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Abstract 

If standard setting is conceived as a process whereby an abstraction (the performance 

standard) is made concrete as a cut-score on the raw score scale of a real test, then carrying 

out a standard-setting exercise on two tests is conceptually closely related to IRT true-score 

equating where score points on two tests corresponding to the same latent trait location are 

deemed equivalent.  Noting that judge estimates of item difficulty typically correlate about the 

same with actual difficulty as empirical difficulty estimates based on very small samples 

(N<10), we compared, by simulation, a small-sample non-equivalent groups anchor test 

equating method with an Angoff-based method for determining equivalent cut-scores on two 

tests.  At typical levels of correlation of judged and actual difficulty (r=0.6), small-sample 

equating with N=90 was more accurate than Angoff-based standard-setting.  However, using 

a weaker anchor test or clustered sampling made the equating method similar to or worse 

than the Angoff-based method (depending on the cut-score location).  We discuss 

implications for testing scenarios where these two approaches are likely to be feasible 

options. 
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Comparing small-sample equating with Angoff judgment for linking cut-scores 

on two tests 

 

Introduction 

The educational measurement literature makes a clear distinction between the activities of 

standard setting on the one hand, and test equating or linking on the other.  For example, 

these topics occupy different chapters in the standard reference work Educational 

Measurement (Brennan, 2006).  Test equating is usually defined in a fairly narrow, technical 

way such as: “Equating is a statistical process that is used to adjust scores on test forms so 

that scores on the forms can be used interchangeably.” (Kolen & Brennan, 2004, p2).  

Standard setting, on the other hand is usually defined more broadly such as “…the proper 

following of a prescribed, rational system of rules or procedures resulting in the assignment 

of a number to differentiate between two or more states of performance” (Cizek, 1993, p100).  

The main issues in test equating tend to be around the definition of the ‘correct’ equating 

transformation, and the data collection designs and statistical methods necessary to estimate 

it.  In standard setting, however, the procedures are “… seldom, if ever, impartial 

psychometric activities, conducted in isolation.  Social, political and economic forces impinge 

on the standard-setting process…” (Cizek & Earnest, 2015, p213).  In particular, standard 

setting processes involve human values and judgments, and differences in these are to be 

expected. 

 

However, the two different processes are clearly conceptually very closely related.  This is 

brought out nicely by the graphic in Cizek & Earnest (ibid., p213) representing a 

‘performance standard’ as a point (x) on a hypothetical performance continuum, and 

describing the standard setting process as being one of translating point x to a cut-score 

(point y) on the percentage correct scale of the test on which the standard is to be set.  Thus 

the performance standard is an abstraction that could be realised (made concrete) by 

carrying out a standard setting exercise on any number of hypothetical tests.  Doing this in 

practice on several actual tests, however, would doubtless lead to different cut-scores on the 

different tests, partly because tests constructed to the same specifications inevitably differ 

somewhat in difficulty.  But it is this fact that creates the need for test equating processes!  

Although some test equating methods (those generally referred to as ‘observed score 

equating methods’) equate test forms without any reference to a hypothetical continuum, 

other methods, especially the IRT true score equating method, do make specific reference to 

such a continuum.  In IRT true-score equating, the expected score on test X for an examinee 

with ability θ is deemed equivalent to the expected score on test Y for an examinee with 

ability θ, where θ is the examinee’s ‘ability’ on the latent trait (abstract continuum) that is said 

to underlie performance on both tests. 

 

If we are prepared to conceive of the abstract continuum on which the performance standard 

is located and the latent trait of the IRT model as one and the same, then we can see that 

carrying out separate standard setting exercises on tests X and Y is in theory no different 

from attempting to equate them (at the point on the latent trait corresponding to the cut-

score) by a true-score IRT approach.  Of course, the results of applying such dramatically 

different approaches to the same problem could be expected to differ.  
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Although it would seem most logically justifiable to carry out a standard setting exercise just 

once (to establish one definitive example of a realisation of the abstract performance 

standard on a concrete test) and then to use statistical equating to link all subsequent (or 

other) forms to that, in practice it may well be that a standard-setting method is used 

(perhaps alongside other methods) to inform or set the cut-score on subsequent forms.  Thus 

the standard-setting method is used in practice as a test equating (standard-maintaining) 

method.  There are several scenarios where this might arise, for example: i) if the test is very 

high-stakes (e.g. a licence-to-practise test) where procedures require ‘stakeholder’ 

involvement in setting the cut-score on each test form; ii) if sample sizes are so low on each 

test form that statistical equating methods are not trusted; iii) if contextual factors (such as 

cost, need for test security, local culture and expectations) prevent some of the necessities 

for equating methods such as pre-testing, administration of an anchor test, or embedding of 

field-test items into live tests; iv) if there is a need to determine a cut-score before any ‘live’ 

performance data has been collected.  Interestingly, in a recent book Opposs & Gorgen 

(p57), deliberately chose to ignore the distinction between standard setting and standard 

maintaining because it was not helpful in considering the wide range of practices in different 

countries for arriving at cut-scores on high stakes tests. 

 

The conceptual similarity between equating and standard setting raises questions of the 

relative accuracy of the two methods.  Our starting assumption was that in an ideal world a 

large-sample equating exercise would be the preferred way to map a cut-score from one test 

to another parallel one.  However, since the standard error of equating in a test equating 

exercise depends upon the sample size, continually reducing the sample size presumably 

will reach a point at which the equating error becomes greater than that of carrying out two 

separate standard setting exercises.  The equating error from the latter will depend on the 

details of the method used but for all methods that rely on the judgment of item difficulty by 

experts a fundamental issue is the extent to which those judgments correspond to the actual 

empirical difficulty.  One of the motivations for this research was the observation that the 

correlation of facility values1 based on very small samples (N<10) with the facility values 

based on the full dataset of item scores are often of an order of magnitude similar to that 

reported for the correlation of judged difficulty with empirical difficulty.  An example is given in 

Figure 1, which shows the distribution of correlations of facility values from 1,000 random 

samples of size N=1 to 10 with the correct facility value using the full sample (N=439) using 

publicly available data from a PISA mathematics test booklet.2  The median correlation rises 

from around 0.5 to just under 0.9 as the sample size increases from 1 to 10, and we have 

found similar results from a variety of other data sets.  Indeed, using the well-known formula 

relating standard errors of estimates of percentages to sample sizes, it is fairly easy to verify 

the expected value of these correlations mathematically for any set of facilities for one mark 

items and a given sample size. However, we felt it was more compelling to illustrate the 

correlations using a real data set. The crucial point is that the range of correlations is similar 

to those reported for the correlation between empirical difficulty and judgements of difficulty 

in the Angoff standard setting method.  For example Brandon (2004) reports an average 

correlation of 0.61 (with an SD of 0.16) across 29 Angoff studies described in 7 research 

articles, and a more recent study by Tannenbaum & Kannan (2015) reported values around 

                                                
1 Facility value= mean item score / maximum possible item score 

2 The sixth test booklet from the assessment in 2012 for students in the USA. Available from 
https://www.oecd.org/pisa/pisaproducts/pisa2012database-downloadabledata.htm. 

https://www.oecd.org/pisa/pisaproducts/pisa2012database-downloadabledata.htm
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0.5 to 0.8.  These correlations are of the average estimated item difficulty across a number of 

judges with the empirical difficulty.  The size of this correlation depends on the number of 

judges and the range of empirical item difficulty, as discussed in Thorndike (1982). 

 

This similarity raises the question that prompted this research – given that estimates of item 

difficulty with similar correlations to the correct empirical value can be obtained from very 

small samples of empirical data, might it be the case that small-sample equating techniques 

are more effective than separate standard-setting exercises at mapping a cut-score from one 

test to another?  In this paper we explore this question by simulation, but using data from a 

real assessment.  The particular standard setting method and small sample equating method 

were chosen to reflect scenarios that we considered likely to occur in practice and hence to 

be relevant to a wide range of practitioners.  They are described in more detail below. 

 

 
Figure 1. Distribution of correlations of facilities from small samples with overall facilities for 

booklet 6 mathematics items in PISA 2012 for US pupils. 

 

Standard setting method ‘Mean estimation’ 

The mean estimation method is a variant of the more well known Angoff method (e.g. Angoff, 

1970; Loomis & Bourque, 2001). It is applicable to tests containing polytomous as well as 

dichotomous items.  If the test consists solely of dichotomous items it is the same as the 

Angoff method.  Experts estimate the difficulty of each of the items in a test in terms of the 

mean score likely to be obtained on each item by a group of minimally competent examinees 
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(MCEs).  If the test is pass-fail then the MCEs are those who are just competent enough to 

pass.  If the test is graded into more than two categories there are different groups of MCEs 

for each cut-score.  The cut-score is derived by summing the estimated means and then 

averaging across judges, rounding the result to an integer if necessary (or averaging and 

then summing – it makes no difference).  Hence tests comprising items that are perceived to 

be more difficult will have cut-scores set at lower values. There are various procedural 

variations possible, such as allowing rounds of judgements where the experts discuss and 

compare their estimates before making a further set of estimates; or allowing the experts to 

see empirical evidence (perhaps from pre-testing) about the difficulty of the items; or allowing 

the experts to see the effect of their judgements on the pass rate (or grade distribution) of the 

test. 

 

Note that previous research (e.g. Impara and Plake, 1998) has suggested that although 

estimating the mean scores of MCEs can be difficult for experts in an absolute sense, they 

are more adept at discerning the correct rank order of the difficulty of items. Hence 

judgments from experts can potentially be transformed onto the correct scale before being 

used to inform standard setting (Thorndike, 1982; Humphry, Heldsinger, and Andrich, 2014). 

Since judgments can be transformed to the correct scale, the correlation between estimated 

difficulties and actual difficulties (often measured by item facilities) provides a reasonable 

idea of the value of the information from such methods, as discussed above.  In our 

simulation (described in more detail later) we wanted to vary this level of correlation and 

assess the effect on the outcome. 

 

Small-sample equating method: chained linear equating 

There are a variety of equating methods appropriate for use with small samples (for example, 

see Livingston and Kim, 2009, or Kim, von Davier and Haberman, 2008).  The experimental 

design is relevant to the choice of method: we wanted a method suitable for the ‘non-

equivalent groups anchor test’ (NEAT) design.  This is because for equating test forms which 

are produced once a year (for example) it is often not possible to get one group of 

examinees to take both forms, or to obtain randomly equivalent groups of examinees.  Much 

more often it is possible to obtain two different groups and adjust statistically for differences 

in ability between them by means of an anchor test or other covariate.  Just as the correlation 

between judged and empirical difficulty is relevant for the validity of standard setting 

methods, so the correlation of test scores with anchor test scores is relevant for the validity of 

equating methods using an anchor test.  In our simulation we wanted to use an anchor with a 

higher and a lower correlation.  We chose chained linear equating (e.g. Puhan, 2010) 

because it requires fewer parameters to be estimated than the theoretically preferable (with 

large samples) equipercentile equating, and because one of our anchor tests was a 

continuous covariate for which we could calculate mean and standard deviation (necessary 

for linear equating) but where there was no discrete score frequency distribution. Puhan 

(2010) also reports that, across a range of conditions, chained linear equating tends to 

perform well compared to other linear equating techniques for the NEAT design. 

 

As well as exploring the effect of the correlation of the anchor test, we were also interested in 

exploring the effect of clustering.  In practice it might only be logistically feasible to obtain 

examinees from a single class in a small number of schools for an equating exercise, so it 
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was of interest to see how a small clustered sample differed from a genuinely random 

sample of the same size. 

 

In brief, the equating scenario consisted of a test X (where we assumed the cut-scores were 

known) and a test Y where we needed to set equivalent cut-scores.  We simulated mean-

estimation judgments at two levels of correlation (0.6 and 0.9) between estimated and 

empirical values, and derived the cut-score on test Y by adding up the simulated means for 

the items on test Y. We compared this with a chained linear equating method in three 

conditions: 

 

1) Random samples of 30 examinees from three schools in group A took test X and from 

three schools in group B took test Y, and all 180 examinees took an anchor test V; 

2) Simple random samples of 90 examinees in group A took test X and in group B took test 

Y, and all 180 examinees took an anchor test V; 

3) The same random samples as in 2) were used to equate with a weaker anchor test W, 

where ‘weaker’ implies that scores on W were less highly correlated with scores on X and Y 

than scores on V were. 

 

Condition 1 corresponds to a scenario where one class of 30 pupils in three schools can be 

induced or made to take an anchor test each year. The difference between condition 2 and 1 

reflects the effect of clustering on equating error.  The difference between condition 3 and 2 

reflects the effect of the power of the anchor test to adjust for differences in examinee ability.  

In all cases we considered two cut-scores, one at the lower end of the raw score scale and 

one at the higher end. 

 

 

Method 

Data 

The dataset forming the basis of all the analyses reported here was artificially constructed 

from a large real dataset containing the responses of 15,731 examinees to a test with a 

maximum possible raw score of 200.  The questions were made up of sub-questions 

(henceforth items), and the items ranged in tariff (maximum score) from 1 (i.e. dichotomous) 

to 5 (i.e. polytomous with 6 score categories).  The facility values of all items were calculated 

and two tests X and Y, each with a maximum possible raw score of 60, were constructed by 

selecting two sets of items comprising fifteen 2-tariff items and ten 3-tariff items by 

systematically alternating selection from the items ordered by facility value.  An anchor test V 

was constructed from 20 dichotomous items (which was all the dichotomous items and 

hence no selection method was required). 

The examinees came from 323 centres in total (the vast majority of which were schools and 

are for simplicity referred to henceforth as schools), each contributing between 1 and 238 

examinees (mean 48.7, median 33).  Each school had a 5-digit identification number, which 

was known to be non-randomly assigned.  Two non-equivalent groups of examinees of 

roughly the same size were created by assigning those in schools with ID numbers below a 

certain value to Group A and the rest to Group B. 
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Table 1 shows that test Y was slightly easier than test X (mean score higher) but the lower 

SD of scores on test Y shows that the difference in difficulty was not uniform across the 

score range.  It is also clear that Group A was of higher ability than Group B (mean score 

higher on all tests). 

Table 1: Descriptive statistics for scores on tests X, Y and V.  

 All (N=15,731) Group A (N=7,752) Group B (N=7,979) 

Test Mean SD Mean SD Mean SD 

X (max 60) 31.76 13.29 33.00 13.39 30.55 13.08 

Y (max 60) 32.36 12.16 33.46 12.37 31.29 11.86 

V (max 20) 10.01 3.44 10.30 3.50 9.72 3.34 

 

Definition of the correct equating function 

As described in the introduction, for theoretical reasons we defined the ‘correct’ equating 

function to be the one arising from IRT true score equating on the complete dataset (i.e. X,Y 

and V items calibrated concurrently for both groups).  The item calibrations were obtained by 

fitting the Rasch Partial Credit model (Masters, 1982) using the eRm package in R (Mair & 

Hatzinger, 2007).  In this paper we consider two different cut-scores on test X: 15 out of 60, 

and 45 out of 60.  The ‘definitive’ equated cut-scores on test Y arising from the IRT true 

score equating were 17.20 and 44.21. 

Simulating estimated difficulty judgments 

From the IRT analysis we know the ability θ corresponding to cut-scores of 15 or 45 on test X 

and hence3 the expected scores of examinees with this ability on each item on test X and 

test Y.  The sums of these expected scores over the items on test X are 15.00 and 45.00, 

and on test Y they are 17.20 and 44.21.  These item-level expected scores are taken to be 

the empirical values that the judges are attempting to estimate and we refer to them later in 

this paper as EMs (Expected Means)4.  The index of agreement most commonly reported in 

the standard-setting literature is the correlation of estimated item means (or p-values for tests 

containing only dichotomous items) with empirical means (which are monotonically related to 

the empirical mean score of MCEs).    We simulated two levels of correlation: 0.6 (a value 

representative of published Angoff studies), and 0.9 (a much higher value than usually found, 

in order to represent a very optimistic view of what might be achievable in ideal conditions). 

 

The simulation was carried out as follows: 

1. The model-based expected item means for examinees at the cut-score (EM) for all items 

on test X and Y were converted to p-values (EP) (i.e. between 0 and 1) by dividing the mean 

by the maximum possible score for the item. 

2. These p-values were converted to a logit scale of ‘easiness’ (EL) by the applying the 

transformation EL=log[EP/(1-EP)].  The mean and standard deviation (SD) on this scale are 

denoted m and s below. 

                                                
3 Via the equation for the Rasch Partial Credit model 
4 Of course, the actual empirical values would differ to the extent that the empirical IRFs deviated from 
the model-based item response functions (IRFs).  Inspection of these IRFs showed close agreement 
for the vast majority of items.  Graphs of the IRFs are available from the authors but not included to 
save space. 
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3. Estimated judgments on the logit scale (JL) with a specified (average) correlation r were 

created by combining the logit facilities from step 2 with a normally distributed random error 

component e ~ N(0,s) according to the formula: 

𝐽𝐿 = 𝑟 × 𝐸𝐿 + √(1 − 𝑟2) × 𝑒 + (1 − 𝑟) ×𝑚  (1) 

Error was added to the EL scale rather than to the EM scale to i) allow for the fact that the 

EM scale is bounded between 0 and the maximum score and hence error is unlikely to be 

normally distributed around the empirical value when it is close to these bounds; and ii) to 

allow for the fact that there is more potential for error when judging an item with a larger 

maximum possible score.  Note that the simulation created (on average) a JL scale with the 

same mean and standard deviation as the EL scale, a point we return to in the discussion. 

4.  These estimated judgments were converted back to judged p-values (JP) and judged item 

means (JM) by applying the reverse transformations to those described in steps 1 and 2. 

5. This process was repeated 1,000 times for each of two different values of the correlation r 

(0.9 and 0.6) and for two different test X cut-scores (15 and 45). 

6. For each replicate, cut-scores on test Y were derived by summing the JM values for the 

test Y items. 

7. The distributions of equated cut-scores were compared with the definitive (correct) cut-

score.  Specifically, bias B was defined as the mean difference (across replicates) between 

the equated score for each replicate and the correct cut-score; error variance E was defined 

as the variance of the equated cut-scores; and the root mean squared error RMSE was 

calculated as sqrt(B2+E). 

 

Creating replicates for small-sample equating 

For condition 1, all schools with 30 or more examinees were selected and then a two-stage 

sampling process first selected at random three schools from each group, and then a random 

sample of 30 examinees from each school.  This process was replicated 1,000 times. An 

equated cut-score on test Y for each of the test X cut-scores (15 and 45) was derived by 

chained linear equating in each replicate. 

For around 70% of examinees in the main dataset we had information about scores on other 

assessments which we were able to combine into a single measure of general ability 

(Benton, 2017).  For the purpose of this research we treated this measure as if it were 

another anchor test W, less strongly correlated with scores on test X and Y, as shown in 

Table 2. 

Table 2: Pearson correlations of scores on tests X, Y, V and W. 

 Complete data 

(Condition 1) 

Examinees with score on W 

(Conditions 2 & 3) 

 All Group A Group B All Group A Group B 

Number of examinees 15,731 7,752 7,979 11,078 6,311 4,767 

X with Y 0.900 0.903 0.894 0.895 0.900 0.885 

X with V 0.812 0.818 0.803 0.804 0.813 0.789 

Y with V 0.820 0.826 0.812 0.813 0.819 0.800 

X with W - - - 0.640 0.633 0.643 

Y with W - - - 0.624 0.618 0.629 

 

We selected 1,000 simple random samples (with replacement) of 90 examinees from Group 

A and 90 from Group B out of the 11,708 examinees with a score for both V and W.  For 
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condition 2 an equated cut-score on test Y for each of the test X cut-scores (15 and 45) was 

derived by chained linear equating with anchor test V in each of the 1000 samples.  

Condition 3 used the same samples but equated via the anchor test W instead of V. 

In all conditions the chained linear equating transformation was calculated as: 

𝑐𝑙𝑌(𝐶𝑋) =
𝑠𝑌𝐵

𝑠𝑉𝐵
×

𝑠𝑉𝐴

𝑠𝑋𝐴
(𝐶𝑋 −𝑚𝑋𝐴) + 𝑚𝑌𝐵 +

𝑠𝑌𝐵

𝑠𝑉𝐵
(𝑚𝑉𝐴 −𝑚𝑉𝐵)  (2) 

where: 

clY(CX) is the chained linear equated score on test Y for a cut score CX on test X, 

mVA is the mean score on anchor test V from the schools in Group A, 

sVA is the SD of scores on anchor test V from the schools in Group A, 

and other mean and SD terms are likewise defined (see Albano, 2016, equation 70). 

The distribution of equated scores across the 1,000 replicates was then compared with the 

definitive cut-score in the same way as for the simulated judgments. 

 

Results 

The results for the simulated judgments are shown in Table 3. In all cases the bias made a 

negligible contribution to the overall RMSE.  The more realistic value for the correlation (0.6) 

had RMSE values nearly twice as high as that for the optimistic value (0.9) at both cut-

scores.  The % distributions in Table 3 refer to equated cut-scores on test Y rounded to the 

nearest integer.  This is on the assumption that in practice if an integer cut-score were 

required to be set on test Y, the correct values would be 17 and 44.  This causes a slight 

asymmetry because an equated score of 44.6 (say) would be rounded to 45 and be 1 too 

high, whereas a less accurate equated score of 43.6 would be rounded to the correct value 

of 44.  For simulated correlations of 0.9, the equated cut-score was within ±1 of the correct 

score around 75% of the time (cut-score of 15) or 80% of the time (cut-score of 45), but for 

simulated correlations of 0.6 only around 50% were in this range, and around 25% were 3 or 

more score points away. 

Table 3: Equated scores based on simulated judgments (replications=1,000). 

Test X cut-score 15 15 45 45 

Simulated correlation 0.6 0.9 0.6 0.9 

Mean (SD) correlation - logits 0.61 (0.12) 0.91 (0.03) 0.59 (0.13) 0.90 (0.03) 

Mean (SD) correlation - means 0.54 (0.15) 0.87 (0.05) 0.72 (0.10) 0.92 (0.03) 

Correct Y cut-score 17.20 17.20 44.21 44.21 

Test Y mean equated cut-score 17.08 17.15 44.38 44.33 

Test Y SD equated cut-score 2.30 1.25 2.06 1.12 

Bias -0.12 -0.05 0.18 0.12 

RMSE 2.31 1.25 2.07 1.13 

%<= -3 12.1 0.9 8.8 0.9 

% -2 13.3 8.1 9.3 4.3 

% -1 16.4 21.9 14.3 17.6 

% 0 17.6 29.6 18.4 32.0 

% +1 15.0 25.6 19.4 31.0 

% +2 10.3 11.3 13.8 12.0 

% >= +3 15.3 2.6 16.0 2.2 
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Table 4 shows that the overall precision of small sample equating, as measured by the 

RMSE, was best at both cut-scores in Condition 2 (simple random sample of 90 examinees 

from each test and a strong anchor).  At both cut-scores the Condition 2 RMSE was roughly 

half-way between those from simulated judgments of 0.6 and 0.9.  At both cut-scores the 

Condition 1 RMSE was about 0.7 score points higher (less precise) than that in Condition 2, 

showing the detrimental effect of clustering of examinees within schools on equating error.  

The Condition 1 RMSEs were slightly higher than those from simulated judgments with a 

correlation of 0.6.  At a cut-score of 45 the Condition 3 RMSE was about 0.5 score points 

higher than Condition 2, but at a cut-score of 14 it was 1.4 score points higher, showing the 

detrimental effect of using a weaker (less strongly correlated) anchor test.  In the best case 

for small sample equating (Condition 2) the cut-scores were within 1 score point of the 

correct value around 60% of the time for a cut-score of 15 and around 70% of the time for a 

cut-score of 45.  Bias made a very small contribution to the RMSE at a cut-score of 15 and a 

negligible contribution at a cut-score of 45.  The fact that sampling error was the main 

contributor to RMSE in all methods and conditions suggests that comparisons are not 

critically dependent on how the ‘true’ equating function is defined, because this would only 

affect the bias and not the sampling error. 

Table 4: Equated scores based on small sample equating (replications=1,000). 

Condition 1 2 3 1 2 3 

Test X cut-score 15 15 15 45 45 45 

Correct Y cut-score 17.20 17.20 17.20 44.21 44.21 44.21 

Test Y mean cut-score 16.39 16.56 16.31 44.25 44.36 44.22 

Test Y SD cut-score 2.41 1.70 3.08 2.18 1.45 1.94 

Bias -0.81 -0.64 -0.89 0.04 0.15 0.01 

RMSE 2.54 1.82 3.21 2.18 1.45 1.94 

%<= -3 19.1 12.0 26.2 10.5 1.9 6.6 

% -2 10.4 13.6 12.3 9.9 7.9 13.8 

% -1 18.8 22.1 10.8 16.9 17.5 16.7 

% 0 19.7 23.2 12.7 19.0 27.1 20.0 

% +1 14.1 16.0 13.3 16.2 24.6 19.1 

% +2 10.3 9.7 10.9 11.4 13.4 12.2 

% >= +3 7.6 3.4 13.8 16.1 7.6 11.6 
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Discussion 

This study has compared, by simulation, the level of accuracy and precision that might be 

obtained from a standard-setting method (mean estimation) if applied as a test equating 

method to that which might be expected from a small-sample test equating method (chained 

linear equating).  As expected, for the standard-setting method more accurate equating 

arose from a higher level of correlation between simulated expert judgments of item difficulty 

and empirical difficulty.   For small sample equating with 90 examinees per test, more 

accurate equating arose from: i) using simple random sampling compared to cluster 

sampling at a given sample size; and ii) using a stronger rather than a weaker anchor.  The 

actual values of RMSE depended on the cut-score, being generally larger for the cut-score 

where the correct equated cut-score on test Y was further from the cut-score on test X.  The 

simulations based on the more realistic value for the correlation between judged and 

empirical difficulty (0.6) produced a higher value for the RMSE than the small-sample 

equating with random sampling and a strong anchor, and a similar RMSE to small-sample 

equating with cluster sampling.  The comparison with random sampling and a weak anchor 

depended on the cut-score, with equating having the lower RMSE at a cut-score of 45 but 

standard-setting having the lower RMSE at a cut-score of 15.   Simulations of standard-

setting based on the optimistic correlation of 0.9 had the lowest RMSEs of all. 

 

Given that, as seen earlier in this paper, even very small samples of examinees can give a 

more accurate picture of the relative difficulty of items than estimates from experts, we may 

be surprised that the small sample approach trialled here did not perform even better. There 

are a number of reasons for this. One reason is that the equating approach adopted in the 

simulation study required calibration of examinee abilities across two groups using an anchor 

test. Small sample equating with a single group design would be significantly more accurate. 

Even within the NEAT design, it may be that other approaches such as Tucker linear 

equating or Rasch true score equating may provide a more stable estimates of equivalent 

scores than chained linear equating.  Finally, it is important to note that our simulations 

assumed that judged and empirical values for the mean scores of MCEs would differ only in 

their rank order, and that the mean and SD would (apart from sampling error) be the same.  

In fact evidence both old (Lorge & Kruglov, 1953) and new (Humphry, Heldsinger & Andrich, 

2014) suggests that expert judges tend to think that easy items are harder than they are, and 

that hard items are easier than they are.  That is, the implied scale unit of estimated difficulty 

tends to be larger (i.e. less discriminating) than the scale unit of empirical difficulty: the 

judges’ estimates are less spread out than the empirical values.  Humphry et al. (ibid). 

suggested applying a linear transformation (on the logit scale) to align the scale units, on the 

assumption that judges are unbiased when estimating passing proportions/probabilities of 

50%.  Although this assumption seems reasonably plausible it nevertheless needs empirical 

support.  In any event, we were not confident that we could choose realistic values for scale 

shrinkage effects to include in our simulation because they may depend on a number of 

contextual factors.  This is an area for further research. 

 

In our simulations, sampling error was the dominant contributor to RMSE, which suggests 

that attempting to reduce sampling error at the risk of increasing bias may also be worth 

considering.  One way of achieving this would be to apply the ‘synthetic linking’ approach of 

Kim, von Davier & Haberman (2008) where the final equated cut-score on test Y is a 
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weighted average of the test X cut-score and the cut-score derived from the equating.  This 

approach is clearly most suitable when there is some reason to believe that the two tests 

should have similar cut-scores – perhaps if they have been constructed to the same detailed 

specification. 

 

The main issue is whether the aggregate of judges’ estimates of item difficulty provides 

useful information about relative test difficulty.  The degree of correlation between judged 

and empirical item difficulty is clearly an important factor in reducing the RMSE of Angoff-

related standard-setting methods.  Using a small-sample equating method may be preferable 

to using a standard-setting method if typical levels of correlation are to be expected, and 

indeed this was the conclusion of Dwyer (2016), although it should be noted that the (actual, 

not simulated) correlations of the judge estimates in his study were in the range 0.39 to 0.49 

– lower than observed in many other studies.  However, if it is possible to increase the 

correlation beyond 0.6 by increasing the number of judges in a judging panel and/or training 

them to make the mean-estimation judgments then substantial improvements in the accuracy 

of the standard-setting method could be obtained – in the scenario considered here a 

correlation of 0.9 was more accurate than the best small sample equating (a random sample 

of 90 examinees and a strong anchor).  

 

In conclusion, it can be observed that in some contexts standard setting methods are used to 

achieve the same goal as test equating methods, namely determining cut-scores on test 

forms that relate to the same performance standard.  IRT true-score equating provides a 

conceptual link between the two if it is reasonable to conceive of the IRT latent trait as being 

the same as the abstract continuum containing the performance standard.  The simulations 

reported here have suggested that the precision (RMSE) of Angoff-based standard setting 

methods could in some circumstances be similar to what might be expected from test 

equating with a NEAT design using small samples (N~100) of examinees.  Of course, these 

findings all derive from simulations based on just one dataset, so we are not in a position to 

make general recommendations about what to do in particular applied contexts. We made 

choices about how to define the ‘true’ equating function, and which particular standard-

setting method and small-sample equating method to use, all of which could be varied.  The 

effect of using polytomous items rather than dichotomous anchor items could be explored, as 

could the effect of varying test length.  Furthermore, our method of artificially constructing 

tests X and Y ensured that they would be reasonably similar in difficulty.  However, these 

findings point to a way in which practitioners could set up experiments or simulations that 

more closely match their own particular contexts in order to discover whether using a 

standard-setting method based on expert judgment might be more accurate than using a 

small-sample test equating method (or vice versa); or whether focusing effort on constructing 

parallel (equally difficult) tests would be a better use of available resource.  
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