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Introduction 

 

Cambridge Assessment organises thousands of assessments each year involving hundreds 

of thousands of pupils. For nearly all of these, some decision needs to be made about where 

grade boundaries, demarking particular levels of achievement from each other, should be 

positioned. Grade boundaries need to be positioned to ensure comparability over time, so 

that pupils awarded a particular grade this year can be assumed to have a similar level of 

ability to those awarded the same grade last year. In particular circumstances there may 

also be a need to ensure comparability between alternative versions of the same 

assessment within a given examination session. 

 

A number of sources of evidence may be used to inform the positioning of grade boundaries 

including both expert judgement and statistical information.  The simplest form of statistical 

information is to assume that the percentage of pupils achieving each grade in a particular 

assessment should remain stable over time. In some cases, such as where the assessment 

attracts a large number of entries from the same centres each year, this assumption appears 

reasonable. In other cases, we may be able to identify particular schools with stable entry 

numbers over time, and, if there are many such schools, we may feel comfortable assuming 

that, within this subgroup, the percentage of pupils achieving each grade should be stable. 

However, identifying a large number of schools with stable entry numbers is not always 

possible, and in these cases robust statistical recommendations for the positioning of grade 

boundaries can be hard to generate. 

 

In England the positioning of grade boundaries for GCSEs (examinations taken at age 16), 

is strongly informed by the achievement of the pupils entering the given GCSE examination 

in their end of primary school tests, known as key stage 2, taken five years earlier. However, 

this method of maintaining standards is known to have weaknesses if there are major 

changes in the abilities of pupils taking particular subjects (see Benton and Sutch, 2014). 

 

This paper proposes a new way of simultaneously making use of all of the data we hold 

about each candidate’s achievement across all available assessments within a given 

examination session to help maintain standards. Using data from such concurrent 

assessments to check comparability between awarding organisations offering alternative 

versions of the same qualifications has been suggested before (see Benton and Sutch, 

2014). However, previously documented approaches rely on being able to assign an ability 

measure to each pupil (namely mean GCSE grade) based upon the grades they have 

achieved. As such, these approaches rely on grade boundaries having already been set for 

all assessments so are not immediately applicable to the task of setting grade boundaries in 

the first place. 

 

The method proposed in this paper addresses this issue and suggests a method of standard 

maintaining that could be applied to all assessments within a given examination session 

simultaneously. In particular, it makes use of the fact that different pupils take different 

combinations of assessments so that we have potential links between most of these. This is 

illustrated further the network graph displayed in Figure 1. This graph shows a map of all 

Cambridge Assessment qualifications aimed at 16 year olds that were taken by at least 500 
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candidates in summer 20171. Each circle represents a qualification and larger circles 

represent qualifications taken by large numbers of candidates. A line between two circles 

indicates that at least 200 candidates took both of the two qualifications. The circles towards 

the bottom of the chart represent those that are only available in the UK, those towards the 

top right represent qualifications available both within the UK and elsewhere, and those 

towards the top left represent those that are only available outside the UK. The main thing to 

note about this chart is the enormous amount of linkage between qualifications. On average 

each qualification is linked to seventeen others. Thus for any given qualification, we hold a 

large amount of information about the performance of candidates elsewhere. Note that 

because Figure 1 shows only whole qualifications2, and excludes any qualifications entered 

by less than 500 candidates, it actually underrepresents the scale of the information at our 

disposal. The challenge then is how to make use of all of this information to inform the 

positioning of grade boundaries.  

 

 
Figure 1: A network graph of Cambridge Assessment qualifications aimed at 16-year olds in 

summer 2017 

                                                
1
 For example, by “qualification” we might mean a GCSE in a particular subject (e.g. GCSE 

Mathematics). 
2
 In order to achieve a qualification candidates will generally have to complete more than one 

assessment. 
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The proposed method is as follows: 

 

1. Within each year create a single measure of ability for all candidates that is on the 

same scale regardless of which assessments any given pupil has taken. 

2. Having created this measure, by looking at achievement across all assessments 

together, we can find sufficient centres3 with stable entries over time to calibrate it 

between years. 

3. Now that we have a calibrated measure of achievement that is comparable over 

time, we can use it to inform the positioning of grade boundaries in all qualifications. 

 

Although the main practical application of this work will be in determining the positioning of 

grade boundaries, this paper actually addresses the more general problem of equating. That 

is, rather than simply finding a cut-score of this year’s test that is comparable to the cut-

score on last year’s test, we will actually look to identify the score on this year’s  test that is 

equivalent to each score on last year’s test. 

Introducing the ISAWG 

 

The first step in our proposed method is to create a single measure of ability. This measure 

should summarise each pupil’s achievement across numerous assessments on a single 

scale regardless of which ones they have taken. The hope that a useful measure of this type 

may be created comes from Charles Spearman’s very old (and much debated) theory of 

general ability (or “g”). Spearman’s 1904 paper proposed that “all branches of intellectual 

activity have in common one fundamental function (or group of functions), whereas the 

remaining or specific elements of the activity seem in every case to be wholly different from 

that in all the others.” (Spearman, 1904, page 284). In other words, although different tests 

may measure slightly different skills, all of them should relate to each candidate’s 

“fundamental function” (or “g”) which in turn should give an idea of how well they are likely to 

perform on different tests. Following Thorndike (1994) we will use some form of simple one-

factor model to capture a “working definition of g” and hope that, despite the variety of 

available assessments, it will remain the case that “the great preponderance of the 

prediction that is possible from any set of cognitive tests is attributable to the general ability 

that they share." (Thorndike, 1994, page 150). The resulting ability measure will be called 

the ISAWG, which stands for Instant Summary of Achievement Without Grades.  

 

The ISAWG is defined for each candidate to be the single number that most accurately 

reflects the standardised marks they have achieved on whichever assessments they have 

taken. More formally the ISAWG is defined as follows. Let     be the standardised score4 of 

the ith candidate on the jth assessment within a particular session. Now for each candidate 

                                                
3
 Usually schools but potentially including other educational institutions 

4
 By standardised score we mean that the raw scores are linearly rescaled so that, across all 

candidates with available marks for the assessment (at the time of calculation), they have a mean of 

zero and a standard deviation of one. 
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and for each assessment we define       ,    and    so that any candidate’s score on any 

assessment can be estimated by 

 

   ̂               

 

Note that the same value of the ISAWG must apply across all of the assessments the 

candidate has taken. The parameters    and    will determine the expected relationship 

between the ISAWG and standardised scores on the jth assessment. Broadly speaking, the 

parameter αj relates to ease of achieving a high ranking amongst the candidates taking 

assessment j. The β parameters say something about how strongly the scores on the jth 

assessment relate to candidates’ other scores more widely. Each of       ,    and    are 

estimated to ensure that the estimates of standardised scores (that is, the    ̂) are as 

accurate as possible. Specifically they are chosen to minimise the overall sum of squared 

errors (that is, squared differences between     and    ̂) across all candidates and all 

assessments within a particular session. Within this process, the scale of the ISAWG is fixed 

to have a mean of zero and a standard deviation of one across all candidates in total. 

 

In fact, the definition of the ISAWG given above is equivalent to a long standing form of 

statistical analysis – Principal Components Analysis. In technical terms the ISAWG is just 

the first principal component calculated for each candidate but applied to a data set including 

missing values (as no candidates take all of the available assessments offered by 

Cambridge Assessment within a single session). The precise method used to calculate the 

ISAWG is known as alternating regression and was proposed, in the context of chemistry, by 

De Ligny et al (1981). It works as follows. 

 

1. Initially set all the α parameters equal to 0 and all the β parameters equal to 1. 
 

2. For each individual pupil, estimate a value for ISAWGi by fitting a linear regression 
model (through the origin) of (yij-αj) on βj. This process is completed by the simple 
closed form solution: 
 

       
     
̅̅ ̅̅ ̅̅ ̅     

̅̅ ̅̅ ̅̅ ̅

  
 ̅̅ ̅̅       

Where the bars (e.g.      ̅̅ ̅̅ ̅̅ ) relate to averaging values over all assessments (j) taken 

by an individual pupil (i). 

 

3. Now that we have estimates for each ISAWGi, for each individual assessment we 
update the α and β parameters by a linear regression of standardised scores (yij) on 
the current estimates of ISAWGi for each assessment. This process is also 
completed by the following two closed form solutions 
 

 

       ̂  
         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ̅̅ ̅̅  

      
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

      

And 

  ̂     ̅̅̅̅    ̂  ̅ 
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Where the bars in this case (e.g.          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) relate to averaging values over all 

candidates (i) taking a particular assessment. 

 

4. Repeat steps 2 and 3 until the overall sum of squared errors across all candidates 
and all assessments is no longer substantially decreasing. 
 

5. Apply a linear transformation to the ISAWG estimates so that they have a mean of 0 
and a standard deviation of 1. Then adjust the α and β parameters to reflect this 
transformation. 

 

Using alternating regression to generate the ISAWG has two particular advantages.  Firstly, 

it allows the ISAWG to be calculated very quickly. Completing the above iterative procedure 

for several hundred thousand candidates within a session who have cumulatively taken 

several million assessments takes less than 10 minutes using an ordinary desktop 

computer. Secondly, it is easy to calculate each individual candidate’s ISAWG either 

restricted to or excluding particular assessment components (subsequently referred to 

simply as components) using the formula in step 2. This can be useful when we wish to 

compare how a candidate has performed in one specific assessment against their 

performance across all of the others.  

Using the ISAWG in equating 

 

In this paper our interest is in the possible practical use of the ISAWG in equating. More 

specifically, having a general measure of ability that relates to all our various assessments 

could potentially help to ensure that a common standard of difficulty is applied to grades 

across all of them. Alternatively, it could be used to help to maintain standards between 

years. 

 

The ISAWG itself is based upon all of the components that each candidate takes within a 

given examination session. As such, when used in equating, the link between different 

assessment components is provided by scores from the other components (referred to from 

now on as the co-components) taken alongside those that are being equated. When viewed 

in this way it is clear that the ISAWG does not represent the only way in which such 

information could be used. In fact, these attempts at using information from co-components 

can be seen as part of a much wider area of research into how data from covariates might 

be used within equating. One approach to equating in this situation, described by Anderson 

et al (2013) as the non-equivalent groups with covariates (NEC) design, is based upon using 

log-linear models to capture the relationship between the covariates of interest and the score 

distribution on each component. However, because this technique begins with a full 

enumeration of the numbers of candidates with each possible combination of values on each 

covariate and upon the components of interest, it is not suitable for situations involving large 

numbers of covariates. Nor does it suggest how we might deal with different missing data 

patterns within co-components.  
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In the past, methods using co-components (or covariates) in equating have usually taken a 

frequency estimation or (equivalently) weighting approach to equating. This means that they 

first attempt to make the two sets of candidates taking the two assessments being equated 

match in terms of their covariate distributions, and then use traditional equating as would be 

applied to equivalent groups. However, it is possible that chained equating methods using 

the ISAWG or other ability measures as if they were an anchor might lead to more accurate 

results than a frequency estimation approach5. This is potentially particularly true if there are 

large differences in ability between groups. This paper will provide some further research 

into this issue. 

 

This paper examines the following research questions: 

 To what extent does the ISAWG provide an accurate method of equating and how 

does this compare to other possibilities such as using data from primary school tests 

(key stage 2)? 

 Should the data from the ISAWG be applied using frequency estimation or chained 

equating? 

 If we assume that the distribution of the ISAWG for a large population of candidates 

must be stable across sessions, can we then use it to effectively maintain standards 

even for components taken by relatively small numbers of candidates? 

  

                                                
5
 See Table 4 from von Davier and Chen (2013) for an example of this. 
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Part 1: Examining different methods of equating using co-components 

Method 

Initial work evaluated the effectiveness of the ISAWG for equating. The data used for 

analysis consisted of all component scores within GCSE units taken by at least 10,000 

candidates in June 2015. The following steps were then used for research. 

Identifying existing pairs suitable for equating and defining a criterion equating function 

The analysis identified 16 pairs of GCSE components within the data set where at least 90 

per cent of candidates taking either assessment took both, where the scores on the 

assessments displayed a correlation of at least 0.7 and where the maximum scores 

available on the two assessments were similar. The criteria used to choose these pairs of 

assessments ensured that calculating how one of the assessments equates to the other was 

at least a sensible exercise. Table 1 gives some information about the sixteen pairs of 

components used in analysis. As can be seen, some of these pairs contained two exams in 

different subjects (e.g. Biology and Chemistry). Since these pairs tended to occur where 

both components led to a common qualification (combined science) it is reasonable to 

imagine that we might want to ensure grade boundaries represent equivalent levels of 

difficulty on the two tests. However, such analyses should probably be referred to as linking 

rather than equating (Kolen and Brennan, 2004). Having said this, in order to keep the 

language as simple as possible, we will refer to all attempts to link standards between 

components as equating (rather than linking) for the duration of this paper. 

 

For each pair, unsmoothed equipercentile equating using the full set of candidates taking 

both tests was used to define a criterion or “true” equating function between the two 

assessments. 

 

Table 1: Pairs of components used in analysis  

Form X Form Y 

Maximum 

score on X 

Maximum 

score on Y 

N candidates 

taking both 

Art 1 Art 2 100 100 10359 

Biology 1 Chemistry 1 60 60 12176 

Biology 2 Chemistry 2 60 60 47548 

Biology 3 Chemistry 3 60 60 46892 

Business 2 Business 3 60 90 12853 

Computing 2 Computing 3 45 45 19677 

IT 1 IT 2 60 60 10164 

PE 2 PE 3 60 60 10030 

Science 3 Science 5 75 85 15209 

Science 4 Science 6 75 85 33155 

Science 8 Science 9 75 85 31125 

Biology 6 Biology 7 75 85 19952 

Chemistry 6 Chemistry 7 75 85 19558 

Physics 6 Physics 7 75 85 19262 

Math 1 Math 2 100 100 35863 

Math 3 Math 4 100 100 20601 
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Splitting data from pairs into two groups 

So far, for each pair of assessments, it was possible to equate using a single group design. 

That is, the same group of candidates had taken both assessments. In order to evaluate the 

possible value of co-components for linking in general, it was necessary to convert this data 

into a form that would be familiar in a NEC (non-equivalent with covariates) design. This 

required splitting the data set into two groups (P and Q) so that in group P only the scores 

on form X were stored and in group Q only the scores on form Y were stored with 

information from co-components retained within each group. The challenge was to attempt 

to reconstruct the criterion equating functions defined above using this reduced data set. 

 

The split of data into groups P and Q was not done completely at random. In particular, in 

order to ensure that the scenarios presented a suitably difficult equating challenge it was 

decided to set up the data so that candidates in group Q had higher scores on average than 

those in group P. This was done by first calculating the total score across both assessments 

in the pair and standardising by subtracting the mean and dividing by the standard deviation. 

Candidates were then assigned to groups P or Q with the probability that a candidate was 

assigned to group Q being defined by: 

 

                                (     (                         (
   

 
))) 

 

 

The above procedure, similar to one described in von Davier and Chen (2013), ensured that, 

on average, there was a difference of roughly 0.3 standard deviations between total scores 

for candidates in group P and scores for those in group Q. This should be large enough to 

make equating challenging but is slightly less than a difference of 0.5 standard deviations 

which was described by Kolen and Brennan (2004, p286-7) as ‘especially troublesome’. The 

above formula also ensured that roughly equal numbers of candidates were assigned to 

groups P and Q. 

 

Attempting to equate forms across groups 

For each pair, using the data stored in groups P and Q a number of different methods were 

trialled to reconstruct the equating function between the two assessments. The following 

methods were trialled: 

 

1. Full ISAWG. Using the full set of data across both group P and group Q, including 

both the assessments being equated and all possible co-components, calculate an 

ISAWG measure for each student. This measure is then used in the place of an 

anchor test. 

2. ISAWG based on strong major co-components. First the major co-components 

are identified as those taken by at least 500 candidates alongside at least one of 

assessments being equated. Next any of these co-components that only displayed a 

weak correlation with the components being equated are removed6. Next calculate 

                                                
6
 Specifically, any co-components where the correlation with the form X assessment was more than 

0.1 below the maximum correlation between any major co-component and the form X assessment. 
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an ISAWG based on these co-components only (and not the assessments being 

equated). This measure is then used in place of an anchor. 

3. Key stage 2. The majority of pupils in England complete assessments in English and 

Maths at the end of primary school (aged 11). Since data on these assessments is 

available for most candidates, use the data from these tests to equate between 

assessments. 

4. Single co-component. For each pair, identify the major co-component taken 

alongside those of interest that displays the highest correlation7 with the form X 

assessment8. Use this co-component alone as an anchor. 

5. Assume equivalence. This method simply ignores the information contained in co-

components and assumes that the candidates in group P are directly comparable to 

those in group Q. This method was included to provide some sense of scale in the 

results by displaying the accuracy of a worst plausible method. 

 

To begin with, for each method, groups P and Q were weighted to be equivalent. For 

methods 1 and 2 this was facilitated by first replacing the ISAWG with deciles of 

achievement9. Once the data within each group was weighted, unsmoothed equipercentile 

equating was used to estimate the equating function. As an alternative, chained equating via 

the ISAWG was also applied. The weighted10 mean absolute difference across the score 

range between these equating functions and the criterion function (defined earlier) was 

calculated.  

 

Results 

The accuracies of the different equating techniques based on weighting (also sometimes 

referred to as frequency estimation) are shown in Table 2. For each of the sixteen pairs of 

assessments being equated, the method with the lowest weighted mean absolute error of 

equating is highlighted. As can be seen, the method based on using the full ISAWG led to 

the most accurate results on average. This may be due to the fact that since it uses data 

from all co-components as well the assessment being equated, it retains a much larger 

amount of data for analysis than the other methods. On average, this method yielded an 

equating function just under one and a half marks away from the criterion equating. 

 

The method based upon using an ISAWG derived from only strong major co-components 

displayed a very similar level of overall performance. The simpler method based upon using 

                                                
7
 Analysis was also performed using the co-component with the largest number of matched 

candidates. However, this led to considerably worse performance and so, for brevity, is not displayed 

in this analysis. 
8
 The correlation with one assessment (form X) was chosen for convenience. The correlations with 

form Y for individual co-components were usually fairly similar. 
9
 This is necessary as most standard equating software expects anchor scores to be represented by 

whole numbers. Work by Benton and Yin (2011), in the context of using mean GCSE scores to 

maintain standards at A level, has previously shown that deciles tend to retain sufficient information 

for linking. 
10

 For this calculation weight is defined by the known distribution of scores on the form X assessment. 

More weight is given to errors of equating at scores achieved by large number of candidates. 



 

13 

 

a single, highly correlated co-component, for equating also performed relatively well – we 

will return to this point further below.  

 

Using key stage 2 data led to higher errors of equating. This is not particularly surprising as 

the median correlation between key stage 2 achievement and assessment scores was only 

0.49. In contrast the median correlation derived from an ISAWG based on strong co-

components was 0.73. In noting the errors of equating from key stage 2, it is worth 

remembering that this experiment was deliberately set up to be challenging by creating a 

fairly large difference in ability between groups. As such, in practice, the accuracy of key 

stage 2 in equating across years is likely to be better than suggested below. In addition, it 

can be seen from Table 2 that using key stage 2 data does lead to a noticeable 

improvement in accuracy over simply assuming that the two groups of candidates are 

equivalent. 

 

Table 2: Weighted mean absolute error of equating for each method based on weighting the groups 

(frequency estimation)  

Assessments (X-->Y) Full ISAWG 

ISAWG 

(strong co-

components) 

Key Stage 2 

levels 

One co-

component 

Assume 

equivalence 

Art 1 --> Art 2 2.70 2.66 3.94 1.78 5.04 

Biology 1 --> Chemistry 1 1.10 1.03 1.86 1.03 2.35 

Biology 2 --> Chemistry 2 0.40 0.56 1.77 0.83 2.98 

Biology 3 --> Chemistry 3 0.64 0.62 2.33 1.26 3.35 

Business 2 --> Business 3 1.31 2.40 2.54 2.95 4.05 

Computing 2 --> Computing 3 1.23 1.63 2.30 1.66 2.67 

IT 1 --> IT 2 0.83 0.82 1.74 1.09 2.89 

PE 2 --> PE 3 1.21 1.51 1.39 1.51 1.92 

Science 3 --> Science 5 2.77 2.15 3.66 2.25 4.54 

Science 4 --> Science 6 0.93 0.60 2.83 0.77 3.93 

Science 8 --> Science 9 1.53 1.54 2.84 1.70 4.08 

Biology 6 --> Biology 7 0.89 0.80 2.70 1.03 3.55 

Chemistry 6 --> Chemistry 7 1.13 1.00 3.47 1.38 4.20 

Physics 6 --> Physics 7 1.13 0.83 3.11 1.12 4.00 

Math 1 --> Math 2 2.66 3.34 3.28 3.59 5.33 

Math 3 --> Math 4 2.50 2.13 4.11 1.56 5.66 

            

Median 1.17 1.27 2.77 1.44 3.96 

Mean 1.43 1.48 2.74 1.59 3.78 

Min 0.40 0.56 1.39 0.77 1.92 

Max 2.77 3.34 4.11 3.59 5.66 

 

Having considered the accuracy of equating methods similar to frequency estimation, Table 

3 shows the accuracy of methods based on using the derived ability measures within 

chained equating. Using chained equating had a dramatic effect on accuracy. Most 

importantly, for every equating technique considered, there was a noticeable drop in 

equating error. This is particularly true for the method using the ISAWG based on strong co-

components where the mean error dropped below one mark. 
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Table 3: Weighted mean absolute error of chained equating techniques 

Assessments (X-->Y) Full ISAWG 

ISAWG 

(strong co-

components) 

Key Stage 2 

levels 

One co-

component 

Art 1 --> Art 2 2.32 1.98 2.64 2.13 

Biology 1 --> Chemistry 1 0.87 0.50 1.10 0.49 

Biology 2 --> Chemistry 2 0.15 0.17 1.03 0.43 

Biology 3 --> Chemistry 3 0.37 0.21 1.56 0.71 

Business 2 --> Business 3 0.91 1.47 1.55 1.92 

Computing 2 --> Computing 3 0.85 0.96 1.75 1.01 

IT 1 --> IT 2 0.66 0.35 1.16 0.98 

PE 2 --> PE 3 0.90 1.04 1.04 1.04 

Science 3 --> Science 5 2.35 1.36 2.56 1.55 

Science 4 --> Science 6 0.69 0.32 1.95 0.39 

Science 8 --> Science 9 1.23 1.06 1.96 1.12 

Biology 6 --> Biology 7 0.54 0.35 1.97 0.46 

Chemistry 6 --> Chemistry 7 0.74 0.51 2.72 0.76 

Physics 6 --> Physics 7 0.71 0.34 2.31 0.50 

Math 1 --> Math 2 2.41 1.46 1.78 1.98 

Math 3 --> Math 4 2.03 1.28 2.90 0.96 

          

Median 0.86 0.74 1.86 0.97 

Mean 1.11 0.83 1.87 1.03 

Min 0.15 0.17 1.03 0.39 

Max 2.41 1.98 2.90 2.13 

 

It is worth noting that, using chained equating, using a single co-component for equating led 

to similar accuracy to using the Full ISAWG. At first glance this is a little surprising but is less 

so once we inspect some further information about the single co-component used in each 

case as shown in Table 4. In particular, as can be seen, for many of the pairs in this 

experiment a single co-component can be found that is available for large number of 

candidates and has a high correlation with those being equated. 

 

Table 4: Single co-components used use for this method of equating 

Form X Form Y 

Further anchor 

description N with form X Correl with form X N with form Y Correl with form Y 

Art 1 Art 2 

English 

Literature 1 253 0.670 311 0.566 

Biology 1 Chemistry 1 Physics 1  6029 0.712 5975 0.712 

Biology 2 Chemistry 2 Biology 3 14500 0.824 15888 0.823 

Biology 3 Chemistry 3 Chemistry 2 14762 0.823 15576 0.831 

Business 2 Business 3 Computing 1 358 0.709 359 0.690 

Computing 2 Computing 3 Computing 1 9573 0.596 9734 0.590 

IT 1 IT 2 Physics 3 361 0.642 410 0.647 

PE 2 PE 3 PE 1 5028 0.484 4976 0.504 

Science 3 Science 5 Math 2 644 0.633 753 0.642 

Science 4 Science 6 Science 8 5827 0.814 5844 0.842 

Science 8 Science 9 Science 6 6031 0.823 5627 0.840 

Biology 6 Biology 7 Chemistry 7 8896 0.795 9152 0.830 

Chemistry 6 Chemistry 7 Biology 7 9018 0.808 9028 0.838 

Physics 6 Physics 7 Chemistry 7 9017 0.803 9049 0.841 

Math 1 Math 2 Chemistry 1 501 0.727 467 0.714 

Math 3 Math 4 Chemistry 6 713 0.737 800 0.769 
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Summary 

The results of this section have shown that data from co-components can indeed be used to 

reconstruct the correct equating relationship between two assessments. Indeed, the results 

in Table 3 show that the best approaches tended to yield equating functions that were only 

around 1 mark on average from their true values. In particular, for the purposes of equating 

over time using the full ISAWG (discussed next), it is important to note at this stage, that this 

provides a workable approach to equating within a given examination session. Furthermore, 

if we are using a frequency estimation equating method, the full ISAWG provides the most 

accurate of the available anchors. 

 

The results also suggest that chained equating may provide a more accurate procedure for 

equating between co-components than a weighting or frequency estimation approach. This 

supports the current approach taken within England in the context of cross-tier equating11. 

However, it should be noted that reproducing these results is dependent upon the way in 

which candidates are split into the separate groups taking different test forms. Within this 

analysis, this was done on the basis of their ability (actual achievement) in the components 

being equated. Weighting the data by co-components is likely to under-compensate for 

these differences and so approaches based on chained equating are likely to be more 

successful12. Similar comments might be made for cross-tier equating as entry tier is likely to 

relate to candidates’ abilities in the assessments being equated. However, if the groups 

were rather split based upon general ability rather than ability in the specific subject we 

would almost certainly find that frequency estimation techniques were more effective. 

Specifically, if we had deliberately split the data into groups P and Q based on the ISAWG 

rather than total scores on the test being taken, then the frequency estimation method based 

upon the ISAWG would broadly reverse the exact procedure used to create the groups in 

the first place and, for that reason, would provide the most accurate results. As such, while 

these results suggest that chained equating is worthy of attention, it cannot be definitely 

concluded that it should always be used in place of frequency estimation. 

  

                                                
11

 See https://ofqual.blog.gov.uk/wp-content/uploads/sites/137/2017/03/Awarding-and-Comparable-

Outcomes-maths-meeting-2017-03-07.pdf (downloaded on 6th November 2017). 
12

 Although it is still likely to under-compensate for differences between groups, albeit to a lesser 

extent than frequency estimation. 

https://ofqual.blog.gov.uk/wp-content/uploads/sites/137/2017/03/Awarding-and-Comparable-Outcomes-maths-meeting-2017-03-07.pdf
https://ofqual.blog.gov.uk/wp-content/uploads/sites/137/2017/03/Awarding-and-Comparable-Outcomes-maths-meeting-2017-03-07.pdf
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Part 2: Exploration of equating across sessions using the ISAWG and 

calibration via common centres 

Method 

The next stage was to evaluate the possibility of using the ISAWG in maintaining standards 

over time. This could potentially be achieved using common centres to calibrate the ISAWG 

between sessions. Since the ISAWG can be calculated for all candidates taking any 

assessments it is ideal for such a procedure as very large numbers of candidates will be 

available for the calibration. This fact gives the ISAWG a unique advantage over all of the 

other methods described in the previous section if we wish to use it to assist with equating 

over time. 

 

To test this idea we split the entire data set within the June 2015 session into two and then 

treated the two groups as if they were two separate sessions. 

 

For the purposes of this part of analysis it is important that we include assessments with 

relatively small entries. This is because, for large entry assessments, techniques based 

directly upon common centres can usually be applied with confidence for each individual 

assessment in turn and so there is no need to rely upon the ISAWG. With this in mind, all 

GCSE components taken by at least 500 candidates in June 2015 (a total of 305 

components) were included in analysis. 

 

The entire data set of candidates was split into two with one half taken to represent session 

1 and the other half taken to represent session 2. As with the earlier analysis, to make the 

situations where equating was required more challenging, this was not done completely at 

random13. Rather, it was devised so that for each assessment session 2 would tend to 

contain more able candidates than those in session 1. This might occur if high-achieving 

centres increased their entries between years and low-achieving centres decreased their 

entries. To simulate this, we first calculated the mean GCSE grade achieved across all 

candidate entries within each centre for Cambridge Assessment GCSEs taken in June 2015. 

These centre values were then standardised by subtracting the mean and dividing by the 

standard deviation. Finally, the probability that a candidate was assigned to session 2 was 

defined by the equation below: 

 

                              

    (     (                                     (
   

 
))) 

 

Note that this equation defines the probability of being assigned to either session entirely by 

achievement at centre level. Thus, within a centre, allocation to notional “sessions” was 

completely at random but within high achieving centres a greater proportion of candidates 

were assigned to session 2 than to session 1. The coefficient of 0.8 in the above equation 

was sufficient to ensure that on average across components in analysis there was a 

                                                
13

 For completeness, appendix A shows results from a simulation where candidates are split into sessions 

completely at random. 
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difference of 0.25 standard deviations between component scores in session 1 and 

component scores in session 214. 

 

The ISAWG was estimated separately within each session. Note that “weak” components 

were not removed from the estimation of the ISAWG as the same ISAWG was to be used to 

equate across sessions for all components. As such, there was no obvious single correlation 

that could be used to differentiate those that were “weak” from those that should have been 

retained.  

 

Note also that the ISAWG in each session is defined by default to have a mean of 0 and a 

standard deviation of 1. However, since session 2 tends to contain higher ability candidates 

than session 1, these scores will not be comparable across sessions. To overcome this, we 

first need to calibrate the ISAWG across sessions. This was done using a combination of 

common centres and linear equating. To begin with all centres with at least 50 candidates 

allocated to each session and where the number of candidates differed by no more than 30 

per cent between sessions were identified. Within the 576 centres identified in this way, the 

groups of candidates assigned to each session were assumed to be equivalent and linear 

equating was used to transform the ISAWG in session 2 to the same scale as that used in 

session 1. Over 60,000 candidates per session were included in this step. Figure 2 shows 

how the mean (pre-calibration) ISAWG within centres varied between sessions and where 

the equating line was placed. As can be seen, the same centres tended to have lower 

(uncalibrated) ISAWGs in session 2 as they were being compared to a higher ability set of 

candidates. The equating line provided a transformation that addressed this issue. 

 

                                                
14

 Although, these values vary considerably between components. The difference between scores 

between session 1 and session 2 varied between -0.13 and +0.77 standard deviations. 
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Figure 2: Mean initial ISAWGs in common centres within each session. The blue line shows the 

results of linear equating between sessions. 

 

Equating from each component’s scores in session 1 to the same component’s scores in 

session 2 was completed using a frequency estimation method of equating with the 

(recalibrated) ISAWG playing the part of the anchor test. Frequency estimation was used, 

rather than chained equating as, for this experiment, allocation to sessions was achieved 

using a general measure of centre ability rather than scores within specific subjects. As 

such, this approach to equating may be more appropriate. In addition, this approach is 

closer to the way in which external assessment information such as key stage 2 is used in 

standard maintaining in practice (see Bramley and Vidal Rodeiro, 2014). The resulting 

equating function was compared to the identity function. This was appropriate as, since each 

component is being equated to itself, the true equating function must be the identity line.  

 

As an alternative to the ISAWG based approach, common centres equating was applied 

directly to each component. In this procedure, centres with at least 20 candidates15 in each 

session within the component of interest and where the number of candidates varied 

between sessions by no more than 30 per cent were identified. For candidates within the 

identified common centres, equipercentile equating between the scores in the different 

                                                
15

 This number was chosen as it was also small enough to ensure that at least one common centre 

could be identified in the majority of cases. 
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sessions was applied directly. The resulting equating function was again compared to the 

identity line so that the weighted mean absolute error of equating could be calculated. Due 

to the need to collate results across a very large number of components, these errors were 

standardised to be presented as a percentage of the maximum available score. 

 

In addition, equating between the notional sessions using key stage 2 was performed. Key 

stage 2 levels for each pupil were used as an anchor between sessions on the assumption 

that these will be comparable between sessions16. 

 

Note that no such common centres meeting the criteria could be found for 40 of the 

components of interest and so these were removed from the comparison of equating 

techniques. A further 35 components were removed due to having less than 500 candidates 

with matching key stage 2 data (in total). This left a total of 230 components in the analysis. 

Results 

The results of analysis are shown in Figure 3. Each point on this plot represents an attempt 

at equating for an assessment component. The points in red show the weighted mean 

absolute error of equating for the direct common centres method. The blue points show the 

errors of equating for the same set of assessments when the ISAWG approach is applied. 

As can be seen, for components with fewer than 10000 entries per session, the ISAWG-

based approached yielded lower errors of equating. Even for the smallest-entry components 

included in analysis, the error averaged at only around 1.5 per cent of the maximum 

available score on the component. In contrast, the average error for small components using 

the benchmark centres method exceeded 3 per cent of the maximum available score. This is 

not surprising as for many of these very small entry components only a handful of 

benchmark centres (perhaps only 117) were available. It should be noted that using linear 

rather than equipercentile equating for the common centres method led to only a very small 

reduction in error for these centres18. 

 

In contrast, for large entry components the common centres method was slightly more 

accurate than using the ISAWG-based approach. This is unsurprising as, given the way in 

which this experiment was set up, groups within common centres should be exactly 

equivalent in terms of ability. This means that, provided we have enough of these, the 

common centres method will provide extremely accurate results.  

 

                                                
16

 Of course, since this is a simulation and all candidates have done the same key stage 2 tests, we 

know for certain that this assumption holds for this particular experiment. 
17

 A total of 38 components had only one identified common centre and 119 had less than five 

identified common centres. 
18

 It also leads to a slightly unfair comparison where one method uses a linear method that reflects the 

linear nature of the identity equating function and one does not. For this reason these results are not 

shown in full. 
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Figure 3: Weighted mean absolute errors of equating for ISAWG and benchmark centres based 

approaches 

 

Key stage 2 data did not provide a particularly accurate mechanism for equating. This is 

because we deliberately set up the experiment so that there was a large difference in 

average abilities between years. As was noted in the introduction, this is exactly the type of 

scenario where key stage 2 data can fail to fully account for the differences between groups. 

As such, we would not expect the poor performance of key stage 2 in this experiment to be 

repeated very often in practice. Nonetheless, this experiment has shown how using the 

ISAWG can provide a more accurate method for maintaining standards than using key stage 

2 data even when we are faced with extreme differences between years. 
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Discussion 

This paper has described the ISAWG as an easy method of summarising pupil achievement 

regardless of which assessments they have taken. It has also demonstrated its efficacy in 

equating with the estimated equating functions typically only around 1 mark away from the 

true values. 

 

If we suspect that the groups taking different assessments may differ in terms of their ability 

in the specific subject of interest, then chained equating is likely to provide a more accurate 

method than weighting or frequency estimation techniques. This indicates that, at the very 

least, results from chained equating should be considered alongside other techniques. As 

noted elsewhere (Bramley and Vidal Rodeiro, 2014) the main statistical methods used for 

maintaining standards in England are very similar to frequency estimation. As such, they are 

likely to share the same weaknesses – namely that they may underestimate the extent of 

differences in abilities between groups (see Benton and Sutch, 2014, for further evidence of 

this issue). 

 

The advantage of chained equating will be dependent upon the causal mechanism leading 

to the assignment of candidates to different assessments and whether this is driven by their 

ability in the particular subject of interest or by ability (or achievement) more generally. It is 

certainly possible to simulate scenarios where the performance of frequency estimation 

techniques is superior to chained methods and, as such, a cautious approach where we 

gather evidence from both methods may be prudent even if this is inconvenient in meaning 

that we do not immediately provide a single equating function. It should be noted that, if the 

differences between groups are small then different methods should provide fairly similar 

results.  

 

Finally this paper has demonstrated the potential of the ISAWG in equating across sessions. 

Indeed, as might be expected, for fairly small assessments this method is superior to an 

approach based purely upon a limited number of stable common centres. For all sample 

sizes, and with the particular way in which the experiment was set up, it was also more 

effective than using data from key stage 2 assessments. This suggests that the ISAWG may 

provide a suitable alternative to both to using key stage 2 and to the use of common centres 

in maintaining standards.  

 

Mathematically, the calculation of the ISAWG shares some similarities with the Kelly method 

sometimes used to compare the difficulty of examination grades across subjects19 (see 

Bramley, 2014). As such, it is likely to be most effective in terms of ISAWGs derived from 

different combinations of qualifications being truly comparable when pupils’ subject choices 

are not influenced by their likely future performance in those same subjects (Bramley, 2016). 

However, complete comparability of all ISAWGs across all pupils is not strictly necessary for 

the application demonstrated in this paper – only that any weaknesses in the ISAWG are 

relatively stable over time amongst those pupils entering each assessment. This is because 

we are using the ISAWG purely to explore differences between cohorts and it is not 

                                                
19

 With the differences being that the ISAWG begins with raw marks rather than grades and that it 

includes a slope parameter for each assessment as well as an intercept (difficulty). 
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something that is reported to individual candidates. In the context of using the ISAWG for 

equating described in this paper, Part 1 has shown that the ISAWG may still be relatively 

effective in equating even when assessment choice is directly linked to likely performance. 

Further work could explore in more detail how different mechanisms regarding the way in 

which pupils are entered for different assessments impact upon the accuracy of equating 

using the ISAWG. 
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Appendix A: Results of simulation of equating across a completely random 

split into sessions 

This appendix repeats the analysis from part 2 but this time with candidates split into 

sessions completely at random so that there is no systematic tendency for the candidates in 

session 2 to be of higher ability than those in session 1. Because of the nature of the 

simulated split, it was no longer necessary to rely on common centres or key stage 2 in 

order to perform a simple form of equating. Instead, equating based upon assuming the 

equivalence of all candidates between sessions provided a sensible alternative to the 

method based on the ISAWG20. Analysis was based on the same set of components as 

those described in section 2. A total of 305 such components were retained in analysis as, 

since we were not relying on common centres or key stage 2, none were removed on 

grounds of being unable to find suitable matching data. As before, in each case, each 

equating method was evaluated by the accuracy with which the estimated equating functions 

matched the identity equating line. The results of analysis are shown in Figure A1. 

 

As before, for components with a very large number of entrants, because the assumption of 

equivalence is likely to be met, both methods displayed a similar level of accuracy. However, 

for components with between 1,000 and 5,000 entrants per group the method based on the 

ISAWG had lower error. This is because it can adjust for cases where the random split of 

candidates happens to lead to a difference in ability between candidates taking a particular 

component in different sessions. 

 

For components with very small entry sizes, the performance of the two methods was again 

similar. This might be because the additional estimation of parameters for the ISAWG-based 

method21 adds some slight instability to the method which might counteract the possible 

benefits in terms of adjusting for differences in ability between the two groups. Note that, 

given the way this simulation was set up, the differences between groups should be small in 

each case. This means that the design of this particular simulation does not allow the 

ISAWG-based method to demonstrate its full potential. As such, the fact that the ISAWG 

method still generally performs at least as well and often better than assuming equivalence 

is encouraging. 

 

                                                
20

 For consistency, the ISAWG itself was still calibrated between simulated sessions using common 

centres. Of course, nearly all large centres will now meet the criteria to be defined as common centres 

so that the majority of data will be retained for this step. 
21

 In particular the principal components coefficients for each individual assessment. 

http://dx.doi.org/10.1016/0160-2896(94)90010-8
http://dx.doi.org/10.1016/0160-2896(94)90010-8
https://www.ets.org/Media/Research/pdf/RR-13-38.pdf
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Figure A1: Weighted mean absolute errors of equating for ISAWG-based method and method 

based on assuming equivalence for simulation study where candidates are split into sessions 

completely at random.  
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