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Comparing small-sample equating with Angoff judgement
for linking cut-scores on two tests 
Tom Bramley  Research Division 

Introduction1

the educational measurement literature makes a clear distinction

between the activities of standard setting on the one hand, and test

equating and linking on the other. For example, these topics occupy

different chapters in the standard reference work Educational

measurement (Brennan, 2006). test equating is usually defined in a fairly

narrow, technical way such as: “Equating is a statistical process that is

used to adjust scores on test forms so that scores on the forms can be

used interchangeably” (Kolen & Brennan, 2004, p.2). Standard setting,

on the other hand, is usually defined more broadly such as “…the proper

following of a prescribed, rational system of rules or procedures resulting

in the assignment of a number to differentiate between two or more

states of performance” (Cizek, 1993, p.100). the main issues in test

equating tend to be around the definition of the ‘correct’ equating

transformation, and the data collection designs and statistical methods

necessary to estimate it. In standard setting, however, the procedures

are “… seldom, if ever, impartial psychometric activities, conducted in

isolation. Social, political and economic forces impinge on the standard-

setting process…” (Cizek & Earnest, 2015, p.213). In particular, standard

setting processes involve human values and judgements, and differences

in these are to be expected.

Conceptually, however, the processes of standard setting and test

equating are clearly very closely related. the performance standard can

be conceived of as a point on an abstract continuum, and the aim of the

standard setting process as being to find the score on the raw scale of

the particular test at hand that corresponds to this point. this seems

very similar to the conceptualisation of equating in Item Response

theory (IRt) – the raw scores on two tests that correspond to the same

level on the unobservable underlying trait are deemed equivalent.

If we are prepared to conceive of the abstract continuum on which 

the performance standard is located and the latent trait of the 

IRt model as one and the same, then we can see that carrying out

separate standard setting exercises on tests X and Y is in theory no

different from attempting to equate them (at the point on the latent

trait corresponding to the cut-score) by an IRt approach. Of course, 

the results of applying such dramatically different approaches to the

same problem could be expected to differ. 

Although it would seem most logically justifiable to carry out a

standard setting exercise just once (to establish one definitive example

of a realisation of the abstract performance standard on a concrete test)

and then to use statistical equating to link all subsequent (or other)

forms to that, in practice it may well be that a standard setting method

is used (perhaps alongside other methods) to inform or set the cut-score

on subsequent forms. thus, the standard setting method is used in

practice as a test equating (standard maintaining) method. there are

several scenarios where this might arise, for example: 

i) if the test is very high-stakes (e.g., a licence-to-practise test) 

where procedures require ‘stakeholder’ involvement in setting the

cut-score on each test form;

ii) if sample sizes are so low on each test form that statistical equating

methods are not trusted;

iii) if contextual factors (such as cost, need for test security, local

culture and expectations) prevent some of the necessities for

equating methods such as pre-testing, administration of an anchor

test, or embedding of field-test items into live tests; 

iv) if there is a need to determine a cut-score before any ‘live’

performance data has been collected.

the conceptual similarity between equating and standard setting

raises questions of the relative accuracy2 of the two methods. 

Our starting assumption was that in an ideal world a large-sample

equating exercise would be the preferred way to map a cut-score from

one test to another parallel one. However, since the standard error of

equating in a test equating exercise depends upon the sample size,

continually reducing the sample size presumably will reach a point at

which the equating error becomes greater than the error that would arise

from carrying out two separate standard setting exercises. the equating

error from the latter will depend on the details of the method used, 

but for all methods that rely on the judgement of item difficulty by

experts, a fundamental issue is the extent to which those judgements

correspond to the actual empirical difficulty. One of the motivations 

for this research was the realisation (see Benton, 2020, this issue) 

that estimates of item difficulty based on extremely small samples 

of empirical data (N<10) can correlate better with the actual (full

population) values than estimates based on expert judgement. the aim

of this study was to compare, by simulation, the accuracy of mapping a

cut-score from one test to another by expert judgement versus the

accuracy with a small-sample equating method.

Method

Standard setting method

the standard setting method we simulated was the ‘mean estimation’

method – a variant of the more well-known Angoff method (e.g., Loomis

1. this is a shortened and simplified version of a paper presented at the AEA-Europe conference in 2. In this article we use ‘accuracy’ in the general sense of overall accuracy including both bias and
2017 (Bramley & Benton 2017). random error.

This is a single article from Research Matters: A Cambridge Assessment publication. http://www.cambridgeassessment.org.uk/research­matters/
© UCLES 2020



           

           

            

                

           

            

             

           

        

           

     

         

           

            

          

         

        

          

       

          

           

         

           

       

 

           

            

          

         

            

               

          

           

          

           

          

      

          

         

    

           

         

            

              

          

  

           

            

        

          

            

            

      

           

             

        

             

              

             

        

           

         

           

          

           

          

             

           

          

         

           

          

    

         

            

        

         

            

              

             

             

              

            

             

  

        

           

     

  

  

  

         

         

           

            

           

           

               

           

     

       

         

          

         

& Bourque, 2001). It is applicable to tests containing polytomous as well 

as dichotomous items. If the test consists solely of dichotomous items it 

is the same as the Angoff method. Experts estimate the difficulty of each 

of the items in a test in terms of the mean score likely to be obtained on 

each item by a group of minimally competent examinees (mCEs). If the 

test is pass-fail then the mCEs are those who are just competent enough 

to pass. If the test is graded into more than two categories, there are 

different groups of mCEs for each cut-score. the cut-score is derived by 

summing the estimated means and then averaging across judges, 

rounding the result to an integer if necessary (or averaging and then 

summing – it makes no difference). 

Previous research (e.g., Impara & Plake, 1998) has suggested that 

although estimating the mean scores of mCEs can be difficult for experts 

in an absolute sense, they are more adept at discerning the correct rank 

order of the difficulty of items. Hence, judgements from experts can 

potentially be transformed onto the correct scale before being used 

to inform standard setting (thorndike, 1982; Humphry, Heldsinger, 

& Andrich, 2014). Since judgements can be transformed to the correct 

scale, the correlation between estimated difficulties and actual 

difficulties (often measured by item facilities – mean mark divided by 

maximum possible mark) provides a reasonable idea of the value of the 

information from such methods, as discussed above. In our simulation 

(described in more detail later) we wanted to vary this level of 

correlation and assess the effect on the outcome. 

Equating method 

there are a variety of equating methods appropriate for use with small 

samples (for example, see Livingston & Kim, 2009; or Kim, von Davier, 

& Haberman, 2008). We wanted a method suitable for the ‘non-

equivalent groups anchor test’ (NEAt) design. this is because for 

equating test forms which are only produced once or twice a year 

(such as GCSEs or A Levels) it is not usually possible to get one group of 

examinees to take both forms, or to obtain randomly equivalent groups 

of examinees. It is much more frequently possible to obtain two different 

groups and adjust statistically for differences in ability between them by 

means of an anchor test. We chose chained linear equating (e.g., Puhan, 

2010) because it requires fewer parameters to be estimated than the 

theoretically preferable (with large samples) equipercentile equating. 

Puhan (2010) reports that, across a range of conditions, chained linear 

equating tends to perform well compared to other linear equating 

techniques for the NEAt design. 

We were also interested in exploring the effect of clustering on the 

small-sample equating outcome. In practice, it might only be logistically 

feasible to obtain examinees from a single class in a small number of 

schools for an equating exercise, so it was of interest to see how a 

small clustered sample differed from a genuinely random sample of 

the same size. 

In brief, the equating scenario consisted of a test X (where we 

assumed the cut-scores were known) and a test Y where we needed to 

set equivalent cut-scores. We simulated mean estimation judgements 

at two levels of correlation (0.6 and 0.9) between estimated and 

empirical values, and derived the cut-score on test Y by adding up the 

simulated means for the items on test Y. We compared this with a 

chained linear equating method in two conditions: 

1. Random samples of 30 examinees from three schools in Group A 

took test X, and from three different schools in Group B took test Y, 

and all 180 examinees took an anchor test V; 

2. Simple random samples of 90 examinees in Group A took test X and 

in Group B took test Y, and all 180 examinees took an anchor test V. 

In both cases we considered two cut-scores, one at the lower end of the 

raw score scale and one at the higher end. 

Data 

the dataset forming the basis of all the analyses reported here was 

artificially constructed from a large real dataset containing the 

responses of 15,731 examinees to a test with a maximum possible raw 

score of 200. the questions were made up of sub-questions (henceforth 

items), and the items ranged in tariff (maximum score) from 1 

(i.e., dichotomous) to 5 (i.e., polytomous with six score categories). 

the facility values of all items were calculated and two tests X and Y, 

each with a maximum possible raw score of 60, were constructed by 

selecting two sets of items comprising fifteen 2-tariff items and 

ten 3-tariff items by systematically alternating selection from the 

items ordered by facility value. An anchor test V was constructed from 

20 dichotomous items (which was all the dichotomous items and hence 

no selection method was required). 

the examinees came from 323 schools, each contributing between 

1 and 238 examinees (mean 48.7, median 33). Each school had a 

5-digit identification number, which was known to be non-randomly 

assigned. two non-equivalent groups of examinees of roughly the same 

size were created by assigning those in schools with ID numbers below a 

certain value to Group A and the rest to Group B. Scores on the anchor 

test correlated around 0.8 with scores on test X and Y in both groups. 

table 1 shows that test Y was slightly easier than test X (higher mean 

score) but the lower SD of scores on test Y shows that the difference in 

difficulty was not uniform across the score range. It is also clear that 

Group A was of higher ability than Group B (its mean score was higher 

on all tests). 

Table J: Descriptive statistics for scores on Tests X, Y and V 

Test All (N=TW,YVT) 
————————— 
Mean SD 

Group A (N=Y,YWU) 
—————————— 
Mean SD 

Group B (N=Y,[Y[) 
————————— 
Mean SD 

X (max 60) 

Y (max 60) 

V (max 20) 

31.76 

32.36 

10.01 

13.29 

12.16 

3.44 

33.00 

33.46 

10.30 

13.39 

12.37 

3.50 

30.55 

31.29 

9.72 

13.08 

11.86 

3.34 

As described in the introduction, because of the conceptual similarity 

between the ‘abstract continuum’ on which the performance standard is 

located and the ‘latent trait’ of IRt, we defined the correct equating 

function to be the one arising from IRt true score equating on the 

complete dataset (i.e., X, Y and V items calibrated concurrently for both 

groups in a single-group design with no missing data). We focused on 

two different cut-scores on test X: 15 out of 60, and 45 out of 60. 

the ‘definitive’ equated cut-scores on test Y arising from the IRt true 

score equating were 17.20 and 44.21. 

Equating via simulating judgements in a standard setting 
method 

We simulated expert judgement of item difficulty by adding random 

error to the ‘correct’ (empirical) values. We simulated two levels of 

correlation: 0.6 (a value representative of published Angoff studies, 
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test X cut-score 15 45 

Correct Y cut-score 17.20 44.21 

test Y mean equated cut-score 17.08 17.15 16.39 16.56 44.38 44.33 44.25 44.36 

test Y SD equated cut-score 2.30 1.25 2.41 1.70 2.06 1.12 2.18 1.45 

Bias –0.12 –0.05 –0.81 –0.64 0.18 0.12 0.04 0.15 

RmSE 2.31 1.25 2.54 1.82 2.07 1.13 2.18 1.45 

%<= –3 12.1 0.9 19.1 12.0 8.8 0.9 10.5 1.9 

% –2 13.3 8.1 10.4 13.6 9.3 4.3 9.9 7.9 

% –1 16.4 21.9 18.8 22.1 14.3 17.6 16.9 17.5 

% 0 17.6 29.6 19.7 23.2 18.4 32.0 19.0 27.1 

% +1 15.0 25.6 14.1 16.0 19.4 31.0 16.2 24.6 

% +2 10.3 11.3 10.3 9.7 13.8 12.0 11.4 13.4 

% >= +3 15.3 2.6 7.6 3.4 16.0 2.2 16.1 7.6 

           ble K: Equated scores based on simulated judgements and small-sample equating (replications=J,III) Ta

see for example Brandon, 2004), and 0.9 (a much higher value than 

usually found, in order to represent a very optimistic view of what 

might be achievable in ideal conditions). 

the technical details of the simulation are described in Bramley 

and Benton (2017). the process was repeated 1,000 times for each of 

two different values of the correlation r (0.9 and 0.6) and for the two 

different test X cut-scores (15 and 45). 

the simulated judgements were used to produce equated cut-

scores, using the standard setting method previously described. the 

distributions of equated cut-scores were then compared with the 

definitive (correct) cut-score. Specifically, bias B was defined as the 

mean difference (across replicates) between the equated score for each 

replicate and the correct cut-score; error variance E was defined as the 

variance of the equated cut-scores; and the root mean squared error 

RmSE (Root mean Square Error) was calculated as sqrt(B2+E). 

Equating via a traditional small-sample equating method 

For condition 1, all schools with 30 or more examinees were selected 

and then a two-stage sampling process first selected at random three 

schools from each group, and then a random sample of 30 examinees 

from each school. this process was replicated 1,000 times. For 

condition 2, we selected 1,000 simple random samples (with 

replacement) of 90 examinees from Group A and 90 from Group B. 

An equated cut-score on test Y for each of the test X cut-scores 

(15 and 45) was derived by chained linear equating in each replicate 

in each condition (see Bramley & Benton, 2017 for the equations). 

the distribution of equated scores across the 1,000 replicates was then 

compared with the definitive cut-score in the same way as for the 

simulated judgements. 

Results 

table 2 shows that in all cases except small-sample equating with the 

clustered sample (condition 1) the bias made a negligible contribution to 

the overall RmSE. the more realistic value for the correlation (0.6) had 

RmSE values nearly twice as high as that for the optimistic value (0.9) 

at both cut-scores. the % distributions in table 2 refer to equated cut-

scores on test Y rounded to the nearest integer. this is on the 

assumption that in practice, if an integer cut-score were required to be 

set on test Y, the correct values would be 17 and 44. this causes a slight 

asymmetry because an equated score of 44.6 (say) would be rounded to 

45 and be 1 too high, whereas a less accurate equated score of 43.6 

would be rounded to the correct value of 44. For simulated correlations 

of 0.9, the equated cut-score was within ±1 of the correct score around 

75% of the time (cut-score of 15) or 80% of the time (cut-score of 45), 

but for simulated correlations of 0.6 only around 50% were in this range, 

and around 25% were three or more score points away. 

the overall accuracy of small-sample equating, as measured by 

the RmSE, was better in condition 2 (simple random sample of 90 

examinees from each test) than in condition 1. At both cut-scores, the 

condition 2 RmSE was roughly half-way between the RmSE values from 

simulated judgements with r=0.6 and r=0.9. the condition 1 RmSEs were 

about 0.7 score points higher than the corresponding condition 2 RmSEs, 

for both cut scores, showing the detrimental effect of clustering of 

examinees within schools on equating error. the condition 1 RmSEs were 

slightly higher than those from simulated judgements with a correlation 

of 0.6. In the best case for small-sample equating (condition 2) the 

cut-scores were within one score point of the correct value around 60% 

of the time for a cut-score of 15 and around 70% of the time for a 
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cut-score of 45. Bias made a small contribution to the RmSE at a 

cut-score of 15 and a negligible contribution at a cut-score of 45. 

the fact that sampling error was the main contributor to RmSE in all 

methods and conditions suggests that comparisons are not critically 

dependent on how the ‘true’ equating function is defined, because this 

would only affect the bias and not the sampling error. 

Discussion 

this study has compared, by simulation, the level of accuracy that 

might be obtained from a standard setting method (mean estimation) 

if applied as a test equating method to that which might be expected 

from a small-sample test equating method (chained linear equating). 

As expected, the standard setting method resulted in more accurate 

equating when we assumed a higher level of correlation between 

simulated expert judgements of item difficulty and empirical difficulty. 

For small-sample equating with 90 examinees per test, more accurate 

equating arose from using simple random sampling compared to cluster 

sampling at a given sample size. the actual values of RmSE depended on 

the cut-score, being generally larger for the cut-score where the correct 

equated cut-score on test Y was further from the cut-score on test X. 

the simulations based on the more realistic value for the correlation 

between judged and empirical difficulty (0.6) produced a similar RmSE 

to small-sample equating with cluster sampling. Simulations of 

standard setting based on the optimistic correlation of 0.9 had the 

lowest RmSEs of all. 

As shown by Benton (2020, this issue), even very small samples of 

examinees can give a more accurate picture of the relative difficulty of 

items than estimates from experts. We may therefore be surprised that 

the small-sample approach trialled here did not perform even better. 

there are a number of reasons for this. One reason is that the equating 

approach adopted in the simulation study required calibration of 

examinee abilities across two groups using an anchor test. Small-sample 

equating with a single group design would be significantly more 

accurate. Even within the NEAt design, it may be that other approaches, 

such as tucker linear equating or Rasch true score equating, may provide 

a more stable estimate of equivalent scores than chained linear 

equating. 

most important, however, is the fact that our simulations assumed 

that judged and empirical values for the mean scores of mCEs would 

differ only in their rank order, and that the mean and SD would (apart 

from sampling error) be the same. In fact, evidence both old (Lorge & 

Kruglov, 1953) and new (Humphry et al., 2014) suggests that expert 

judges tend to think that easy items are harder than they are, and that 

hard items are easier than they are. that is, the implied scale unit of 

estimated difficulty tends to be larger (i.e., less discriminating) than the 

scale unit of empirical difficulty: the judges’ estimates are less spread 

out than the empirical values. Humphry et al. (ibid.) suggested applying 

a linear transformation to align the scale units, on the assumption that 

judges are unbiased when estimating passing proportions/probabilities 

of 50%. Although this assumption seems reasonably plausible, 

it nevertheless needs empirical support. In any event, we were not 

confident that we could choose realistic values for scale shrinkage effects 

to include in our simulation because they may depend on a number of 

contextual factors. this is an area for further research. 

In our simulations, sampling error was the dominant contributor to 

RmSE, which suggests that attempting to reduce sampling error at the 

risk of increasing bias may also be worth considering. One way of 

achieving this would be to apply the ‘synthetic linking’ approach of Kim 

et al. (2008) where the final equated cut-score on test Y is a weighted 

average of the test X cut-score and the cut-score derived from the 

equating. this approach is clearly most suitable when there is some 

reason to believe that the two tests should have similar cut-scores – 

perhaps if they have been constructed to the same detailed 

specification. 

the main issue is whether the aggregate of judges’ estimates of item 

difficulty provides useful information about relative test difficulty. 

the article by Benton (2020, this issue) gives some cause for pessimism 

here, at least as far as the kind of data we see at GCSE and A Level is 

concerned. the degree of correlation between judged and empirical item 

difficulty is clearly an important factor in the usefulness of Angoff-

related standard setting methods. Using a small-sample equating 

method may be preferable to using a standard setting method if typical 

levels of correlation are to be expected, and indeed this was the 

conclusion of Dwyer (2016), although it should be noted that the 

(actual, not simulated) correlations of the judge estimates in his study 

were in the range 0.39 to 0.49 – lower than observed in many other 

studies. If it were possible to increase the correlation beyond 0.6 by 

increasing the number of judges in a judging panel and/or training 

them to make the mean estimation judgements, then substantial 

improvements in the accuracy of the standard setting method could be 

obtained – in the simulation here a correlation of 0.9 was more accurate 

than the best small-sample equating scenario (a simple random sample 

of 90 examinees). However, Benton (2020, this issue) argues that 

rather than focusing on the absolute size of the correlation coefficient, 

the critical issue is the proportional reduction in error in predicting 

empirical difficulty from judged difficulty. this takes account of any 

overall biases and scale differences in judgements as well as 

disagreements in rank order. 

In conclusion, it can be observed that in some contexts standard 

setting methods are used to achieve the same goal as test equating 

methods, namely determining cut-scores on test forms that relate to the 

same performance standard. IRt true-score equating provides a 

conceptual link between the two, if it is reasonable to conceive of the 

IRt latent trait as being the same as the abstract continuum containing 

the performance standard. the simulations reported here have 

suggested that the overall accuracy of Angoff-based standard setting 

methods could in some circumstances be similar to what might be 

expected from test equating with a NEAt design using small samples 

(N~100) of examinees. Of course, these findings all derive from 

simulations based on just one dataset, so we are not in a position to 

make general recommendations about what to do in particular applied 

contexts. We made choices about how to define the ‘true’ equating 

function and which particular standard setting method and small-

sample equating method to use, all of which could be varied. the effect 

of using polytomous items rather than dichotomous anchor items could 

be explored, as could the effect of varying test length. Furthermore, our 

method of artificially constructing tests X and Y ensured that they would 

be reasonably similar in difficulty. However, these findings point to a way 

in which practitioners could set up experiments or simulations that more 

closely match their own particular contexts, in order to discover whether 

using a standard setting method based on expert judgement might be 

more accurate than using a small-sample test equating method (or vice 
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versa); or whether focusing effort on constructing parallel (equally 

difficult) tests would be a better use of available resource. 
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Introduction 

Developing a way to accurately estimate the relative difficulty of two 

tests before any students have taken them has long been a holy grail in 

test development. At one time or another, various organisations have 

explored how well we can discern the relative difficulties of assessments 

without actually trialling them with students. Recent research on this 

topic has been produced by Cito in the Netherlands (van Onna, Lampe, 

& Crompvoets, 2019), EtS in the United States (Attali, Saldivia, Jackson, 

Schuppan, & Wanamaker, 2014) and Cambridge Assessment in the UK 

(Curcin, Black, & Bramley, 2009). Item trialling is often undesirable as 

it places some of the burden of test development upon schools and 

students, and can lead to concerns over the security of items. 

If accurate predictions of item difficulty were possible then, in the 

context of UK examinations, this would mean being able to accurately 

set grade boundaries for this year’s GCSE exams before any students 

have attempted the paper. It would also provide an alternative to the 

current approach of “comparable outcomes” to awarding and its 

inherent implication that (broadly speaking) the percentage of pupils 

achieving high grades will not change from the previous year (Benton, 

2016). Outside of the UK context, being able to accurately predict the 

difficulty of items might allow “lowering the sample sizes required for 

item pretesting, leading to lower costs and increased security of items” 

(Attali et al., 2014, p.7). 

the previous article (Bramley, 2020) has considered the extent to 

which a particular form of expert judgement (the ‘mean estimation’ 

variant of the Angoff method) might provide sufficiently accurate 

information on the relative difficulty of two tests. the present article 

explores the value of expert judgements of item difficulties derived in a 

different manner – by comparative judgement (CJ). 

In this context, a CJ study requires expert judges to sort sets of items 

according to their perceived difficulty (PD). the rationale for using CJ is 

that previous research has indicated that judges tend to “be good at 

predicting the relative difficulties of items but not absolute levels” 

(mislevy, Sheehan, & Wingersky, 1993, p.59). Placing items in a rank 

order of difficulty is conceivably a more intuitive task then estimating 

the proportion of minimally competent candidates who will answer 

them correctly, as must be done under the Angoff method. As such, 
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