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Abstract: 
Computer adaptive testing is intended to make assessment more reliable by tailoring the 
difficulty of the questions a student has to answer to their level of ability. Most commonly, 
this benefit is used to justify the length of tests being shortened whilst retaining the 
reliability of a longer, non-adaptive test. 

Improvements due to adaptive testing are often estimated using reliability coefficients 
based on item response theory (IRT). However, these coefficients assume that the 
underlying IRT model completely fits the data. This article takes a different approach, 
based on comparing the predictive value of shortened versions of real assessments based 
on adaptive and non-adaptive approaches. The results show that, when explored in this 
way, the benefits from adaptive testing may not always be quite a large as hoped.
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Item response theory, computer 
adaptive testing and the risk  
of self-deception

Tom Benton (Research Division) 

Introduction

For more than a century, the vast majority of high-stakes exams in England have 
been paper based. Moreover, aside from occasional differentiation of students 
into tiers, all students taking an assessment are presented with exactly the same 
set of questions at the same time.1 This has obvious advantages in terms of 
transparency. If one student is ranked ahead of another it is simply because, given 
the same set of questions, one answered more of them correctly than another. All 
students answering the same questions within a given exam ensures there can be 
no argument of one student being given an easier assessment than another.

However, as more and more activities in modern life move from the physical to the 
online realm it is natural for people to consider what benefits might be achieved 
if high-stakes exams became computer based.2 The switch to computer-based 
testing has already begun in other countries such as Israel, Finland and New 
Zealand (Meadows, 2021). Among the potential benefits that are considered is 
whether a computer-based format would make it easier to tailor assessments to 
each individual student through computer adaptive testing.

Computer adaptive testing involves selecting which items to present to a student 
on-the-fly as the test progresses. In particular, if a student answers an item (or a 
set of items) correctly then the next item (or set of items) presented to them will be 
more difficult. Conversely, if a student is struggling, they will tend to be presented 
with easier items. As such, as the student progresses through the test, the items 
they are presented with are tailored to match their ability level. 

Clearly, computer adaptive testing cannot rely on simply counting how many 
items students have answered correctly as, by design, some students have been 
presented with more difficult items than others. To address this, item response 
theory (IRT) is used. IRT is an overarching theory describing how students respond 

1 Although, in a minority of assessments, students may choose which items they 
answer.

2  Risks are also considered by some authors. See for example Bramley (2021).
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to individual test questions (items). In its most common form, it assumes that the 
probability that any student will answer any item correctly is defined by just two 
things: a single number describing the ability of the student (unidimensionality) 
and a small set of numbers (item parameters) describing the key characteristics 
of the item such as its difficulty and how discriminating it is. For further details, see 
Harris (1989).

To use IRT within the context of computer adaptive testing, the parameters of all 
items, such as how discriminating and (most crucially) how difficult they are, must 
be estimated. This requires some form of trialling before items are used in a high-
stakes setting. Then, after students have taken a test, IRT is used to calculate the 
score that should be assigned to each student while properly accounting for the 
difficulties of the items they have been presented with (see Wainer et al., 2000).

In theory, computer adaptive testing should make the test more engaging for 
students as the items they are presented with are more appropriate for their 
ability. For example, if a student is struggling, rather than being repeatedly 
presented with questions that are too hard for them to answer, they will find that 
the test automatically adapts to present them with items more appropriate to 
their current performance level. Computer adaptive testing should also allow 
more accurate assessment of each student’s ability. For example, ensuring that 
high ability students are presented with lots of challenging tasks should make it 
easier to distinguish their relative abilities than if they also had to answer many 
easy questions.

The potential improvement in measurement precision that can be achieved by 
computer adaptive testing is normally presented in terms of the extent to which 
testing time can be shortened without any loss in reliability. That is, rather than 
keeping the length of exams the same and reducing the level of uncertainty 
around the score assigned to each student, the benefit of a computer adaptive 
test (CAT) is usually realised in terms of reducing the length of time students are 
required to spend taking an exam. According to Straetmans and Eggen (1998, 
p.51) “on average CATs require about 60 percent of the number of items needed 
in traditional paper-based test”. Other authors suggest that in their specific 
contexts CATs allow test lengths to be halved with no loss of measurement 
precision (Kreiter et al., 1999; Weiss, 1982).

The aim of this article is to explore the potential gains from a switch to adaptive 
testing in the context of large qualifications such as GCSEs and A Levels in 
England. This context is potentially different from some typical applications of 
CATs such as general intelligence testing (e.g., non-verbal reasoning tests) or tests 
of foreign language fluency. In particular, GCSEs and A Levels require students 
to learn a range of knowledge and skills from a broad range of topics within a 
subject. As such, the design of examinations is intended to cover numerous topics 
and skills rather than tightly focus on a single concept. 

More specifically, the aim of this article is to better understand whether apparent 
gains in reliability coefficients from a switch to CATs are likely to translate into real 
world improvements of the validity of our assessments. The interest in this topic 
stems from previous research (described in the next section) showing instances 
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where improvements in reliability do not translate to concomitant changes in 
predictive validity. The logic for being concerned about a potential gap between 
supposed (reliability) and actual (validity) benefits of CATs would run as follows:

• In order to even estimate reliability of scores from a CAT we are forced to use 
IRT. As such, most existing estimates of the improved efficiency through using 
CATs are based either directly on the output from IRT models or on simulation 
studies run on the assumption that they are correct.

• The famous aphorism that “all models are wrong, but some are useful” 
(George Box) clearly applies to IRT. While IRT models function as a very 
good approximation to our data in many situations, they are not true in an 
absolute sense.

• Thus, given that, to some extent, the model we are using to estimate scores 
must be “wrong”, how far should we trust estimated improvements in 
reliability when these are estimated on the assumption that the model is 
completely correct?

• The real risk here is one of self-deception—thinking that a move to computer 
adaptive testing is a bigger improvement (in terms of reliability and validity) 
than it really is. This article will provide an evaluation of the potential size of 
this risk using real data, that is, not based purely on simulations that assume 
IRT models fit perfectly.

Previous examples of self-deception risks
This article is by no means the first to draw attention to the risk of self-deception 
through an over-reliance on IRT models. Three examples are listed below. The first 
relates specifically to computer adaptive testing and the following two to large-
scale empirical analysis of the impact of relying on IRT in other contexts.

Capitalisation on chance
This issue was explored by Veldkamp (2013) and van der Linden & Glas (2000). 
The issue is that in order to work, computer adaptive testing requires an initial 
estimate of the difficulty and discrimination of each item. These initial estimates 
are usually based on relatively small samples of students (perhaps a few hundred), 
and hence have non-negligible levels of uncertainty attached to them. The result 
is that, when a CAT selects the next item for a student, it may believe it is selecting 
a highly discriminating item targeted at just the right ability level, when in fact 
it is not. Furthermore, since some CATs are designed to try and pick the most 
discriminating items more frequently, they are liable to tend to select items where 
the discrimination has been overestimated. As a result, according to Veldkamp 
and Verschoor (2019, p.293), “the measurement precision of the CATs might be 
vastly over-estimated”.

In other words, the reliability measures generated by a CAT may produce an over-
optimistic picture of test quality that is not reflected in reality.
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Rescoring using item weights or IRT
Benton (2018) compared various alternatives to simply summing item scores 
to create overall test scores. The alternatives were intended to help optimise 
reliability and included both classical methods such as the one suggested by 
Guilford (1941), and IRT methods such as using a graded response model to 
produce pupil ability estimates. On average, across analyses of more than 500 
assessments, these methods increased the reliability indices (on scales from 0 to 1) 
from about 0.88 to about 0.89. This may appear a very minor improvement but is 
actually equivalent to the increase in reliability we might get from lengthening our 
assessments by 10 per cent3 (without any of the associated cost). In these terms, 
it is also very similar to the reported improvement in reliability from transferring 
the reading literacy tasks in the Programme for International Student Assessment 
(PISA) to a multi-stage adaptive format in 2018 (OECD, 2019, p.27).

According to IRT, increases in reliability should relate to a reduction in the influence 
of random error on test scores. This should reasonably be expected to in turn 
lead to increased correlations with other measures of student ability. However, 
for Benton’s 2018 study the supposed increases in reliability were associated with 
absolutely no improvement in the predictive value of test scores. 

This example illustrates how, if we were entirely reliant on the numbers coming out 
of an IRT analysis, we might convince ourselves that reweighting items provides 
an easy way of improving the reliability of test scores at no cost. In fact, the lack 
of any concomitant improvement in predictive value suggests that, as has been 
suggested many times in previous research, reweighting items is “futile” (Wang & 
Stanley, 1970, p.688).

Optimal (fixed) test construction using IRT
Similarly, Benton (2018) compared various approaches to optimal construction 
of fixed tests. Again, this analysis was based upon real data from more than 500 
separate assessments. The research compared the predictive value of half-length 
tests constructed out of real full-length tests so as to optimise various classical 
and IRT measures of test reliability. Unlike the research on simply rescoring tests, 
optimised approaches to item selection did indeed lead to improvements in 
predictive value when compared to simply selecting items at random. However, 
the scale of improvement was not as high as might be expected based upon the 
associated reliability values.

This example again reinforces the possible risks of self-deception from relying 
entirely upon reliability statistics from IRT analyses. That is, gains in reliability may 
not necessarily translate into validity. However, the example also accentuates 
the fact that, while like all models they are “wrong”, IRT models are nonetheless 
“useful”. The application of IRT in the study did indeed identify selections of items 
with greater predictive value on average–just not to the extent that might be 
hoped given the reliability coefficients.

3 This is easily seen using the Spearman-Brown formula.  
0.89≈1.10*0.88/(1+0.10*0.88).
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The present study
The current article builds on the item selection research in Benton (2018). In 
particular, it extends the research to include an examination of the possible 
gains from allowing the items to be assigned to each student to be selected in an 
adaptive way, rather than using the same set of items for all students. 

The present study makes use of real data throughout. This includes using 
responses of real students to real items to mimic how they might perform in a CAT, 
as well as making use of assessment data beyond the tests being studied to give 
some idea of how different approaches to assessment affect validity. The use of 
real data for evaluation is crucial. While it is easy to estimate the likely impact of 
using CATs through simulation, such simulations tend to rely on the assumption 
that the underlying IRT model is absolutely correct. As such, the use of simulations 
would entirely undermine the purpose of the research. In order to make some 
inferences about validity we will look at the correlation of test scores (derived in 
various ways) with external measures of academic achievement. We will refer to 
these correlations as “predictive value”.  

Having said this, the use of real data does have some limitations. All of the data 
used in the present study is drawn from tests that were originally delivered in 
a fixed (paper-based) format. This means that the analysis (presented next) 
cannot entirely mimic the way in which a genuine CAT would operate. In particular, 
a real CAT would start with a large bank of items that could be presented to 
students. By carefully selecting which items are presented to each student, the 
idea would be to either improve test reliability while maintaining test length or to 
maintain reliability relative to a fixed format while reducing testing time. Neither 
of these two aims can be tested directly using our real data from fixed format 
tests. In particular, our methodology will necessarily involve imagining a CAT that 
assigns each student a subset of items from the original full-length test. Since the 
imagined CAT is only a subset of the original full-length test it is likely that we will 
lose rather than gain reliability. As such, the focus will be on which approaches to 
selecting the subset of items (CAT or fixed form) lead to the smallest losses in terms 
of reliability and validity. That is, although our real interest is in whether CATs 
improve test quality, with our data we can only test whether they lead to smaller 
reductions in reliability and predictive power than other approaches. 

A second drawback of using real data from fixed format tests is that they tend 
to be presented in terms of question stems with a number of subsequent sub-
questions. Although, for the purposes of analysis, it is necessary to treat sub-
questions as separate items (or else there are too few items to work with) they 
may not be quite as independent of one another as would generally be the case 
for distinct items within an item bank underlying a CAT. Although some effort has 
been made to mitigate the impact of this issue (particularly through checking 
data for unidimensionality—see below), it remains a caveat against the results 
presented here. 
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Method

The data for the present study comes from 159 assessments that were completed 
as part of GCSEs, A Levels or equivalent international qualifications between 2013 
and 2017. The assessments were chosen to meet the following criteria:

• Taken by at least 5000 students. This ensured the accuracy of any item 
parameters estimated via IRT thereby avoiding issues of capitalisation 
on chance (see earlier discussion). The median entry size for selected 
assessments was just under 9000.

• No optional questions. In other words, all questions were compulsory so that 
whichever items were selected for retention for each student, an item score 
would be available.

• At least 20 items. This criterion ensured that there would be a reasonable 
number of items to choose for each student. The median number of items in 
selected assessments was 32.

• No items worth more than five marks and at least one item worth only one 
mark. Since the focus of this article is on computer adaptive tests, and such 
tests rarely (if ever) incorporate items with long mark scales, it seemed 
reasonable to restrict attention to assessments consisting of relatively low 
tariff items. Having said that, none of the assessments included in analysis 
consisted entirely of one-mark items. 

• The assessment was deemed to be unidimensional. Unidimensionality was 
important for the analysis as the intention was to focus upon CATs based on 
unidimensional IRT models. Unidimensionality was confirmed for each of the 
assessments using Velicer’s MAP criterion (Velicer, 1976) as evaluated by the R 
package psych (Revelle, 2020).4

The principle of analysis is as follows. For each assessment we apply some method 
to select items for each student, calculate a score for each of them based only 
on data from the selected items, and then calculate the correlation5 between 
the resulting scores and a measure of the students’ achievement more widely. 
We label these correlations “predictive value”. We also calculate estimates of 
the reliability of scores from the item selection method. Finally, we compare both 
predictive value and reliability from the selected items against the original value 
based on retaining the whole full-length test. The idea is that methods that are 
more effective at selecting the most appropriate items for each student will retain 
a greater amount of reliability and predictive value from the full-length tests. 

For the purposes of calculating predictive value, the wider achievement of each 
student was measured via each candidate’s external ISAWG6 (Benton, 2017). The 

4 Note that this criterion led to the removal of several hundred assessments from 
those available for inclusion in the study.

5 To avoid potential issues with outliers, and also the impact of the scales used for 
different scoring systems, Spearman’s rank-order correlations were used.

6 ISAWG stands for Instant Summary of Achievement Without Grades.
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external ISAWG is a measure of each candidate’s performance across all of the 
tests that they have taken in a particular examination session, excluding the one 
being analysed. It is derived using a form of principal components analysis and 
can be interpreted as a very general form of ability across different subjects. It 
was used in this analysis as it was easily available for nearly all the candidates 
included in analysis. 

Analysis focused on three methods that selected a single, optimal set of items for 
all students and two CAT-like approaches where the selected items could vary 
across students. The three single-form methods were: to select items at random; 
to select items that maximise expected test information (a concept from IRT 
relating to the likely reliability of a test) based on a Rasch partial-credit model 
(PCM); and to select items that maximise expected test information based upon 
a graded response model (GRM). The CAT-like approaches each attempted to 
maximise the expected test information for each student individually using either 
a PCM or a GRM.

The difference between the PCM and the GRM is that the former requires 
estimation of item difficulty only whereas the latter also estimates the 
discrimination of each item. In theory, the GRM approach should be superior in 
that it can ensure that the most discriminating items are selected in addition to 
ensuring that they are at the most appropriate level of difficulty for the students. 
In contrast, the PCM model assumes that items worth the same number of marks 
have the same discrimination parameters and focuses purely on ensuring that 
items of the most appropriate difficulty are selected. Evaluating whether extra 
focus of the GRM on how well each item discriminates between students of 
different abilities actually translates into improvements in predictive value was a 
key question within this research.

Each item selection method was designed to select items worth half the total 
number of marks available on the original full-length test.7 Furthermore, the 
selected items were intended to reflect as closely as possible the distribution of 
item tariffs (i.e., the maximum available marks on each item) in the original test. 

To further illustrate the procedure that was applied for each assessment, we 
consider a 40-mark Biology test that was included in analysis. The test consisted 
of two 4-mark items, two 3-mark items, eight 2-mark items and ten 1-mark items. 
In this particular instance, each method was designed to select one 4-mark item, 
one 3-mark item, four 2-marks items and five 1-mark items. Further details on each 
method are below:

• Fixed test with random selection of items. The required number of items 
with each tariff were simply selected at random. The scores on these same 
items were retained for all students.

• Fixed test with item selection relying on the GRM. First, we fitted a GRM 
model to the full data set and calculated the item information functions for 

7 Real CATs may use more complex stopping criteria such as whether the 
estimated error of measurement for each student is below some threshold.
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each item. These provide an estimate of how much information each item 
is expected to provide about students at each ability level.  For estimation 
of the GRM the distribution of ability was assumed to follow a normal 
distribution with a mean of 0 and a standard deviation of 1. Using this fact, 
we then calculated the expected information we expect each item to supply 
across students (i.e., averaging the item information functions across the 
ability distribution). For each item tariff we then selected the items with the 
highest expected information for retention. The scores on these same items 
were retained for all students.

• Fixed test with item selection relying on the Rasch PCM. The same process 
as for selecting a fixed test using the GRM was followed. The only difference 
was that a different IRT model was fitted as a starting point. For estimation 
of this model, it was assumed that the ability distribution was normal with 
a mean of 0. However, because, in contrast to the GRM, discrimination 
parameters are fixed, the model estimates the standard deviation of abilities 
and this estimate was used in the subsequent calculation of the expected 
information from each item.

• CAT-like test with item selection relying on the GRM. The initial steps for 
this approach were the same as for the fixed test based on GRM in terms 
of model fitting and calculation of item information functions. After this, the 
following procedure was followed separately for each individual student.

1. Initially set the distribution of the student’s ability to be normal 
with a mean of 0 and a standard deviation of 1.

2. From the items with the highest tariff still required, select an 
item with the highest expected information given the individual 
student’s ability distribution.8 That is, if we still need a 4-mark item 
we select from among these, if we have already selected sufficient 
4-mark items we select from among 3-mark items and so on. 
Starting with items with the highest tariff makes sense as these are 
most likely to provide useful information about candidates across 
a range of different abilities. Choosing items with the highest 
expected information close to each student’s estimated ability will 
tend to mean more difficult items are assigned to high performing 
students and easier ones are assigned to lower achievers.

3. Based on the student’s (known) response to the item, update 
their ability distribution. For example, if they have answered an 
item fully correctly the mean of their ability distribution will be 
adjusted upwards whereas if they have answered incorrectly, it 
will adjusted downwards. The uncertainty around their ability 
estimate (i.e., the standard error) will also be adjusted. 

4. Unless we have selected all of the items we require of the various 
tariffs return to step 2 until complete.

8  The first item selected for each student is the same. Subsequent questions will 
differ across students.
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5. The final IRT ability estimate of each student based on their 
individually selected items is used as their final score. Note that 
these ability estimates will adjust for the difficulty of the items 
that were assigned to each student and also give more weight to 
performance on items estimated to have a higher discrimination.

• Note that simulating a CAT using the above procedure assumes that we 
would be able to automatically mark all items regardless of their tariff or 
format. That is, we are assuming that all technological barriers to computer-
based testing and auto-marking have been overcome so that we could run a 
CAT using the same style of items currently used in qualifications in England. 
This is a fairly large assumption but is used here to allow us to explore the 
potential of computer adaptive testing in a best-case scenario. From a 
technical perspective note that all ability estimations made use of expected 
a posteriori (EAP) estimation and that the item selection approach reflects 
the posterior-weighted information criterion described by van der Linden 
and Pashley (2010).

• CAT-like test with item selection relying on the Rasch PCM. The procedure 
was exactly the same as above but with all calculations, including calculating 
information function and assigning ability estimates (including final scores) to 
students, based upon the Rasch PCM model. Crucially, the Rasch PCM model 
assumes the same discrimination parameters for items with the same tariff. 
This means that the model will not give additional weight to performance on 
items estimated to be highly discriminating.

Having calculated the scores that would be assigned to each student by each 
method all that remained was to calculate predictive value and reliability. 
Predictive value was calculated as the Spearman correlation between final scores 
and the external ISAWG (i.e., performance more widely beyond the assessment 
of interest). Note that for fixed form tests, final scores were always simply the sum 
of the item scores on the selected items. For CAT-like tests, the final scores were 
based on EAP ability estimates as described above.

There are many ways to calculate test reliability. However, in order to enable 
the best possible comparability between different techniques, an IRT method 
of estimating test reliability was calculated for each test score. For the CAT-like 
methods, this was simply provided by the reliability indices associated with their 
final set of IRT ability estimates. As noted earlier, for the fixed form methods, 
each student’s score was simply a sum of scores on the selected items. In order 
to allow comparability with the other methods, these sum scores were converted 
to equivalent values on the IRT ability scale using the EAP approach of Thissen et 
al. (1995). The reliabilities of the EAP ability estimates (derived from sum scores) 
were then calculated. The same approach was used to estimate the reliability of 
the original full-length test. All model fitting and calculations relating to IRT were 
performed using the R package mirt (Chalmers, 2012). If we denote the estimate of 
each student’s IRT ability estimate as       and the uncertainty around this estimate 
as              then the formula to estimate reliability is:
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Note that for the two separate IRT approaches (GRM and PCM), reliability was 
calculated on each model’s own terms. That is, if the CAT or fixed form was derived 
from the GRM, then the reliability index was also calculated using this model. If the 
CAT or fixed form was derived using the PCM, then reliability was also estimated 
using this model. For this reason, the reliability indices from the different models 
are not directly compared.9 For both the full-length test and the random selection 
of items, both reliability types of index were calculated. Note that, although 
calculated differently, both reliability coefficients (measured on scales from 0 to 1) 
can be interpreted in a similar way to more familiar indices such as  
Cronbach’s alpha. 

Results

To begin with, we examine the results relating to reliability. These are shown in 
Figure 1 in two panels relating to the two separate IRT models that can be used 
to estimate reliability. Each point on the chart represents the reliability of a full-
length assessment (the x-axis) and the extent to which this reliability changes (the 
y-axis) under various approaches to selecting only half the items for each student. 
Thus, for each assessment the chart includes three points in each panel (one 
relating to each method) and these are positioned in a vertical line. For example, 
the leftmost set of points relate to an assessment with an original full-length 
reliability just above 0.65. Selecting half the items using a CAT-like approach 
based on a GRM barely reduced the reported reliability. In contrast, in this 
instance, a fixed form based on the GRM reduced reported reliability by about 
0.03 and selecting half the items at random reduced the reliability by about 0.12.

The overall pattern of results in Figure 1 is as expected. CAT-like approaches led to 
lower reductions in reliability relative to the full-length test than selecting a single 
fixed form for all students. Although care is needed with the comparison, when 
judged on their own terms, the extra emphasis on selecting highly discriminating 
items based on the GRM (and giving more weight to them in scoring) led to smaller 
reductions in reliability than the CAT-like approach based on the Rasch PCM. 
Indeed, in one case, through giving more weight to scores on highly discriminating 
items, the CAT-like approach appears to lead to improved reliability relative to the 
original full-length test despite consisting of only a subset of the items for each 

9 Although it is possible to estimate the reliability of scores derived using one 
model based upon another model, it is not particularly straightforward. It is also 
not something I have ever seen done in practice. For these reasons it is avoided 
in this article.
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student. Among the two fixed form approaches in each panel of Figure 1, selecting 
items in an optimal manner based on an IRT model led to higher reliabilities than 
selecting items at random.

Figure 1: Original full-length test reliabilities and changes in reliability under 
each of the methods for selecting a subset of items for use with each student. 
Regression lines have been added to aid interpretation. Results are split by the 
IRT model used to calculate reliability.

Of most interest in this research is the extent to which the results relating to the 
superior reliability coefficients of CAT-like approaches in Figure 1 translate into 
superior predictive value. This is explored in Figure 2. Figure 2 is designed to follow 
the same pattern as Figure 1 but plots predictive values for the full-length test 
and changes in predictive values rather than reliabilities. Note that although 
predictive value can be directly compared across all methods (i.e., between PCM 
and GRM approaches), for consistency with Figure 1 the split by IRT model  
is retained.

As can be seen, Figure 2 creates a rather different impression to Figure 1. The 
advantages of the CAT-like approaches over other methods are reduced relative 
to the gaps shown in Figure 1. Most surprisingly, the gap between the CAT-like 
approach based on the Rasch PCM and fixed item selection based on the same 
model has vanished. On the other hand, the gaps between choosing optimal fixed 
form tests (using either the PCM or GRM) and selecting fixed form tests at random 
remain strongly evident.
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Figure 2: Original full-length test predictive values and changes in predictive 
value under each of four methods for selecting a subset of items for use with 
each student. Regression lines have been added to aid interpretation (the lines 
for CAT Rasch and Fixed Rasch are almost identical). 

In order to interpret the two figures, it is helpful to have some idea of how much 
we would expect changes in reliability to impact upon predictive value. This can 
be calculated using the following simple formula based upon classical test theory:

Changes in reliability relative to the full-length test for the CAT-like GRM approach 
are compared to changes in predictive value in Figure 3. Each point in the chart 
represents an assessment. The jagged red line represents the expected change 
in predictive value based on the change in reliability using the formula above. 
The line is jagged as the change in predictive value depends not only upon 
the change in reliability but also upon the original values of predictive value 
and reliability. As can be seen, although there are exceptions, for the majority 
of assessments the change in predictive value is much worse than would be 
expected given the reported changes in reliability coefficients. 

If the analysis in Figure 3 is reproduced using simulation, then changes in 
predictive value are far closer to the predicted values based on the above 
formula. In other words, the failure of changes in estimated reliabilities to be 
reflected in changes in predictive value must relate to some form of lack of fit in 
the underlying IRT model. This will be discussed more later. A particularly striking 
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feature of Figure 3 is the weak relationship between changes in estimated 
reliability and changes in predictive value. A possible explanation for this is that, 
in reality, shortening a test (whether using a CAT or otherwise) not only alters 
reliability but also has some slight impact upon the construct being measured. 
The changes may either strengthen or weaken the relationship with external 
measures of achievement. This could lead to the noisy pattern we see in Figure 3.

 

Figure 3: Changes in reliability against changes in predictive value from 
applying a CAT-like approach based on the GRM. The red line indicates the 
expected change in predictive value based on a formula from classical test 
theory.

Table 1 shows the mean predictive value and (relevant) reliabilities across all 159 
assessments from each approach as well as the full-length assessments. Note the 
need to report results to three decimal places in order to properly reveal findings. 
The highlighting in Table 1 is used to group methods using the same model for  
item selection. 

Table 1 repeats many of the findings described above in a different way. For 
example, the gap in reliability between a CAT-like and fixed test based on the PCM 
(of 0.015) does not translate into any meaningful difference in average predictive 
values (0.001). Similarly, the gap between CAT-like and fixed tests where item 
selection is based on the GRM is also much smaller in terms of predictive value 
(0.003) than in terms of reliability (0.018).
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The final three columns attempt to convert the mean reliabilities and predictive 
values into equivalent test lengths relative to a full-length test. The columns based 
on reliabilities use the Spearman-Brown formula (Spearman, 1910) to convert 
the mean reliabilities into an equivalent test length compared to the full-length 
test. The use of the Spearman-Brown formula in this way effectively assumes 
that items are selected at random. Reassuringly, Table 1 shows that the mean 
reliabilities of half-length tests selected at random are indeed, according to the 
Spearman-Brown formula, equivalent to a randomly selected test of about half 
the length of the full test. The various optimal approaches to item selection for 
both CAT-like and fixed form tests perform better in terms of reliability. Despite 
only requiring half the items from the full-length test they achieve an average 
reliability equivalent to a randomly selected test of between 59 and 81 per cent of 
the length.

A similar process can be used to generate equivalent test lengths based on 
predictive value. First, the formula provided earlier is used to convert mean 
predictive values into equivalent reliabilities. These are then converted into 
equivalent test lengths using the Spearman-Brown formula. These test lengths 
are generally lower than those based on reliability coefficients—especially for the 
CAT-like tests. For example, while the reliability coefficients might lead us to believe 
that a half-length CAT (based on the GRM) was worth a randomly selected 
test of 81 per cent length, predictive value suggests it may only be as good as 
a randomly selected test of 69 per cent length. The only item selection method 
(besides random) where the equivalent relative length is just as high whether it is 
based on predictive value rather than reliability is the creation of a fixed form test 
based on the Rasch PCM. This may be because the rather conservative nature 
of this approach (essentially just picking items of about the right difficulty for the 
average student) has less scope for over-optimism about reliability. Also, being a 
fixed form test, it avoids the need to provide comparable scores for students that 
have taken different items and the associated additional reliance on assumptions 
from a given model.

Table 1: Reliabilities, predictive values and associated equivalent test lengths 
for various approaches to test construction.

Method

Scoring 

method

Mean across 159 assessments of…

Equivalent relative random length 

based on mean…

GRM 

reliability

PCM 

reliability

Predictive 

value

GRM 

reliability

PCM 

reliability

Predictive 

value

Full-length test Sum score 0.878 0.881 0.806 100% 100% 100%

CAT (GRM) IRT 0.853 - 0.785 81% - 69%

Fixed (GRM) Sum score 0.835 - 0.782 71% - 66%

CAT (Rasch PCM) IRT - 0.829 0.777 - 65% 62%

Fixed (Rasch PCM) Sum score - 0.814 0.776 - 59% 60%

Random Sum score 0.786 0.791 0.761 51% 51% 50%
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Model fits
As mentioned above, repeating the entire exercise using simulated rather than 
real data leads to much closer agreement between changes in reliability and 
changes in predictive value. As such, the fact that for our CAT-like approaches 
higher reliabilities hardly translate into higher predictive values must in some 
way mean that the model assumptions are not correct. This section discusses the 
various ways in which real data may not conform to an IRT model and the extent 
to which this is practically detectable.

The first thing to note is that, in terms of the indices of model fit typically used in 
IRT, our data did not reveal any obvious problems. Firstly, we consider the fit of 
the Rasch PCM model. The fit of each item in each data set to the Rasch model 
was evaluated using inlier-sensitive or information-weighted fit (INFIT) and 
outlier-sensitive fit (OUTFIT) (Linacre, 2002). Of the 4970 items in the analysis 
(across all data sets) only 70 (1.4 per cent) had values for these fit indices outside 
of the range between 0.5 and 1.5 which, according to Linacre (2002), is required 
to ensure items are “productive for measurement”. Only 11 items in total (0.2 per 
cent) had values of either INFIT or OUTFIT in excess of 2 indicating severe lack 
of fit. In other words, the vast majority of items displayed a level of fit with the 
Rasch model that would be deemed acceptable in most operational contexts. 
Nonetheless, even the relatively small amount of lack of fit in the data appeared 
to be enough so that apparent gains in reliability may not translate into 
improvements in predictive value.

We next consider the fit of the GRM models to the data. To check this, overall 
goodness of fit statistics (root mean square error of approximation RMSEA 
and Standardized Root Mean Square Residual SRMSR, see Maydeu-Olivares, 
2013) were calculated for each of the real data sets. Using these metrics, it was 
determined that 152 out of 159 of the data sets had values for RMSEA below the 
level of 0.05 which was recommended by Maydeu-Olivares (2013) as indicating 
adequate fit. The very largest value of RMSEA across all data sets was only 
slightly above this threshold at 0.07. Similarly, for 154 of 159 data sets, the value 
of SRMSR (an easier to understand metric that simply calculates how far pairwise 
item correlations in each data set are from their predicted values based on 
GRM on average) was below 0.05—a “substantively negligible amount of misfit” 
(Maydeu-Olivares, 2013, p.84). The largest value of SRMSR was also 0.07. In other 
words, by any normal operational definition, the GRM had a very good fit to all of 
the data sets in the analysis. 

Despite the relatively good fit of the data to the various IRT models described 
above, it is possible that even the small amounts of lack of fit were sufficient to 
mean that differences in reliability between different techniques did not translate 
into differences in predictive value. This indicates that the issues shown in the 
above analysis are not easily detectable simply by looking at the outputs of  
IRT analyses.

The above measures of model fit are internal in the sense that they look at 
the extent to which relationships between items within the same test adhere 
to expectations. However, they do not reflect all of the assumptions of the IRT 
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model. Perhaps the most crucial assumption of IRT in our context is the definition 
of measurement error. Usually, and certainly in nearly all simulation studies, 
measurement error is thought of as entirely random and, thus, unrelated to any 
external variables. However, this highly simplified conception of measurement 
error may not reflect reality. In particular, improvements in reliability indices 
via optimal item selection may not simply mean the removal of purely random 
measurement error. Rather, they may represent a change in emphasis regarding 
which specific pieces of knowledge are regarded as particularly pertinent to 
the construct and which are not. In other words, different approaches to item 
selection may lead to changes to the construct being assessed. Such changes 
may or may not be desirable dependent upon the purpose of the assessments. 
However, we need to remain aware of this potentially unintended consequence of 
switching to a CAT format and not assume that results from reliability coefficients 
and simulation studies tell the full story.

Discussion

In many ways, the analysis in this article supports the “useful” nature of IRT models 
and, in particular, their value developing CATs. On average, test scores derived 
from a simulated CAT process had higher predictive value than any single fixed 
test across students. Similarly, there were no instances where using a CAT and 
the associated algorithm for producing student scores led to markedly lower 
predictive value than using a random selection (and in most cases it was better). 
Thus, the article is not a criticism of the use of CATs in themselves. What is at stake 
here is the rather more technical, but nonetheless important, topic of whether 
we are able to accurately evaluate test quality based on the output from IRT 
analyses alone, or whether we risk deceiving ourselves that changes are leading 
to improved validity when in fact they do not. That is, whether a focus on reliability 
indices risks overselling the advantages of CATs.

The results of analysis show that, relative to fixed form tests, expected 
advantages in test quality (based on reliability indices) may not always necessarily 
translate into verifiably higher predictive values. Having said this, the differences 
between expectations based on reliability and actual predictive values were 
often quite small in real terms. 

It is worth admitting that very few people are likely to care about the levels of 
difference in reliability (or predictive value) described in this article. For example, 
how many people would really care about whether an assessment’s correlation 
with achievement more widely is 0.78 or 0.77? However, the point is that the results 
here form part of a wider body of work questioning whether computer adaptive 
testing will necessarily result in improved test quality in every context. For 
example, previous research (Veldkamp, 2013) has already demonstrated how the 
uncertainty in the estimated parameters of items used in a CAT may mean that 
they are less effective than thought. More generally, the issue is that in a CAT we 
are highly reliant on the accuracy of an IRT model for correctly scaling the scores 
of students who have taken different sets of items against one another. If the 
underlying IRT model is not correct in every respect, this may lead to some degree 
of error in this process.
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With these risks in mind, and in the context of high-stakes examinations covering 
a broad range of content such as GCSEs and A Levels, it is worth considering 
whether the potential benefits of computer adaptive testing are sufficient relative 
to the added difficulty in ensuring comparability between scores from different 
students. It is interesting to note that, in practice, CATs do not always lead to 
the level of improvement in reliability that might be hoped for. For example, 
ETS researcher Martha Stocking once quipped that real tests often had so 
many additional constraints such as ensuring content coverage and avoiding 
overexposure of individual items that most CATs were actually BATs (barely 
adaptive tests) (Chuah et al., 2006). Given the likely requirement to ensure that 
examinations continue to cover the majority of the taught curriculum for each 
student, this would be a particular risk in the context of qualifications such as 
GCSEs and A Levels.

In considering the value of CATs, it is worth noting that many of their benefits 
relate to the application of computer-based testing more generally rather 
than the adaptive nature of the tests. For example, van der Linden and Glas 
note advantages such as “the possibility for examinees to schedule tests at 
their convenience; tests are taken in a more comfortable setting and with fewer 
people around than in large scale paper-and-pencil administrations; electronic 
processing of test data and reporting of scores are faster; and wider ranges 
of questions and test content can be put to use” (van der Linden & Glas, 2010, 
page vi). All of these advantages are good reasons to explore the possibility of 
extending the use of computer-based testing in England. Chasing high reliability 
coefficients through CATs should very firmly stay in second place. 
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