obtain correct expression $6p - 16p^2$ for the variance	Al	
	Equate variance (not s.d.) to $\frac{1}{2}$ and solve for p	M1	
	_		
	Obtain values $p = \frac{1}{4}$ and $p = \frac{1}{8}$	A1	
	Deduce both values 1 and $\frac{1}{2}$ for $E(X)$	A1 ft	6
	[The ft is only on 2 p values with $0]$		
13	(i) State or imply one of the two binomial terms, $\binom{50}{1}(0.88)^{49}(0.12)$ and		
	$\binom{50}{2}(0.88)^{48}(0.12)^2$	M1	
	Add the correct three binomial terms (and no others)	M1	
	Obtain answer 0.051	A1	3
	(ii) State or imply $\mu = 50 \times 0.12$	BI	
	State or imply value $50 \times 0.12 \times 0.88$ relating to variance/s.d.	B1	
	Evaluate $\frac{9.5-6}{\sqrt{(5.28)}}$ and use tables	M1	
	Obtain answer 0.064	A1	4
:	[The M1 is not lost for missing continuity correction, or for cc of on the wrong side,		
	but the denominator must be $\sqrt{(npq)}$ not npq .]		
	[Use of exact binomial terms scores M0; incorrect use of Poisson approximation can score B1 for μ = 6 and is allowed B1 for final answer 0.084.]		
	[Treat the use of $p = \frac{12}{50}$ as a MR.]		
	[If p, q interchanged, all M marks and a B1 are available.]		

			·,
14	(i) State value 8900 for $\hat{\mu}$	B1	
	State or imply expression $\frac{1}{74} \left(5.978 \times 10^9 - \frac{\left(6.675 \times 10^5 \right)^2}{75} \right)$, or equivalent	M1	
	Obtain answer 503000 for $\hat{\sigma}^2$	A1	3
	[If done by calculator with no working shown, the mark for the variance estimate is effectively B2 or B0. The biased estimate gets 0/2]		
	(ii) Use of $\hat{\mu} \pm z \times \sqrt{\left(\frac{\hat{\sigma}^2}{75}\right)}$, with numerical values throughout	M1	
	Use of correct z-value, i.e. 1.96	B1	
	Obtain correct interval correctly $8740 < \mu < 9060$ (allow 8900 ± 160)	A1	3
	[The M mark can also be earned for $\sqrt{\left(\frac{s^2}{74}\right)}$, where s^2 is the biased variance		
	estimate; for this mark, z must be numerical tabular value. However the use of		
	$\sqrt{\left(\frac{s^2}{75}\right)}$ can only earn M1 B1 A0.]		
	State or use the correct z-value -1.28(2)	В1	
	Form an equation $\frac{a-8900}{\sqrt{(503000)}} = z$, where z is a tabular value (ignore a sign error in z		
	here)	M1	
	Obtain answer 7990	A1	3
15	Show evidence of substituting relevant numbers into a correct formula	M1	
	Obtain answer 0.99 correctly	A2	3
	[If done by calculator with no working, the marks are B3 or B0]		
	Make a sensible comment, e.g. consistent with a linear relationship, strong positive	l	
	correlation	B1	1
	Use the d - v data correctly to find the line of d on v	M1	
	Obtain equation $d = -25.5 + 1.64\nu$ [If done by calculator with no working, the marks are B2 or B0]	A1	2
	Show axes with required scaling	 B1	
	Show axes with required scaling Show the six points plotted correctly	B1	
	Show the calculated line correctly	Bi ft	3
	[For the final B mark check that he v-intercept and ordinate at $v = 40$ are accurate to	אזען	
	$\pm \frac{1}{2}$ square, or make a similar check]		
	Use the equation or plot of the regression line and obtain $d = 65$ or 64 completely		
	correctly	B1	1
	Make any sensible comment, e.g. plot of data shows evidence of a non-linear relationship. Regression line overestimates d when $v = 55$ OR value of coefficient		
	(or data plot) suggests use of line will be suitable	B1	1

	() ()	T	
16	(i) State numerical expression of the form $(\frac{3}{4})^n(\frac{1}{4})$, with $n=3$ or 4	M1	
	Obtain answer $\frac{27}{256}$ Or 0.11	A1	2
	(ii) EITHER: Attempt addition of relevant terms $(\frac{3}{4})^{r}(\frac{1}{4})$	M1	
	Obtain answer $\frac{21087}{65536}$ or 0.32	Al	
	OR: Attempt relevant subtraction $(\frac{3}{4})^3 - (\frac{3}{4})^8$	M1	
	Obtain answer $\frac{21087}{65536}$ or 0.32	A1	2
	(iii) State expression $\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^2$ for one case	B1	
	Add probabilities for the two cases FSS, SFS (or equivalent)	M1	
	Obtain answer $\frac{3}{32}$ or 0.094	Al	3
	State or imply value 4 for mean μ of X	Bl	
	State or imply value 12 for variance σ^2 of X	B1	
	Show numerical calculation $\frac{5-\mu}{\text{st.error}}$ where the attempted denominator involves both		
	their 12 and 60	M1	
	their 12 and 60 Show correct expression $\frac{5-4}{\sqrt{\left(\frac{12}{60}\right)}}$	A1 ft	
	Obtain answer 0.013 correctly	A1	5

Markscheme 9200/3 June 2000

9200/03 A Level Linear Mathematics

4	DITUID Attended materials (on aminalant) allering signs of the state o		
1	EITHER: Attempt quotient rule (or equivalent) allowing sign errors for this mark (products reversed only)	M1	
	Obtain any correct unsimplified expression, e.g. $\frac{(2x+1)\times 1-(x-2)\times 2}{(2x+1)^2}$	A1	
	Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	Al	
	[Product rule also requires chain rule (both applied correctly for M1)]		
	OR: Express the function as $\frac{1}{2} - \frac{5}{2(2x+1)}$	B1	
ļ	Use chain rule to differentiate $k(2x + 1)^{-1}$ (result $-k(2x + 1)^{-2}$ is M0)	M1	
	Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	A1	3
	[Accept final answer in the form $\frac{5}{4x^2+4x+1}$.]		
2	EITHER: State or imply correct cosine rule (in any form) involving 2, 3, 4 and either B or C	M1*	
	Obtain $\cos B = -\frac{1}{4}$ (aef) or $B = 104.5^{\circ}$ or 104° or 105° or $\cos C = \frac{7}{8}$ (aef)		
	or $C = 29^{\circ}$	A1	
	State or imply correct formula for AD^2 involving 2, 4 and their numerical		
	$\cos B$ or 1, 4 and their numerical $\cos(180 - C)$ or $-\cos C$	M1 (dep *)	ļ
	Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	A1	ĺ .
	OR: [E is the foot of the perpendicular from A to CB produced] Use Pythagoras in triangles ACE and ABE to obtain an equation for BE or		
	AE 15	M1*	
	Obtain $BE = \frac{1}{2}$ or $AE^2 = \frac{15}{4}$	Al	
	Apply Pythagoras (or trig) with numerical BE and/or AE to find AD^2 (or AD)	M1 (dep *)	
	Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	A1	4
3	(i) Multiply two relevant probabilities for a 'Yes' branch	MI*	
	Add the two relevant two-factor cases, i.e. $\frac{2}{3}p + \frac{1}{3}(1-p)$	M1 (dep *)	
	Obtain given answer $\frac{1}{3}(1+p)$ correctly	A1	3
	(ii) (Solve $\frac{1}{3}(I+p)$ and) find $p = 0.05$	B1	1
	Divide attempted P('No' and 'Truthful') by P('No') 2(1-0.05)	M1	
	State or imply answer is $\frac{\frac{2}{3}(1-0.05)}{1-0.35}$	A1 ft	
	Obtain answer 0.97 or $\frac{38}{39}$ or equivalent fraction	A1	3
	[M1 is for a fraction with numerical numerator $(1-p)$ or denominator $1-0.35$ (or equivalent); ft only if $0]$		

J 2			
4	(a) (i) State 'pie chart' or 'bar chart' or 'pictogram' or 'line diagram'	B1	1
1	(ii) State 'histogram' or 'stem and leaf diagram' or 'frequency polygon' or 'cumulative diagram'		
	(iii) State 'double bar chart' or 'two bar charts with common scales on a single	B1	1
	diagram.	B1	1
1	(b) (i) Read off at least one relevant result	M1	1
	Obtain any one answer 32, 38, 43	A1	
	Obtain all three correct values of the median and quartiles, identifying the median	1	
	State interquartile range is 11	A1	
1	(ii) Show linear scale from 0 to 60 with 0 and 60 marked with ends of whiskers	A1 ft	4
1	located at 5 and 60	B1	
}	Show box extending between their quartile values	B1 ft	
	Show median line in box at their median value	B1 ft	3
5	[Location of 5, medians and quartiles to be reasonably consistent with a linear scale.] EITHER: Use the correct formula $s = ut + \frac{1}{2}at^2$		
	2	M1 *	
ĺ	Obtain equation $6 = 15t - \frac{1}{2}gt^2$	A1	
	Solve a quadratic equation for t	M1 (dep *)	
1	Obtain roots 0.47 and 2.6 OR: Use the correct formula $v2 = u2 + 2as$ to find v	A1	
]	and the state of t	M1 *	
	State correct expression $\sqrt{(15^2-2g\times6)}$ for speed at height 6m	A1	
	Use a correct formula to evaluate a relevant time	M1 (dep *)	
1	Obtain answers 0.47 and 2.6 [Treat 'time above 6m' as a MP and give movimum partial.	A1 `	4
6	[Treat 'time above 6m' as a MR and give maximum possible on scheme.] (i) Show three corrected line segments with 2 correctly signed gradients	Di	
}	Show or imply t and v axes with relevant points (10, 40), (15, 30) and (20, 0)	B1	
	Identified and graph of correct shape	B1	
	Carry out complete method for the area calculation, e.g. two triangles and one		
1	trapezium (or equivalent use of constant acceleration formulas) Obtain answer 450	M1	
	(ii) Sketch a graph starting at O having positive, decreasing gradient	Al	4
7	(i) State moments equation about A: $F \times 2\sin BAC = W \times \frac{1}{2}AC$, or equivalent	B1	1
		MI	
İ	State or imply any correct trig result, e.g. $tanBAC = \frac{1}{2}$, or perp distance from B		İ
ļ	to $AC = \frac{2}{\sqrt{5}}$, or equivalent	B1	
	Obtain answer $F = \frac{5}{4} W$ correctly		
	4 " concerns	A1	3
	(ii) Obtain $\tan \theta = \frac{W}{\frac{5}{4}W} \left(\text{or} = \frac{\text{perp distance from } B \text{ to } AC}{\frac{1}{2}AC} \right)$	Bl ft	
	$\frac{1}{4}AC$		
	Obtain $R = \sqrt{\frac{25}{16}W^2 + W^2}$ (or from $R = \frac{F}{\cos\theta}$)	B1 ft	
		21.16	
	Obtain $R = \frac{W\sqrt{41}}{4}$ (= 1.6W) AND θ = 39° (with R clearly in the correct		
	direction)	B1	3
8	Equate total momentum before and after	MI	-
	State or imply a correct equation $20000 \times 1.5 + 10000 \times 1 = (20000 + 10000)\nu$	A1	
	Obtain answer $\frac{4}{3}$, or equivalent, correctly	A1	3
	(i) State either $5000 = (\pm)30000a$ or both of $5000 - P = (\pm)10000a$ and		
	$P = (\pm)20000a$	M1	j
	Obtain answer $(\pm)\frac{1}{6}$, or equivalent, for the deceleration	Al	2
	(ii) Use a Newton II equation for one of the trucks with their numerical a (or		
	numerical v and t) to find P	MI	
	Obtain answer (+)2222 1 or 2200 L.	1	2
}	[if g appears in the momentum equation deduct A1 but allow A1 for answer or		~
	equivalent.]	İ	

		1	
9	Use Hooke's law in equilibrium equation $0.5g = \frac{1.2\lambda}{0.6}$	M1	
	Obtain $\lambda = \frac{1}{4}g$ or 2.5(2.4525)	A1	2
	State energy equation involving KE and at least one of EE, PE	Ml	
!	Show correct PE term $0.5 \times g \times 1.8$	B1	
	Show correct EE term $\frac{\frac{1}{4}g \times 1.2^2}{2 \times 0.6}$ (= 0.3g)	Blft	
	State unsimplified equation, e.g. $0.25v^2 + 0.3g = 0.9g$ (signs correct)	A1 ft	_
	Obtain answer $v = 4.8$ or 4.9 correctly [For the B marks for the PE and EE terms, ignore signs.]	A1	5
10	Resolve vertically, i.e. $2T\cos\theta = W$ or use trig in correct triangle or use Lami	MĪ	
	Obtain answer 41° following correct use of $T = \frac{2}{3}W$	Al M1*	2
	EITHER: Attempt a resolving equation, with 3 terms		
	Obtain a correct equation in T and trig ratios of one angle, e.g. one of		
	$T\cos\theta + T\sin\theta = W$, $T\cos\theta - T\sin\theta = \frac{1}{2}W$, $T = \frac{1}{2}W\cos\theta + W\sin\theta$,		
	$T = W\cos\theta - \frac{1}{2}W\sin\theta \text{ (allow }\cos(90 - \theta) \text{ for }\sin\theta \text{ etc.)}$	A1	
	Attempt a second independent 3-term resolving equation	M1*	
	Obtain a second correct equation in T and trig ratios of previous angle Obtain an equation in θ (or T) only	A1 M1 (dep *)	
	Obtain angle 18° or 72°	Al	
	Obtain $T = 0.79W$ or equivalent	A1	
	OR: State resultant of W forces has magnitude $\frac{\sqrt{5}}{2}$ W or equivalent	B1	
	Combine T forces and equate resultants	Ml	
	Obtain a correct equation, e.g. $2T\cos 45^\circ = \frac{\sqrt{5}}{2}W$	A1	:
	Obtain $T = 0.79W$ or equivalent	A1	
	State resultant of W forces makes $\tan^{-1}\left(\frac{1}{2}\right)$ with the vertical or $\tan^{-1}(2)$		
	with the horizontal	B1	
ļ	Equate directions and obtain an equation in θ , using 45° or 135° Obtain angle 18° or 72°	M1	_
	[SR: Use of Wg for the weight W can score M1 A0 then M3 and as A1.]	Al	7
11	EITHER: State a correct equation from which T or $\frac{1}{2}$ T can be found,		
	e.g. $0 = V \sin \theta t - \frac{1}{2}gt^2$ or $0 = V \sin \theta - gt$	M1	
	Obtain any correct expression for R in terms of V, θ and g	A1	
	Obtain given answer $R = \frac{V^2 \sin 2\theta}{g}$ correctly	Al	
	OR: Using the equation of trajectory, state or imply equation		
	$0 = R \tan \theta - \frac{gR^2}{2V^2 \cos^2 \theta}, \text{ or equivalent}$	M1	
	Obtain any correct expression for R in terms of V, θ and g	A1	
	Obtain given answer $R = \frac{V^2 \sin 2\theta}{g}$ correctly	A1	3
	State any one suitable assumption, e.g. no air resistance, constant acceleration, etc	B1	1
	(i) State both $D - 100 = \frac{U^2 \sin 60^\circ}{g}$ and $D + 100 = \frac{U^2 \sin 90^\circ}{g}$ or equivalent	Bl	
	Eliminate D and solve for U^2	M1	
	Obtain given answer 121 correctly	Al	3
	(ii) Obtain $D = 1400 (1392.82)$ Substitute values of U and D in range equation and solve for $\sin 2\theta$	B1 M1	
	Obtain answer 34° (34.4547) or 35°	A1	3
	[SR: use of GA to show $U = 121$ and $D = 1400$ are consistent can get B1 M0 A0 B1		
L	M1 A1.]		<u> </u>

10	TYPE COLUMN	γ	,
12	EITHER: State $mg = T\cos\alpha$	B1	
į	Equate $T\sin\alpha$ to $m \times \text{circular}$ acceleration formula	M1	
	State correct equation $T\sin\alpha = m\omega^2 l \sin\alpha$	A1	1 .
	Eliminate T and obtain given answer $\cos \alpha = \frac{g}{\omega^2 l}$ correctly	A1	
	OR: Equate $mg\sin\alpha$ to $m \times$ circular acceleration formula $\times \cos\alpha$	M1	
	State correct equation $mg\sin\alpha = m\omega^2 l\sin\alpha\cos\alpha$	A2	
	Obtain given answer $\cos \alpha = \frac{g}{\omega^2 l}$ correctly	A1	4
	(i) Use Hooke's law to express T_{PQ} in terms of m, g, l, θ	M1	
	Cancel l and obtain correct expression $mg(2\sin\theta - 1)$ or equivalent	A1	2
	(ii) State a 3-term Newton II equation $T_{OP}\sin\theta + T_{PQ} = mr \times \frac{2g}{l}$ (ie $w^2 = \frac{2g}{l}$ used)	M1*	!
	Use $T_{OP}\cos\theta = mg$ and eliminate both tensions State correct equation involving m, g, l, θ only (at most), e.g.	M1 (dep *)	
			1 1
	$\frac{mg}{\cos\theta}\sin\theta + \frac{mg(l\sin\theta - \frac{1}{2}l)}{\frac{1}{2}l} = ml\sin\theta \times \frac{2g}{l} \text{ (FT on } T_{PQ})$	A1 ft	
	Simplify and obtain answer $\theta = \frac{1}{4} \pi$ or 45° correctly	A1	4
13	State or imply no sliding if $W \sin \alpha \le \mu W \cos \alpha$ (or =)	M1	
	Obtain given answer $\mu \ge \frac{3}{4}$ correctly	A1	2
	[For a direct quote of $\mu \ge \tan \alpha$ allow B2]		
	Resolve parallel to the plane for 'sliding up' (allow sign and trig errors)	M1	
1	Obtain $P = W \sin \alpha + \mu W \cos \alpha$	A1	
	Obtain given answer $P = \frac{1}{5}(3 + 4\mu)W$ correctly	A1	3
	Take moments about bottom right for 'toppling up' (allow trig errors) (R and F must		
	act through bottom right)	M1	
	Obtain $Pl = \frac{1}{2} W l \sin \alpha + \frac{1}{2} W l \cos \alpha$ or $Pl = W \left(\frac{1}{2} l \sqrt{2}\right) \cos(45^{\circ} - \alpha)$ (or equiv in P , W ,		
	$l, \alpha)$	A1	
	Substitute for α (allow use of cos 8.1301°) and obtain given answer $P = \frac{7}{10} W$	A1	3
	EITHER: Find the least possible value of P for sliding and compare with $\frac{7}{10}W$	M1	
	State that as $\frac{7}{10}$ $W < \frac{6}{5}$ W , toppling occurs first	A1	
	OR: Find the least possible value of μ for toppling to occur before sliding and		
	compare with $\frac{3}{4}$	M1	
	State that as $\frac{1}{8} < \frac{3}{4}$, toppling occurs first	A1	2
	4, topping south that	411	2

14	(a) (i) State any one Newton II equation, e.g. $0.3g - T = 0.3a$, $T - 0.2g = 0.2a$, $0.1g = 0.5a$) / (1	
	State two of the above equations correctly	M1	İ
	Solve a relevant pair of equations to find T	Al	
	Obtain answer $T = 2.4$	MI	
		A1	4
	(ii) State or use $a = \frac{1}{5}g$ in this part of the question	B1	
	Use $v = u + at$ with $u = 0$ and $a \neq g$ to find t	M1	
	Obtain answer $t = 2.0$	Al	3
	[Answer to (I) and (ii) left as 6g/26 and 20/g are penalised once, scoring A0 A1] [NB: if g is omitted only the M marks are available.]		
	(b) EITHER: State equation or inequality, with 3 force terms, for motion parallel to		
	the plane for either particle	MI	
	Resolve perpendicular to the plane for either particle, and use $F = \mu R$	M1	
	State one correct equation/inequality, e.g.		
	$0.3g\sin 30^{\circ} - 0.3\mu g\cos 30^{\circ} - T = 0.3a \text{ (or } > 0 \text{ or } = 0)$	A1	
	State a second correct equation/inequality, eg		
	$T - 0.2g\sin 30^{\circ} - 0.2\mu g\cos 30^{\circ} = 0.2a \text{ (or } > 0 \text{ or } = 0)$	A1	
	Eliminate T from a pair of equations or inequalities and solve for μ	Ml	
	Obtain the given inequality $\mu < \frac{1}{5\sqrt{3}}$ correctly and not via decimals	A1	
	OR: State 'system' equation or inequality involving both weight		
	components and both friction forces	MI	
	Resolve perpendicular to the plane for both particles, and use $F = \mu R$	M1	
	State any correct equation/inequality, e.g. $0.1g\sin 30^\circ - 0.5\mu g\cos 30^\circ$	1421	
	= 0.5a (or > 0 or = 0)	A2	
	Solve this equation/inequality for μ	M1	
	Obtain given inequality $\mu < \frac{1}{5\sqrt{3}}$ correctly and not via decimals	Al	6
	3,7	***	
15	(i) State driving force = $\frac{10000}{25}$	B1	
	State 3-term Newton II equation $\frac{10000}{25} - 200 = 400a$	M1	
]	Obtain answer $a = \frac{1}{2}$	A1	3
	(ii) Obtain answer 20 (i.e. $\frac{10}{\text{answer}(i)}$)	B1 ft	1
	(iii) Use $a = \frac{dv}{dt}$ to set up DE, and attempt separation of variables	M1	
	Obtain $\int_{0}^{2\nu} \frac{2v}{50-v} dv = \int_{0}^{2\nu} dt$, or equally integrable equivalent	A1	
	Obtain both $2\{-v - 50\ln(50 - v)\}\$ and t correctly	Al ft	4
	Obtain given answer 20.5 correctly, either via limits or $+c$ [Follow through on wrong factor of 2 only]	Al	4
	(iv) Set up and separate new DE: $\int \frac{2v^2}{50-v} ds = \int ds$, or equally integrable equivalent	M1	
	Obtain $2\{-\frac{1}{2}v^2 - 50v - 50^2\ln(50 - v)\}$ and s correctly	A1 ft	
	Obtain answer 527	Al	3
	[Follow through on wrong factor of 2 only]		
	(v) State equation involving WD by engine, WD against resistance, KE	M1	
	State or imply work done by engine is 10 000t	B 1	
}	State or imply work done against resistance is 200s	B1	
	Prove given answer correctly	A1	4

Markscheme 9200/4 June 2000

9200/04 A Level Linear Mathematics

1		Attempt quotient rule (or equivalent) allowing sign errors for this mark reversed only)	M1	
		Obtain any correct unsimplified expression, e.g. $\frac{(2x+1)\times 1 - (x-2)\times 2}{(2x+1)^2}$	Al	
		Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	A1	
	[Product r	rule also requires chain rule (both applied correctly for M1)]		
	OR:	Express the function as $\frac{1}{2} - \frac{5}{2(2x+1)}$	B1	
	:	Use chain rule to differentiate $k(2x+1)^{-1}$ (result $-k(2x+1)^{-2}$ is M0)	M1	
		Obtain simplified answer $\frac{5}{(2x+1)^2}$ correctly	A1	3
	[Accept fi	nal answer in the form $\frac{5}{4x^2+4x+1}$.		
2	EITHER:	State or imply correct cosine rule (in any form) involving 2, 3, 4 and either B or C	M1*	
		Obtain $\cos B = -\frac{1}{4}$ (aef) or $B = 104.5^{\circ}$ or 104° or 105° or $\cos C = \frac{7}{8}$ (aef)		
		or $C = 29^{\circ}$	Al	
		State or imply correct formula for AD^2 involving 2, 4 and their numerical		
		$\cos B$ or 1, 4 and their numerical $\cos(180 - C)$ or $-\cos C$	M1 (dep *)	
	•	Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	A1	
	OR:	[E is the foot of the perpendicular from A to CB produced] Use Pythagoras in triangles ACE and ABE to obtain an equation for BE or		
		AE	M1*	
		Obtain $BE = \frac{1}{2}$ or $AE^2 = \frac{15}{4}$	Al	
		Apply Pythagoras (or trig) with numerical BE and/or AE to find AD^2 (or AD)	M1 (dep *)	
		Obtain answer $\sqrt{24}$ or $2\sqrt{6}$ or 4.9	A1	4
3	(i) Multi	iply two relevant probabilities for a 'Yes' branch	M1*	
	Add	the two relevant two-factor cases, i.e. $\frac{2}{3}p + \frac{1}{3}(1-p)$	M1 (dep *)	
	Obtai	in given answer $\frac{1}{3}(1+p)$ correctly	A1	3
	(ii) (Solv	$re \frac{1}{3}(1+p)$ and) find $p = 0.05$	B1	1
	Divid	le attempted P('No' and 'Truthful') by P('No')	M1	
	State	or imply answer is $\frac{\frac{2}{3}(1-0.05)}{1-0.35}$	A1 ft	:
		in answer 0.97 or $\frac{38}{39}$ or equivalent fraction	A1	3
	[M1 is for	a fraction with numerical numerator $\frac{2}{3}$ $(1-p)$ or denominator $1-0.35$;	
		lent); ft only if 0		

4	(a) (i) State 'pie chart' or 'bar chart' or 'pictogram' or 'line diagram'	B1	1
]	(ii) State 'histogram' or 'stem and leaf diagram' or 'frequency polygon' or		
	'cumulative frequency diagram'	B1	1
	(iii) State 'double bar chart' or 'two bar charts with common scales on a single		
	diagram'	B1	1
	(b) (i) Read off at least one relevant result	Ml	
1	Obtain any one answer 32, 38, 43	A1	
	Obtain all three correct values of the median and quartiles, identifying the		
	median	A1	
	State interquartile range is 11	AI ft	4
1	(ii) Show linear scale from 0 to 60 with 0 and 60 marked and with ends of		
	whiskers located at 5 and 60	B1	
	Show box extending between their quartile values	B1 ft	
	Show median line in box at their median value	B1 ft	3
	[Location of 5, medians and quartiles to be reasonably consistent with a linear scale.]		•
5	State procedure A is better	B1	
	Indicate that early customers may not be typical of customers in general	BI	2
	[For the justification mark, it's no good merely saying 'not random' or biased.]	J. 1	
	State any sensible idea, involving e.g. useful criticisms from people who don't use		
	her shop, useful ideas for attracting new customers, etc, etc.	B1	1
	=	Di	1
	[not enough to say 'not random' or 'to avoid bias']	3.61.6	
6	Form an expression for $\Sigma x^2 p$	M1 *	
	Subtract $(\Sigma xp)^2$ from the above	M1 (dep *)	
	Obtain correct expression $6p - 16p^2$ for the variance	A1	
	Equate variance (not s.d.) to $\frac{1}{2}$ and solve for p	Ml	
	Obtain values $p = \frac{1}{4}$ and $p = \frac{1}{8}$	A1	
	Deduce both values 1 and $\frac{1}{2}$ for E(X) The ft is only 2 p values 0	A1 ft	6
7	(i) State or imply one of the 2 binomial terms $\binom{50}{1}(0.88)^{49}(0.12)$		
	or $\binom{50}{2}$ $(0.88)^{48}(0.12)^2$	MI	
	Add the correct three binomial terms (and no others)	мі	
	Obtain answer 0.051	A1	3
]	(ii) State or imply $\mu = 50 \times 0.12$	B1	
	State or imply value $50 \times 0.12 \times 0.88$ relating to variance/s.d.	B 1	
	Evaluate $\frac{9.5-6}{\sqrt{(5.28)}}$ and use tables	Ml	
	Obtain answer 0.064	A1	4
	[The M1 is not lost for missing continuity correction, or for c.c. of $\frac{1}{2}$ on the wrong	l Wi	•
	side, but the denominator must be $\sqrt{(npq)}$ not npq .]		
	SR1 Incorrect use of Poisson could score B1 for $\mu = 6$ and B1 for final answer 0.084		
	SR2 If p/q interchanged can score M1 M1 A0 B0 B1 M1 A0]	
	NB ₁ use of Binomial in (ii) scores M0		
	NB ₂ in (i) and (ii) treat $p = \frac{12}{50}$ as MR		
	50		
8	(i) Use correct Poisson formula with $\mu = 4$, i.e. $e^{-4} \frac{4^3}{3!}$	M1	
	Obtain answer 0.20	A1	2
	(ii) Add correct Poisson cases 0, 1, 2	MI	
	Obtain answer 0.24	AI	2
	State or imply Poisson with $\mu = 5$ is a suitable model OR if 2 distributions		
	considered separately, consider all cases	B1	
	Calculate $1 - \{P(0) + P(1) + P(2) + P(3)\}$	M1	
	Obtain answer 0.73 or 0.74 (0.73497)	A1	3
		111	

9	(i) EITHER	: Express $C > 40$ in terms of X (the number of hours)	M1	7
		State or imply that equivalent inequality if $X > \frac{1}{2}$	Al	
		Calculate $\pm \frac{(0.5-0.9)}{0.2}$ and use tables	MI	
		Obtain answer 0.98	A1	
ļ	OR:	Evaluate mean and s.d. of $30 + 20X$	MI	
		Obtain 48 and 4	A1	
		Calculate $\pm \frac{(40-48)}{4}$ and use tables	мі	4
		Obtain answer 0.98	A1	
	OR:	Evaluate mean and s.d. of 20X Obtain 18 and 4		
		Calculate $\pm \frac{(10-18)}{4}$ and use tables		
		Obtain answer 0.98	, , , , , , , , , , , , , , , , , , ,	
	(ii) EITHER:	State or imply that $E(T) = 480$ (or 180)	B1 B1	
		State or imply calculation of $10 \times 20^2 \times 0.2^2$	D 1	
		Calculate $\pm \frac{(500-480)}{\sqrt{160}} \left(OR \pm \frac{200-180}{\sqrt{160}} \right)$ and use tables	M1	
		Obtain answer 0.057	Al	
	OR:	State or imply $E(T) = 48$ State or imply calculation $0.1 \times 20^2 \times 0.2^2$	B1	
			BI	
		Calculate $\pm \frac{50-48}{\sqrt{1.6}}$ and use tables	M1	
		Obtain answer 0.057	A1	
	OR:	State or imply that $E(H) = 9$	B1	
		State or imply calculation of 10×0.2^2	B1	
		Calculate $\pm \frac{(10-9)}{\sqrt{0.4}}$ and use tables	M1	
	O.D.	Obtain answer 0.057	Al	
	OR:	State or imply that $E(H) = 0.9$ State or imply calculation 0.1×0.2^2	B1 B1	
:		Calculate $\pm \frac{(1-0.9)}{\sqrt{0.004}}$ and use tables		
		¥ 0.00 .	M1	
10	~	Obtain answer 0.057	Al	4
10	(i) State valu		B1	
	State or in	nply expression $\frac{1}{74} \left(5.978 \times 10^9 - \frac{(6.675 \times 10^5)^2}{75} \right)$, or equivalent	M1	İ
	Obtain ans	swer 503 000 for $\hat{\sigma}^2$	A1	3
	[If done by is e	y calculator with no working shown, the mark for the variance estimate ffectively B2 or B0. The biased estimate gets 0/2]		
		$\pm z \times \sqrt{\left(\frac{\hat{\sigma}^2}{75}\right)}$, with numerical values throughout	M1	
	Use of cor	rect z-value, i.e. 1.96	B1	
		rrect interval $8740 < \mu < 9060$	A1	3
	[The M m	ark can also be earned for $\sqrt{\left(\frac{s^2}{74}\right)}$, where s^2 is the biased variance		
		mate; for this mark, z must be a numerical tabular value]		
	SR If $\frac{s^2}{75}$ used	l allow M1 B1 A0	D.	
	State or use the	e correct z-value – 1.28(2)	B1	
	Form an equat	ion $\frac{a-8900}{\sqrt{(503000)}} = z$, where z is a tabular value (ignore a sign error in	M1	
	z he Obtain answer	ere)	A 1	3

r				
11	Show evidence of correct binomial term $\binom{24}{2}(0.8)^{22}(0.2)^2$	Bl		
	Add the three relevant terms for 0, 1, 2 sufferers or $1 - (0, 1, 2 \text{ sufferers})$ Obtain value 0.11 (consistent with comparison to 0.1) or obtain value 0.89	M1		
	(consistent with comparison to 0.9)	Al	1	
1	Compare 0.11 to 0.1 or compare 0.89 to 0.9 and accept NH, i.e. can't reject $p = 0.2$	Alft	4	
	EITHER: State or use 0.2 and $\sqrt{\left(\frac{0.2 \times 0.8}{40}\right)}$ as normal mean and s.d.	Bi		İ
	State observed proportion is $\frac{12}{40} = 0.3$	B1		
	Calculate $\frac{\pm (0.3-0.2)}{\sqrt{0.004}}$ and use tables for this z value or use tables for 0.1	M1		
	Obtain tail probability 0.057 or obtain 1.58 for test statistic and 1.28(2) Compare tail probability to 0.1 OR compare 1.58 to 1.28(2) and reject			
ł	NH; i.e. accept $p > 0.2$	A1		1
	[strictly speaking the observed proportion should be taken as			- 1
	$\frac{11.5}{40} = 0.2875$; the conclusion is unchanged.]	A1 ft		
	OR: State or use 40×0.2 as the mean for a normal distribution	B1	1	1
l	State or use $\sqrt{(40 \times 0.2 \times 0.8)}$ as the s.d.	Bi		1
	Calculate $\frac{\pm (11.5-8)}{\sqrt{6.4}}$ and use tables for this z value or use tables for 0.1	MI		
	Obtain tail probability 0.083 or obtain 1.38 for test statistic and 1.28(2) Compare tail probability to 0.1 or compare 1.38 to 1.28(2) and reject NH,			
[1.e. accept $p > 0.2$	A1		1
ĺ	[NB no cc or wrong cc can still gain M mark] OR: If binomial test carried out:	A1 ft		
<u> </u>	OR: If binomial test carried out: One correct Binomial term			
		B1		
	Calculate $1 - \Sigma$ relevant terms 0 11 (allow 12 error) Obtain value 0.087 or 0.088	M1	İ	1
•	Compare to 0.1 and reject NH	A2 A1 ft	_	ı
12	(i) State that the data must be a sample from a normal population		5	-
	(ii) State or use $\bar{x} = 27.5$	B1	1	
	Show correct expression for either unbiased or biased variance estimate	B1		1
	Calculate $\frac{\pm (27.5-36)}{\text{attempted s.e.}}$	BI		l
	-	M1		l
	Show correct value $\frac{27.5-36}{\sqrt{\left(\frac{36.28}{10}\right)}}$ or $\frac{27.5-36}{\sqrt{\left(\frac{32.65}{9}\right)}}$ (= -4.46)	Al ft		
	State or imply 9 degrees of freedom	B1		1
	Demonstrate the given result via comparison 4.46 > 4.297	A1	6	ľ
	Equate $\frac{27.5 - \mu}{\text{attempted s.e.}}$ to numerical <i>t</i> -value			
		M1	•	
	State or use $t = -1.833$	BI		
_	Obtain answer 31	Al	3	

13	Show evidence of substituting relevant numbers into a correct formula	M1	
	Obtain answer 0.99 correctly	A1	3
	[If done by calculator with no working, the marks are B3 or B0]		
	make a sensible comment, e.g. consistent with a linear relationship, strong positive		
	correlation	Bl	1
	use the d - v data correctly to find the line of d on v	M1	
	obtain equation $d = -25.5 + 1.64v$	A1	2
	[If done by calculator with no working, the marks are B2 or B0]	1	_
	Show axes with required scaling	В1	
İ	Show the six points plotted correctly	Bl	
		B1	
	Show the calculated line correctly - check ν intercept accuracy $\pm \frac{1}{2}$ square		
	- check $v = 40$ ($d = 40.1$) accuracy $\pm \frac{1}{2}$ square		
	or similar	Bl ft	3
	Use the equation or plot of the regression line and obtain $d = 65$ or 64 completely	5. K	
	correctly	Bl	1
Ì	Make any sensible comment, e,g, plot of data shows evidence of a non-linear	DI	1
	relationship, regression line overestimates d when $v = 55$, value of		
	coefficient (or data plot) suggests line will be suitable	D 1	1,
1.		B1	1
14	(i) State numerical expression of the form $(\frac{3}{4})^n(\frac{1}{4})$, with $n=3$ or 4	M1	
	Obtain answer $\frac{27}{256}$ or 0.11	Al	2
	(ii) EITHER: Attempt addition of relevant terms $(\frac{3}{4})^n (\frac{1}{4})$	M1	
	Obtain answer $\frac{21087}{65336}$ or 0.32	A1	
	65556		
	OR: Attempt relevant subtraction $\left(\frac{3}{4}\right)^3 - \left(\frac{3}{4}\right)^8$	M1	
	Obtain answer $\frac{21087}{65536}$ or 0.32	Al	2
	(iii) State expression $\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^2$ for one case		
	(iii) State expression $(\frac{2}{4})(\frac{1}{4})$ for one case	B1	
	Add probabilities for the two cases FSS, SFS (or equivalent)	Ml	
	Obtain answer $\frac{3}{32}$ or 0.094	A1	3
	<u> </u>	_	
	State or imply value 4 for mean μ of X	Bl	
	State or imply value 12 for variance σ^2 of X	B1	
	Show numerical calculation $\frac{5-\mu}{\text{st.error}}$ where the denominator involves their 12 and 60	M1	
	5.4		
	Show correct expression $\frac{3-4}{\sqrt{3-3}}$	A1 ft	
	$\sqrt{\frac{12}{60}}$		
	Obtain answer 0.013 correctly	A1	5
15		M1	
13	(i) Calculate all expected frequencies 117.03 50.29 15.04 5.64	IATI	
	Obtain all values	A2	
	131.97 56.71 16.96 6.36		
	Carry out correct method for calculation of χ^2	M1	
	Obtain value 3.29 for χ^2	A1	
	State or imply 3 degrees of freedom	B1 ft	_
	Compare 3.29 with 7.815 and conclude there's no association	A1 ft	7
	[If 6 or 7 of the expected frequencies are correct, allow A1. For accuracy only to		
	2 s.f. or nearest whole number allow A1 for all correct to this accuracy]		
	(ii) State or use $\frac{207}{400}$ = 0.5175 or 0.52 for Poisson mean	В1	
	700		
	Use Po(0.5175) to calculate four expected frequencies	Ml	
	Obtain values 238.40, 123.36 or 123.37, 31.92, 6.30 to 6.32 (for 3 or more)	A1	
	Carry out correct method for calculation of χ^2	MI	
	Obtain value 7.75 to 7.80	A1	
	State or imply 2 degrees of freedom	B1 ft	-
	Compare 7.80 with 5.99 and conclude it doesn't fit	A1 ft	'
	[Special case: candidates whose fourth frequency is 5.51 (for 3) and who		
	incorrectly use this instead of the frequency for 3 or more can score B1 M1 A0		
L	M1 A0 B1 and A1 ft for comparing their $\chi^2 \approx 10.29$ with 5.99]		