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1. Introduction 

The goal of standard maintaining procedures at GCSE and A level is to produce a set of grade 
boundaries for the units/components of the examinations that will, when candidates’ scores on the 
units/components are aggregated, produce outcomes (grade distributions) that are comparable to 
those of previous years.  What is meant by ‘comparable’, and how it can be verified that 
comparability has been achieved, are of course complex issues that have attracted a great deal of 
research attention (e.g. Newton et al., 2007; Cambridge Assessment, 2011).  The regulator’s Code 
of Practice (Ofqual, 2011) makes it clear that the decisions on where to locate the grade 
boundaries should draw on a number of sources of evidence (Code of Practice section 6.13).  To 
our knowledge it has never been stated in writing what priority should be given to different sources 
of evidence, nor what the criterion for correctness is when setting the boundaries. 
 
A statistical criterion for correctness might be “The boundaries that would give this cohort of 
examinees the same distribution of grades on the current examination as on the previous (or a 
specified reference) examination”.  In practice we can never achieve the conditions that would 
allow a comparison with this criterion because different cohorts of examinees take different 
examinations.  But specifying a statistical criterion, even a hypothetical one, would immediately 
give a rationale for using (or prioritising) a statistical method for arriving at the grade boundaries. 
  
In recent years a statistical method known as the ‘comparable outcomes’ approach (see later) has 
become the dominant source of evidence used in setting grade boundaries.  The output of the 
comparable outcomes approach is a target or ‘putative’ grade distribution for the subset of 
examinees who have been successfully matched with a measure of prior attainment.  At A level 
this measure of prior attainment is the mean GCSE score; and at GCSE the measure is based on 
Key Stage 2 (KS2) performance1.  
 
As far as we are aware, the comparable outcomes method has never been formally linked to any 
of the established methods in the statistical test equating literature.  In this literature (e.g. Kolen & 
Brennan, 2004; Holland & Dorans, 2006), equating is defined as the task of discovering a 
transformation of the score scale on one test such that the transformed (equated) scores can be 
used (i.e. interpreted) interchangeably with those on another test. 
 
One reason for this lack of linking to the equating literature might be that GCSEs and A level 
examinations have been perceived as too different from the kind of ‘tests’ (such as US SATs) on 
which much of the equating theory has been developed.  There certainly are many salient 
differences: the type of items used; the number of components in an assessment; the amount of 
examinee choice of questions / components available; the use of letter grades for reporting – to 
name but a few.  Another reason might be that the introduction of the comparable outcomes 
approach occurred when most GCSEs and all A levels had a modular structure, meaning that there 
were no aggregate raw score scales to equate – grade boundaries derived at unit level determined 
the Uniform Mark Scale (UMS) scores which were then aggregated to a total UMS score from 
which the final grades were determined.  Alternatively, it may be that in fact the link with equating 
has been made before, but only in confidential internal reports to technical groups such as the 
Joint Council on Qualifications (JCQ) Standards and Advisory Group (STAG). 
 
We will take the view that most assessment experts and wider stakeholders in education in 
England have assumed that the exam boards are applying what Newton (2011) has dubbed the 
‘similar cohort adage’ when maintaining standards – namely the default position that if the cohort 
for an examination seems not to have changed much from a previous cohort then the grade 
distribution should not differ much either.  This relatively relaxed conception allows for statistical 
input to the setting of grade boundaries, but also for the consideration of other evidence too – such 
as expert judgment of the quality of work produced – which can form part of a rational argument for 
setting boundaries which cause the grade distributions to deviate from the default position. 

                                                
1
 When it was available, Key Stage 3 (KS3) performance was used since KS3 tests were taken only two years prior to 

GCSE as opposed to five years prior.  KS3 tests were phased out in 2008, so since 2011 KS2 has been used as the 
basis for the prior attainment measure. 
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However, the increased dominance of the comparable outcomes method, partly because of its 
suitability as a regulatory tool for ensuring (one form of) comparability both over time and across 
exam boards, arguably suggests that something closer to the statistical criterion stated above is 
being used as the de facto standard of correctness when setting boundaries.  This means that it is 
worthwhile to evaluate the comparable outcomes method as a statistical equating method.  
Furthermore, the fact that currently proposed reforms to both GCSE and A level (Ofqual, 2013) 
seem likely to produce a return to linear (as opposed to modular) exams means that in many cases 
there will be a clearly defined aggregate raw score scale that could be statistically equated to the 
aggregate raw score scale of a previous exam – in which case it may be worth investigating 
whether other statistical equating methods may be equally or more appropriate than the 
comparable outcomes method. 
 
In this report we first show how the comparable outcomes method is related to the frequency 
estimation equipercentile equating method for the non-equivalent groups anchor test (NEAT) data 
collection design.  We then show the results of using a number of different equating methods on a  
dataset taken from a linear Religious Education (RE) GCSE examination in 2009 and 2010, and 
compare them with each other and with the comparable outcomes method.  Finally we extend the 
comparison to a tiered Mathematics GCSE to investigate how closely the comparable outcomes 
method corresponds to statistical equating methods in different circumstances. 
 
 
2. Statistical equating methods 

Equating is deemed necessary because it is accepted that exams can differ in difficulty.  If they did 
not, then there would be no problem – a raw score of 23 out of 80 on one exam would mean the 
same as a score of 23 out of 80 on another exam.  If such exams were graded (like GCSEs and A 
levels) the same grade boundaries could be used every time.  Given the lack of transparency of 
some statistical equating methods and the difficult conceptual issues they raise even for simple 
tests it has been suggested that it may even be worth using fixed boundaries and putting up with 
the consequences for complex multifaceted assessments like GCSEs and A levels (Bramley, 
2013).  
 
This section gives a brief summary of how statistical equating is conceptualised, and a short 
description of some commonly used methods.  Many more details can be found in journal articles 
and the following books (Holland & Dorans, 2006; Kolen & Brennan 2004; von Davier, Holland & 
Thayer, 2004), from which the descriptions below are based. 
 
As mentioned above, the goal of equating is to find a function that transforms scores on one test 
such that they can be used interchangeably with those on another test.  Several conditions (or 
desirable properties of equating relationships) of varying stringency are often cited: 

– The two tests should be measuring the same thing (same construct); 
– The equating transformation should be symmetric (in other words the transformation of 

scores from test X to test Y should be the inverse of the transformation of scores from test 
Y to test X); 

– It should be a ‘matter of indifference’ to examinees whether they take test X or test Y; 
– Group invariance – the equating transformation should not depend on the group of 

examinees used to determine the equating relationship (for example, the function should be 
the same whether it is derived from a group of males or females). 

 
Several different data collection designs are considered in the equating literature.  The one most 
relevant to the statistical criterion above is the ‘single group design’ where the same group of 
examinees takes both tests.  However, in the context of GCSEs and A levels this design is never 
implemented2.  The data collection design that most closely resembles the GCSE and A level 
context is the non-equivalent groups anchor test (NEAT) design.  Group A takes test X, Group B 

                                                
2
 The subset of examinees resitting an examination cannot be considered to be of equivalent ability. 
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takes test Y, and both groups take the anchor test V.  The exam cohorts3 from two different years 
are considered to be non-equivalent (i.e. Groups A and B), rather than randomly equivalent 
samples from the same population.  But what is the anchor test?  There are no common items or 
common papers from one year to another4 which could be considered as an ‘internal anchor’.  Nor 
is there a common reference test taken by both cohorts5 that could be used as an ‘external 
anchor’.  However, there is some information about the relative ability of the two cohorts – their 
prior attainment.  At GCSE this is information from national testing at KS3 or KS2.  At A level it is 
the mean GCSE grade.  Neither of these indicators strictly (or arguably even loosely – see 
discussion) meets the criteria for consideration as an anchor test, first because each cohort will 
have taken a different KS2/3 test or different GCSEs; and second because these measures were 
taken a considerable time prior to the exams being equated.  However, we will show below that 
these scores are treated in a way analogous to an anchor test in the comparable outcomes 
method. 
 
Given a particular equating design, there is a choice in the type of mathematical function used to 
transform the scores from one test to another.  The most general is an equipercentile function 
which equates scores on test X and Y that are at the same percentile rank in a specified 
population.  Equipercentile functions are non-linear – the equated scores can be ‘compressed’ at 
some parts of the scale and ‘stretched’ at other parts.  A linear equating function is more restrictive.  
It equates scores on test X and Y that are at the same number of standard deviations from the 
mean in a specified population.  A given difference in raw scores will correspond to the same 
difference in equated scores at all parts of the scale.  Further choices can arise in whether and 
how to carry out any smoothing (either of the raw score distributions, or the equating function).  
These details are generally beyond the scope of this report, but see the section on kernel equating 
below for some more information. 
 
One way of equating data from the NEAT design uses the concept of a ‘synthetic population’.  The 
scores on the anchor test allow the estimation of the distribution of scores of Group B on test X and 
Group A on test Y (neither of these was observed).  Then an equating relationship can be derived 
for a synthetic population consisting of a weighted proportion of examinees from each group.  
Common choices for the weights are 0.5 (equal weight), relative size of group (i.e. giving more 
weight to the group with more examinees) or 1 and 0 (giving all the weight to one group).  
Equipercentile equating under this approach is known as the ‘frequency estimation’ method or 
‘post-stratification equating’ (PSE).  Linear equating under this approach is known as the Tucker 
method after its inventor, Ledyard Tucker. 
 
A different approach to equating with the same NEAT design is known as the ‘chained’ approach.  
Scores on test X are equated to the anchor test V in Group A, and scores on test Y are equated to 
the anchor test V in Group B.  Scores on tests X and Y that ‘map’ to the same score on test V are 
deemed equivalent.  These equatings can be either linear (‘chained linear’) or equipercentile 
(‘chained equipercentile’). 
 
The two approaches do not necessarily generate the same results.  There has been a lot of debate 
about which is better in which circumstances.  A distillation of this debate might be that chained 
methods are more robust when Groups A and B differ in ability, but the frequency estimation 
method is preferable when they are similar – but this is probably an oversimplification.  (See for 
example Livingston, Dorans & Wright, 1990; Holland, Sinharay, Von Davier & Han, 2008; Wang, 
Lee, Brennan & Kolen, 2008). 
 
Both these approaches are known as ‘observed score equating’.  Yet more equating methods 
exist, using the ‘true score’ concept from classical test theory, or the ‘underlying ability’ concept 
from item response theory.  These methods are not considered in this report. 
 
                                                
3
 Here ‘cohort’ simply means the candidates entering for a particular examination, not the entire age cohort. 

4
 For simplicity it is here assumed that the ‘equating’ is from the main examination session in June of one year to the 

next.  
5
 Ofqual (2013) mentions plans to develop a reference test to help with maintaining standards at GCSE. 
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A recent unified approach to observed score equating is the ‘kernel’ method developed at ETS 
(von Davier et al., 2004; von Davier, 2013). It was introduced by Holland and Thayer (1989), who 
described it as “a new and unified approach to test equating based on log-linear models for 
smoothing score distributions and on the kernel method of non-parametric density estimation”.  
The Kernel method has a number of advantages over other test equating methods (e.g. linear 
equating and equipercentile equating). In particular it provides explicit formulas for the standard 
errors of equating in all data collection designs. The book by von Davier et al. (ibid.) provides a 
very comprehensive description of the method, which is briefly summarised below. 
 
The first step of the Kernel method of test equating is called pre-smoothing. In this stage, a 
statistical model is fitted to the empirical frequency distribution obtained from the sample data. One 
way to perform the pre-smoothing is by fitting a polynomial log-linear model to the proportions 
obtained from the raw data (Holland & Thayer, 2000). It is possible to specify quite complicated 
log-linear models that cater for the particular features of the data that arises when conducting test 
equating. There might be some complexities in the data (such as spikes or gaps in the score 
distribution) that should be accounted for when conducting pre-smoothing. The way that this is 
carried out is by adding indicator variables in the log-linear model for the particular score values 
that exhibit irregularities. 
  
In selecting the log-linear model, it is recommended to use a criterion such as the Akaike 
Information Criterion (AIC) to compare models to each other, and then verify the suitability of the 
chosen model by assessing the conditional parameters. If the conditional parameters (e.g. means 
and variances) of the estimated distribution do not deviate too much from the conditional 
parameters of the observed distribution, then the estimated log-linear model is appropriate to use. 
If that is not the case then additional parameters may need to be added to accurately model the 
data. The aim of the pre-smoothing step is to find a model that describes the data ’well enough’ 
with as few parameters as possible.  
 
The next step of the Kernel method is called continuization. This step is necessary because it is 
generally impossible to map one discrete observe-score distribution to another preserving all 
percentile ranks. The method uses kernel smoothing in this stage. Smoothing is a statistical 
technique for estimating a function ����	using data observations, when no parametric model for the 
function is known. The estimated function is smooth, and the level of smoothness is set by a single 
parameter, called bandwidth. One of the simplest methods of smoothing, and the one used in this 
method of test equating, is a kernel smoother, which defines a set of weights	������	�
�� 	for each 
point x and defines 

�
��� ��������� .
�

�
�
 

A kernel smoother in practice represents the set of weights by describing the shape of the weight 
function via a density function with a scale parameter (the bandwidth) which adjusts the size and 
the form of the weights. It is common to refer to this shape function as a kernel. The kernel is a 
continuous, bounded, and symmetric real function which integrates to one. A natural candidate for 
the kernel is the standard Gaussian density. More details about smoothing and, in particular, about 
kernel smoothers can be found in Simonoff (1996).  
 
In the Kernel method of equating, the smoothed versions of the two population distributions are 
used in the equating function.  The more current proposal for implementing kernel equating (von 
Davier et al. (2004)) is to use bandwidths that vary according to the sample data, meaning that the 
kernel continuization function works like a smoother when pre-smoothed data are rough. The 
bandwidth selected for an extremely smooth distribution tends to be fairly small (e.g. 0.5 or 0.6), 
while the bandwidth of a distribution that retains only the mean and variance of the discrete 
distribution needs to be large (e.g. greater than 10 times the standard deviation of the distribution). 
 
The last step in the Kernel equating method is the evaluation of the equating transformation, via 
the computation of the standard error of equating (SEE, see below). The method provides a 
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general expression for the standard error that is derived using the δ-method6. The SEE is strongly 
affected by sample size and is always lower for smoothed data than for raw data, regardless of 
whether the pre-smoothing model was correct. 
 
According to von Davier et al. (2004) there are two major areas where the Kernel equating method 
can be viewed as an improvement on other methods. Firstly, it will often have smaller standard 
errors and is less subject to sampling variability. Thus, it is well suited to applications where 
sample sizes are small. Secondly, it is a consistent system that develops equating functions and 
their estimated standard errors in a similar way across all of the commonly used data collection 
designs.  Until recently, the requirement for specialist software was the main drawback to using the 
method, but with the release of the free R package kequate (Andersson, Branberg & Wiberg, 
2013), this is no longer an issue. 
 
Errors of equating can be systematic or random.  Random error arises when Groups A and B are 
considered to be random samples from some population, and the interest is in quantifying the 
variability of sample equating results from the population result.  In most equating studies the 
samples are not random, and when the context is GCSEs or A levels they are arguably not even 
samples but rather the complete data.  Nonetheless, since the equating error is reported for each 
raw score, there is still an intuitive appeal to the idea that there is more equating error in the parts 
of the score range where the data was sparse, and it is useful to be able to see the extent of that 
error. 
 
Systematic error can only be defined when the ‘correct’ result is known or defined in some way, 
which is usually only in the context of simulation studies, though there are exceptions (e.g. Holland 
et al. 2008).  There can be a trade-off between systematic and random error – for example a 
method with some systematic error (or bias) might still be preferable to a method with no 
systematic error if its random error was substantially lower.  Equating methods are usually 
evaluated with respect to both types of error. 
 
 
3. The comparable outcomes method 

Despite it having been used as a source of evidence in setting grade boundaries in live high-stakes 
examinations since 2001, for a long time there has been little or no publicly available 
documentation at a technical level giving the rationale or statistical details of how the comparable 
outcomes method works.  There is a description of the method in Benton & Lin (2011), but not at 
the level of explicitly stating assumptions and statistical formulas.  A more precise technical 
description presented as an algorithm with a worked example is given in Taylor (2013), but this 
document is not yet published. 
 
In practice the comparable outcomes method is used both to maintain standards within boards 
over time and to maintain comparability between boards at a given time.  In this paper we consider 
only its function of maintaining standards within boards over time, because here the conditions are 
most similar to those required for statistical equating (namely tests constructed to the same 
specification). Ignoring the special problems that can arise when syllabuses change, and taking a 
simplified version of the algorithm that is actually used7 we can see the parallels with the frequency 
estimation equipercentile equating method in Table 3.1 below. 
 
 
 

                                                
6
 The δ-method is a general approach for computing standard errors. It takes a function that is too complex for 

analytically computing the standard error, creates a linear approximation of that function, (using a Taylor series 
expansion) and then computes the standard error of the simpler linear function. Details about the method and how to 
apply it can be found, for example, in Oehlert (1992) or Davison (2003).  
7
 In practice the current test is related to a weighted average of more than one previous year’s test, and there is a 

statistical adjustment made to ‘allow’ for inflation of KS2 scores over time (see Taylor, 2013). 
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Table 3.1: Comparison of comparable outcomes method with the frequency estimation 
equipercentile equating method for a linear GCSE or A level. 
 

 Comparable Outcomes Frequency Estimation 

Group A and B 
Two different exam cohorts, A=current, 
B=previous 

Samples of test-takers from 
different populations 

Test X and Y 
Complete exams (multiple components) 
designed to same specification, 
X=current, Y=previous 

Test forms constructed to same 
specification 

Anchor test V Measure of prior attainment 
Score on concurrent set of items 
internal or external to X and Y 

Synthetic population 
weights 

All weight on current cohort (Group A) Analyst’s choice 

Explicit (publicly 
stated or 
acknowledged) 
assumptions 

Value-added relationship between prior 
attainment and exam score is the same 
for Groups A and B. 

For both X and Y, the conditional 
distribution of total score given 
each anchor score is the same in 
Groups A and B. 
The anchor test is representative 
of the tests to be equated in 
content and difficulty. 

Implicit assumptions 

1. It is only of interest to equate X to Y 
for the current cohort (A). 
2. Prior attainment scores are already 
equated. 
3. For Y, the conditional distribution of 
total score given each prior attainment 
score is the same in Groups A and B. 

Percentile and percentile rank 
functions satisfactorily continuize 
the discrete score distribution. 

Known quantities 

Cumulative grade distribution at each 
prior attainment score for Group B on 
test Y; distribution of prior attainment 
scores for Group A; cumulative 
distribution of scores of Group A on test 
X. 

Score distribution at each anchor 
test score for Group A on test X 
and Group B on test Y. 

Estimated quantities 
Cumulative grade distribution for Group 
A on test Y 

Score distribution for Group B on 
test X and Group A on test Y 
(unless one of the synthetic 
population weights is zero). 

Estimator* ������|�������
�

 �����|�������
�

 

Output 
‘Putative’ cumulative grade distribution 
for Group A on test X 

Equating function mapping raw 
scores on test X to test Y 
equivalents, sometimes with 
standard errors of equating at 
each test X score point. 

Use of output 

Find raw scores on test X that give 
closest cumulative percentage to 
putative distribution at key grade 
boundaries. 

Equated scores on test X can 
now be used as if they had come 
from test Y (e.g. reported on the 
same scale). 

Nature of mapping 
Integer key grade boundaries on test X 
to integer grade boundaries on test Y. 

Integer raw scores on test X 
mapped to non-integer equated 
scores on test Y scale. 

 
* where: 

– the summation is over anchor test scores / prior attainment measures v; 
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– �����|�� is the cumulative proportion at grade ỹ on test Y for a given prior attainment 
measure v in Group B; 

– ����|�� is the proportion at score y on test Y for a given anchor test score v in Group B; 
– ����� is the proportion at score v on the anchor test / prior attainment measure in Group A. 

 
The differences between the estimators used in these methods are: 
i) the cumulative frequency G8, rather than the frequency g is used for the comparable outcomes 
method (this makes no difference mathematically). 
ii) the test Y grade (here symbolised ỹ) rather than the test Y score y is used in the comparable 
outcomes method. 
 
Thus it can be seen that the two methods are structurally very similar, especially in the quantities 
that are estimated from the data.  The main difference is that the comparable outcomes method is 
only seeking to ‘equate’ at the points in the score distribution corresponding to the key grade 
boundaries, whereas equating methods map every score point.  At GCSE these are A, C and F, 
and from now on this report focuses on GCSE.  A more minor difference is that in the comparable 
outcomes method the grade boundaries are always set at integer points on the raw score scale – 
thus by definition the test X raw scores at A, C and F map to the test Y raw scores at A, C and F.  
In equating methods the definitions of the symmetric equating functions apply to continuous 
variables, so some kind of continuization procedure is necessary to make the discrete test scores 
continuous, and the equated scores are thus not necessarily (or even usually) integers. 
 
For the purposes of this report it was necessary to treat the comparable outcomes method as an 
equating method that could map every score on test X to an equivalent score on test Y.  This was 
done using the following steps: 

– The grade boundaries on test X at A, C and F were determined as the integer score points 
giving a cumulative percentage at that grade as close as possible to the ‘putative’ value. 

– The other arithmetically determined grade boundaries on test X were found by applying the 
usual rules for calculation of such boundaries (see Appendix 2 of Ofqual, 2011). 

– The mapping from test X to test Y at all other score points was obtained by linear 
interpolation (using zero and maximum marks as limits).  That is, if pX and qX represented 
adjacent grade boundaries on test X, and pY and qY represented the same adjacent grade 
boundaries on test Y, then an (integer) score s between pX and qX on test X would map to a 
(possibly non-integer) score on test Y of 

�� �
���  ���
��!  �!� " �#  �!� 

 
 
4. Data 

4.1 GCSE Religious Studies 

For the first analyses, a single dataset was compiled from the OCR’s linear GCSE in Religious 
Studies (syllabus code 1931, option A), from 2009 and 2010.  The aggregate raw score scale ran 
from 0 to 168.  Candidates were matched with their KS3 levels using the National Pupil Database 
(NPD).  Candidates who had been scaled (i.e. their marker had been scaled) were dropped, as 
were any candidates without a matched KS3 score.  A pseudo ‘anchor test score’ for use in the 
NEAT design equating methods was created from the average KS3 levels in Maths, English and 
Science as shown in Table 4.1 below. 
  

                                                
8
 By tradition these cumulative proportions count down from the top rather than the more usual practice of counting up 

from zero. 
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Table 4.1: Anchor test scores created from KS3 levels. 
 

Anchor score Mean KS3 level 
2009 Percent 

(N=23263) 

 
2010 Percent 

(N=26472) 

0 <3 0.11 0.17 

1 =3 0.74 0.90 

2 >3 to <3.5 0.46 0.48 

3 3.5 to <4 1.23 1.56 

4 =4 2.79 3.10 

5 >4 to < 4.5 3.84 3.89 

6 4.5 to <5 5.57 5.90 

7 =5 9.80 9.42 

8 >5 to < 5.5 11.76 11.25 

9 5.5 to <6 12.41 12.35 

10 =6 13.20 13.54 

11 >6 to < 6.5 11.84 12.71 

12 6.5 to <7 10.31 9.66 

13 =7 9.53 8.45 

14 >7 to <7.5 6.03 6.18 

15 >=7.5 0.40 0.43 

 
 
Table 4.2: Prior attainment categories used in comparable outcomes method. 
 

ks3decile Mean KS3 level 

2009 
Percent 

(N=23263) 

 
2010 

Percent 
(N=26472) 

Equivalent 
anchor test 

scores 

high 1 >=6.334 26.27 24.73 12-15 

2 6.001 to 6.334 11.84 12.71 11 

3 5.668 to <6.001 13.20 13.54 10 

4 5.334 to <5.668 12.41 12.35 9 

5 5.001 to <5.334 11.76 11.25 8 

6 4.668 to <5.001 9.80 9.42 7 

7 4.334 to <4.668 5.57 5.90 6 

8 4.001 to <4.334 3.84 3.89 5 

9 3.334 to <4.001 4.02 4.66 3-4 

 low 10 <3.334 1.31 1.54 0-2 
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Table 4.3: Descriptive statistics for RE total test scores and total anchor test scores. 
 

Year Variable N Mean Std Dev Minimum Maximum Correlation 

2009 
RE_tot 23263 108.00 30.95 0 168 

0.679 
anc_tot 23263 9.44 2.84 0 15 

2010 
RE_tot 26472 107.74 32.62 0 168 

0.683 
anc_tot 26472 9.35 2.89 0 15 

 
For the comparable outcomes method, the mean KS3 scores were assigned to the categories 
actually used in that method (taking the cut-off values from Table 9 of Pinot de Moira (2008)).  
There are 10 categories referred to as ‘deciles’ even though they are not strictly deciles.  Table 4.2 
shows the categories and their relative frequencies.  (Note that the ‘deciles’ would not be expected 
to contain equal proportions of candidates for a specific exam entry – the categorisation applies to 
the entire GCSE cohort). 
 
Table 4.3 shows that the 2010 RE cohort had slightly lower mean prior attainment, but also was 
slightly more spread out in terms of prior attainment than the 2009 cohort.  The 2010 and 2009 RE 
score distributions had similar means, but the 2010 distribution was more spread out (higher 
standard deviation). 
 
 
4.2 GCSE Maths 

The second set of analyses used OCR’s tiered linear GCSE in Mathematics (syllabus code J512) 
from 2009 and 2010.  The matching with KS3 and creation of pseudo-anchor test scores were 
carried out in the same way as for the RE.  This particular pair of years was chosen because from 
the actual grade boundaries it appeared that there had been a large change in the difficulty of the 
exam on both tiers, with the 2010 exam being harder (lower boundaries) than the 2009 exam.  We 
were also interested to compare the different equating methods in cohorts that were more 
restricted in range of ability than the RE cohort.  The aggregate Maths raw score scale on both 
tiers ran from 0 to 200, and the descriptive statistics are shown in Tables 4.4 and 4.5. 
 
Table 4.4: Descriptive statistics for Maths Foundation tier total test scores and total anchor test 
scores. 
 

Year Variable N Mean Std Dev Minimum Maximum Correlation 

2009 
Maths_tot 15878 118.64 38.84 0 194 

0.762 
anc_tot 15878 6.09 2.20 0 13 

2010 
Maths_tot 15976 106.93 36.20 0 190 

0.730 
anc_tot 15976 5.90 2.21 0 13 

 
 
Table 4.5: Descriptive statistics for Maths Higher tier total test scores and total anchor test scores. 
 

Year Variable N Mean Std Dev Minimum Maximum Correlation 

2009 
Maths_tot 11767 119.96 36.56 9 200 

0.735 
anc_tot 11767 10.74 1.96 1 15 

2010 
Maths_tot 11228 107.00 41.53 0 199 

0.754 
anc_tot 11228 10.46 2.04 1 15 
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Comparing tables 4.4 and 4.5 with Table 4.3 for RE it can be seen that each tier on the Maths 
exam did have a narrower range of prior attainment (smaller anchor test SD), and that in terms of 
overall level of ability the Maths Higher tier cohort was more similar to the RE cohort.  Despite the 
smaller ranges of ability, the correlations of Maths scores with anchor scores on both tiers were 
higher than for RE.  This could be explained if the Maths GCSE construct is more similar than the 
RE GCSE construct to whatever construct (general academic ability?) is represented by the 
combined KS3 score – which is plausible since the KS3 score comprises maths, English and 
science but not RE. Also of course it would seem likely that the GCSE RE scores would contain 
more error attributable to marker variance given the less objective nature of the mark schemes, 
which would tend to lower their correlation with any other variable.  However, Benton & Sutch 
(2013) found that GCSE RE grades correlated more highly with mean GCSE grade than GCSE 
maths grades did, which does not support this supposition. 
 
 
5. Equating results 

The equating analyses below were carried out using the open source statistical software R (R core 
team, 2013) with the packages equate (Albano, 2013) and, for the kernel methods, kequate 
(Andersson et al., 2013).  The graphs in this section showing the results of the equating have the 
2010 (test X) score on the x-axis, and the difference between the equated scores and the 2010 
scores on the y-axis.  Negative values mean that the 2010 test was easier at this score point (i.e. 
you would need to reduce scores to equate them to 2009) and vice versa. 
 
5.1 RE dataset 

Figure 1 below shows the results for the comparable outcomes method, the frequency estimation 
method with all weight on the 2010 population, the chained equipercentile method, and the (linear) 
Tucker method.  The vertical reference lines show the grade boundaries in 2010 according to the 
comparable outcomes method (not the actual boundaries). 
 

 
 
Figure 1: GCSE RE dataset, comparison of four equating methods. 
 
All four methods gave very similar results, especially in the range of marks from slightly below C to 
slightly above grade A.  As anticipated, the frequency estimation equipercentile method was 
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closest to the comparable outcomes method at the three key grade boundaries9.  The three non-
linear methods were closer to each other than to the linear Tucker method at lower scores, and 
there were noticeable differences between the two equipercentile methods at scores below grade 
C, with the frequency estimation method consistently producing a more positive equating 
adjustment – i.e. implying that the 2010 test was ‘harder’ with this equating method than with the 
chained method.  The large equating adjustments implied by the equipercentile methods at very 
low scores were caused by the scarcity of data at that part of the mark range and probably reflect 
equating error (see later graph). 
 
Figure 2 below shows the results for the frequency estimation method, the chained equipercentile 
method, and the kernel versions of the frequency estimation and chained equipercentile methods. 
 

 
 
Figure 2: GCSE RE dataset, comparison of equipercentile methods with kernel equivalents. 
 
It can be seen from Figure 2 how the kernel approach smoothed the respective results for chained 
equipercentile equating and frequency estimation equipercentile equating.  In particular, the kernel 
approach reduced the adjustments implied at low scores and in general gave a more aesthetically 
appealing result. 
 
Figure 3 below shows that two possible variations on the frequency estimation method had little 
practical significance for this dataset.  One variation was to use the relative proportions of 
candidates in the 2009 and 2010 cohorts as synthetic weights (as opposed to putting all the weight 
on the 2010 cohort).  The other was to define the ‘anchor test’ using exactly the same categories 
as used in the comparable outcomes method – i.e. with 10 categories as opposed to 16. 
 

                                                
9
 The chained equipercentile method was actually slightly closer at A, but because the comparable outcomes method by 

definition maps integer to integer at the key boundaries the frequency estimation method can be up to 0.5 marks different 
at these boundaries (though it can differ by more elsewhere). 
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Figure 3: GCSE RE dataset, comparison of three variants of the frequency estimation method.  
(Key: _wN uses the relative weights of the 2009 and 2010 cohort sizes, _w1 has all weight on 
2010, _KS3 uses the same categorisation as the KS3 deciles used in the comparable outcomes 
method). 
 
Varying the sample size 

To compare the robustness of the equating results from the different methods with respect to 
variations in sample size, two further datasets were created: a ‘medium’ dataset with around 1800 
candidates from each year, and a ‘small’ dataset with around 700 candidates from each year.  
Although these might in some contexts both be considered small datasets, the sizes were chosen 
to reflect Ofqual’s categorisation of entry sizes for ‘tolerances’ when using the comparable 
outcomes method: there is no set tolerance for N<=500; a tolerance of 3% for 500<N<=1000; a 
tolerance of 2% for 1000<N<=3000; and a tolerance of 1% for N>3000.  The tolerance refers to the 
acceptable deviation (at grades A and C for GCSE) between the cumulative percentage outcome 
for the matched candidates (i.e. those who could be matched with their prior attainment score) and 
the ‘putative’ percentage outcome generated by the comparable outcomes method for those 
candidates.  Deviations outside tolerance need to be justified to the regulator. 
 
The medium and small datasets were created by randomly sampling centres from each year and 
including all candidates from those centres, then varying the number of centres sampled and 
repeating until the resulting numbers were in the ranges that would attract a 2% and 3% tolerance 
respectively.  It was deemed better to sample centres rather than examinees given that from one 
year to another it is more realistic to assume that centres will start or stop following the syllabus 
and entering their candidates for the exam.  However, no consideration was given to the actual 
proportion of ‘churn’ from one year to the next so it is likely that the 2009 and 2010 sub-groups 
created by this process were more different than would occur normally in exams with cohorts of 
this size.  But equating results are supposed to be the same regardless of sub-population (the 
population invariance condition mentioned earlier) so it was still of interest to explore the extent to 
which equating results fluctuated. 
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Table 5.1: Descriptive statistics for the RE medium and small datasets. 
 

 Year N Mean Std Dev Min Max Correlation 

Medium 

2009 
RE_tot 1842 114.64 28.72 0 168 0.647 

anc_tot 1842 9.96 2.75 0 15  

2010 
RE_tot 1768 110.54 35.88 0 168 0.740 

anc_tot 1768 9.29 2.89 0 15  

Small 

2009 
RE_tot 671 110.70 30.26 10 167 0.666 

anc_tot 671 9.47 2.99 0 15  

2010 
RE_tot 714 99.68 33.75 13 166 0.695 

anc_tot 714 8.39 3.14 0 14  

 
 
Comparing Table 4.3 with Table 5.1 it can be seen that the 2009 and 2010 cohorts in the medium 
and small datasets were more different from each other than in the full dataset.  Figures 4 to 6 
show, respectively, the comparable outcomes, frequency estimation equipercentile and chained 
equipercentile equating results for the full, medium and small datasets.  The vertical reference lines 
are the same as in the earlier figures. 
 

 
 
Figure 4: GCSE RE datasets – comparison of comparable outcomes results. 
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Figure 5: GCSE RE datasets – comparison of frequency estimation equipercentile results. 
 
Figure 4 shows that with the comparable outcomes (CO) method, the medium dataset gave a 
result that was within 2 marks of the full dataset at grade C and within 1 mark at grade A.  In the 
2010 (full) dataset there were around 0.87% of candidates on each mark around the C boundary, 
and around 1.2% on each mark around the A boundary.  So both results would have been just 
within the allowable tolerance of 2%.  The small dataset gave a result that was within 4 marks at C 
and within 3 marks at A, both just outside the allowable tolerance of 3%.  The discrepancies were 
much larger at F and below – a reflection of the fact that there was very little data (even in the full 
dataset) at this part of the mark range, and hence little reliable information for statistical methods to 
distinguish the score scales at these points (see the graphs of standard errors of equating in 
Figures 11 to 14). 
 
The frequency estimation (FE) results in Figure 5 were similar to the CO results, particularly at the 
grade boundaries (as would be expected), giving the same result at grade A but with slightly larger 
differences among the three sample sizes at grade C presumably reflecting the different 
rounding/continuization elements in the methods. 
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Figure 6: GCSE RE datasets – comparison of chained equipercentile results. 
 
Interestingly, the differences among the three sample sizes were less at grades F and C with the 
chained equipercentile (Ch) method shown in Figure 6, and at grade A the small dataset gave the 
same result as the full dataset.  However there was a much larger discrepancy at grade A for the 
medium dataset, weakening the suggestion that the chained method might be generally preferable. 
 
Figures 7 and 8 show equivalent results to Figures 5 and 6, but using the kernel approach.  The 
smoothing made the results in the three sample sizes more similar to each other at grades F and 
C, but less so at grade A, where the smoothing for the chained method exacerbated the 
discrepancy for the medium dataset. 
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Figure 7: GCSE RE datasets – comparison of kernel frequency estimation results. 
 

 
 
Figure 8: GCSE RE datasets – comparison of kernel chained results. 
 
As a final illustration of the equating, Figures 9 and 10 show the comparison of the five equating 
methods for the medium and small datasets.   
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Figure 9: GCSE RE medium dataset – comparison of equating methods. 
 

 
 
Figure 10: GCSE RE small dataset – comparison of equating methods. 
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Table 5.2 below puts all the results together to show what the grade boundaries on the 2010 exam 
would have been, assuming each method was used to map 2010 raw scores to the 2009 scale and 
then applying the original 2009 grade boundaries.  Note that the comparable outcomes (CO) 
boundaries result from applying the usual interpolation rules10 for arithmetically determined 
boundaries, whereas the boundaries from the equating methods do not (that is, it is possible for the 
grade B boundary, for example, not to be half-way between grade A and C). 
 
Table 5.2: Summary of 2010 RE grade boundaries implied by each method. 
 

 Full dataset Medium dataset Small dataset 

Grade CO Ch FE KCh KFE CO Ch FE KCh KFE CO Ch FE KCh KFE 

G 21 24 22 23 22 3 11 12 16 14 17 16 20 17 16 

F 37 39 38 39 37 23 26 24 31 28 33 31 32 32 31 

E 53 54 53 55 53 43 45 38 47 44 49 53 46 49 48 

D 69 70 69 70 69 63 64 60 65 61 65 66 63 67 64 

C 87 88 88 87 87 85 88 85 86 83 83 91 82 88 83 

B 105 105 105 105 105 104 110 105 108 104 101 105 100 107 102 

A 123 123 123 124 123 124 128 124 130 126 120 123 120 125 120 

A* 141 143 142 142 142 144 149 148 150 149 139 142 139 141 139 

 
Key: CO=comparable outcomes, Ch=Chained equipercentile equating, FE=frequency estimation 
equipercentile equating with all weight on 2010 cohort, KCh=Kernel Ch, KFE=Kernel FE. 
 
Figures 11, 12 and 13 show the standard errors of equating (SEE) for the four equating methods in 
the full, medium and small datasets respectively.  The same pattern is observed in all three 
datasets – namely that the chained method had a larger error than the frequency estimation 
method, and the kernel (smoothed) methods had smaller errors than the unsmoothed methods.  
The advantage of the smoothing was particularly noticeable for the small dataset. Also the SEEs 
were considerably larger where there was less data – for example around the F boundary 
compared to the C and A boundaries. Figure 14 compares the frequency estimation SEE from the 
three datasets, showing the increase in error as the sample size reduced. 
 

                                                
10

 In 2009 the grade D boundary was set 1 mark below what the usual rules would imply (allowed by the procedures in 
place at the time in certain circumstances).  For consistency, the same principle was applied to all comparable outcomes 
results in Table 5.2. 
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Figure 11: GCSE RE full dataset, standard errors of equating for each method. 
 
 

 
 
Figure 12: GCSE RE medium dataset, standard errors of equating for each method. 
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Figure 13: GCSE RE small dataset, standard errors of equating for each method. 
 
 

 
 
Figure 14: GCSE RE datasets, comparison of standard errors from frequency estimation 
equipercentile method across sample sizes. 
 
 
 
 



 

24 
 

The Ofqual tolerances for deviations from the putative distribution generated by the comparable 
outcomes method are based on a nominal 75% confidence interval (Benton & Lin, 2011).  Table 
5.3 shows the 75% confidence interval for equated scores from the frequency estimation method at 
the A, C and F boundaries in the three datasets, and the corresponding change in cumulative 
percentage11 outcome in those datasets. 
 
Table 5.3: 75% confidence intervals around RE equated scores at the A, C and F boundaries (FE 
method). 
 
 Full  Medium  Small  
Grade 75% CI 

(marks) 
Cuml. % 75% CI Cuml. % 75% CI Cuml. % 

F ± 0.9 ± 0.2 ± 4.3 ± 0.7 ± 5.0 ± 0.9 
C ± 0.5 ± 0.4 ± 1.4 ± 1.1 ± 3.3 ± 2.7 
A ± 0.3 ± 0.3 ± 1.3 ± 1.5 ± 1.8 ± 2.1 
 
Table 5.3 shows that at A and C (where tolerances are applied) the medium and small datasets 
were within the ±2% and ±3% current limits respectively – suggesting that these values are 
reasonable.  However, it should be noted that the SEEs reported here were based on bootstrap 
estimates assuming simple random sampling.  The more complex approach of balanced replicated 
resampling (Benton & Lin, ibid.) attempts to take account of the hierarchical structure of the data 
and would be likely to produce larger SEEs.  It is also noteworthy that for the medium and small 
datasets at grade F, and for the small dataset at grade C, there would still be a fairly wide range of 
mark points (at least seven) on which to choose the boundary and remain within tolerance, with the 
potential for accumulated ‘benefit of the doubt’ decisions to allow grade inflation over a long period. 
 
Summary of findings from the RE datasets 

– The previous demonstration of the structural similarity between the comparable outcomes 
method and the frequency estimation equipercentile equating method with all weight on the 
current cohort suggested that the results from those two methods should have been very 
similar.  This was observed – in all three datasets they did not differ by more than one mark 
at the key grade boundaries of A, C and F.  They did differ by more than that elsewhere, 
because the method for deriving the arithmetically determined boundaries enforces a linear 
relationship between scores on each test for the comparable outcomes method, whereas 
this is not the case for the frequency estimation method. 

– With the full dataset (N≈25,000 per cohort) the results from all the equating methods were 
very similar, not differing by more than one mark at grades A and C and not differing by 
more than two marks at grade F. 

– With the full dataset there was a negligible difference between the equating results when 
the weight given to the 2010 cohort was the relative proportion of candidates (as opposed 
to 1).  There was also a negligible effect of changing the ‘anchor test’ categories so that 
they exactly matched the KS3 decile categories. 

– As expected from theory, the standard errors of equating were lower for the frequency 
estimation equipercentile method than for the chained equipercentile method, and were 
lower for the smoothed ‘kernel’ methods than for the corresponding unsmoothed methods. 

– Treating the comparable outcomes result from the full dataset as the ‘true’ result, in the 
medium and small datasets the chained equipercentile result was closer than the 
comparable outcomes result 3 times out of 6, further away 2 times out of 6 and equally far 
away once.  This suggests that it there may be circumstances where a chained method 
would be preferable.  In any case it might be prudent to use both methods and investigate 
further if there is a significant discrepancy between the results.  

– The ranges of fluctuation in the cumulative outcome at the boundaries (corresponding to 
75% confidence intervals around equated scores) were within the tolerance ranges applied 
by Ofqual for the respective sample sizes, suggesting that these tolerances are reasonable.  

                                                
11

 Calculated by taking the average of the percentage of the 2010 cohort on the boundary and one mark either side, and 
multiplying this by the confidence interval. 
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However, the standard errors of equating may have been underestimated by the method 
used in this study. 

– The range of equated scores within tolerance at the F boundary in the medium and small 
datasets and at the C boundary in the small dataset would still have allowed a lot of choice 
in where to set the boundary, suggesting that the practical utility of equating methods, 
including the comparable outcomes method, may not be that great for samples below 1,000 
where tolerances are allowed.  One practical way of dealing with this might be to allow the 
boundary-setting procedures to be changed in cases where there relatively many more 
candidates at the grade D boundary than the grade F boundary to allow grade D to be set 
by the comparable outcomes (or other equating) method and then extrapolating to lower 
grades with arithmetical rules. 

 
 
5.2 Maths datasets 

Figures 15 and 16 show the equating outcomes in the Foundation and Higher tier from the same 
five methods used with the RE.  Again it can be seen that, as expected, the comparable outcomes 
method was very close to the frequency estimation method and its smoothed (kernel) equivalent at 
the key grade boundaries (F and C on Foundation tier; D, C and A on Higher tier).  On the Higher 
tier the chained method and its smoothed equivalent were clearly different from the comparable 
outcomes method and frequency estimation methods, implying a smaller equating adjustment and 
hence underestimating the difference in difficulty (on the assumption that the comparable 
outcomes method gives the correct picture).  On the Foundation tier the results from all the 
methods were more similar and in fact the rules for linear interpolation of intermediate boundaries 
between grades C and F meant that the comparable outcomes result diverged from the frequency 
estimation results more than it did from the chained results.  Tables 5.4 and 5.5 are the equivalent 
for the maths tiers to Table 5.2 for the RE, showing the effective grade boundaries on 2010 that 
would have applied if 2010 scores had been equated to 2009 and then graded according to the 
2009 boundaries. 
 

 
 
Figure 15: GCSE Maths Foundation tier dataset, comparison of equating methods. 
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Figure 16: GCSE Maths Higher tier dataset, comparison of equating methods. 
 
  
Table 5.4: Summary of 2010 Foundation tier Maths boundaries implied by each method. 
 

Boundary CO Ch FE KCh KFE 

G 49 51 50 50 49 

F 69 70 69 70 69 

E 89 89 89 90 89 

D 110 110 109 110 109 

C 131 133 132 133 132 

 
 
Table 5.5: Summary of 2010 Higher tier Maths boundaries implied by each method. 
 

Boundary CO Ch FE KCh KFE 

U 0 0 0 0 0 

E 16 21 19 22 18 

D 31 34 32 35 31 

C 61 64 62 64 62 

B 97 98 97 99 97 

A 132 134 132 134 132 

A* 167 168 167 168 167 

Key: CO=comparable outcomes, Ch=Chained equipercentile equating, FE=frequency estimation 
equipercentile equating with all weight on 2010 cohort, KCh=Kernel Ch, KFE=Kernel FE. 
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Figures 17 and 18 show the standard errors of equating from the four methods.  As with the RE the 
errors were lower for the smoothed than the unsmoothed methods, and (with only a few 
exceptions) lower for the frequency estimation methods compared with their equivalent chained 
methods.  In practical terms the errors were roughly the same for all methods within the mark 
ranges covered by the key grade boundaries, with the possible exception of grade D on the Higher 
tier where the kernel frequency estimation method had a noticeably lower SEE. 
 

 
 
Figure 17: GCSE Maths Foundation tier dataset, comparison of SEE among equating methods. 
 

 
 
Figure 18: GCSE Maths Higher tier dataset, comparison of SEE among equating methods. 
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6. Discussion 

 
This paper has shown how the comparable outcomes method used by the English exam boards 
and regulator to maintain standards is conceptually very similar to one particular method from the 
statistical equating literature – namely the frequency estimation equipercentile equating method.  
The main difference is that the former is only applied at certain points of the score distribution – the 
‘key’ grade boundaries.  A more minor difference is that the comparable outcomes method is used 
to identify integer (whole number) values for the grade boundaries whereas in statistical equating 
the equating function maps integer scores on one test to decimal scores on another test.  This 
difference means that the comparable outcomes ‘result’ can differ from the frequency estimation 
result, but by no more than one mark (score point). 
 
In the five datasets analysed here, this was found to be the case – the comparable outcomes result 
and the frequency estimation result never differed by more than one mark at a key boundary.  This 
is despite the fact that there was the potential for more discrepancy since the frequency estimation 
method we tried used a more fine-grained (16-category) pseudo-anchor test than the comparable 
outcomes 10-category indicator of prior attainment. 
 
This similarity raises several questions for discussion: 

– If a statistical equating method is being used to set grade boundaries, does this imply that 
the boards and the regulator endorse a statistical definition of standard maintaining?  If they 
did, would this be desirable – and should it be the subject of a more public debate? 

– If a statistical equating method is being used to set grade boundaries should there be a 
more explicit evaluation of the plausibility of the various assumptions that must hold for the 
method to give an accurate result?  In cases where the assumptions can be shown not to 
hold, or to be implausible, what are the implications for how grade boundaries should be 
set? 

– Given that there is a large number of different statistical equating methods, each of which 
may be more effective in certain circumstances than others, should a single method be 
used across the board for all GCSEs and A levels? 

 
First of all it should be recognised that it is debatable whether the comparable outcomes method 
can be considered to be an equating method, despite its apparent similarity to the frequency 
estimation method.  For the purposes of this report, we only considered the method as a way of 
maintaining standards in the same examination year on year.  In this case, the ‘measuring the 
same construct’ condition for equating clearly applies to the tests being equated, if not to the 
anchor test.  However, in practice a second and no less important purpose of the comparable 
outcomes approach is to try to ensure comparability across examination boards. The prediction 
matrix (the distribution of exam grades conditional on prior attainment category) is based on an 
amalgamation of all boards’ results.  Although it is reasonable to assume that the boards’ exams in 
a given subject at a given level are broadly measuring the same thing, clearly they are not all 
designed to exactly the same specification so there is some blurring of this equating requirement. 
 
Furthermore, it is clear that the prior attainment score is very different from an actual anchor test of 
the kind used in equating, which is usually either an internal anchor (subset of items common to 
both tests) or an external anchor (separate test) but in both cases designed to be representative of 
the full tests in both content and difficulty, and taken at the same time as the tests to be equated 
(see Kolen & Brennan, 2004, p19 and p271-272;  Sinharay & Holland, 2007).  The prior attainment 
score, in stark contrast, is based on the aggregate of scores on tests in different subjects taken two 
or more years previously, and these are not the same tests for the two cohorts whose tests are to 
be equated.  There is therefore a strong assumption that the level-setting process on the KS3 or 
KS2 test (for GCSE standard maintaining), and the grade boundary setting process on GCSE (for 
A level standard maintaining) has in fact maintained standards.  Alternatively, if prior attainment 
categories are created from KS2/KS3/mean GCSE results as true deciles (or other quantiles) then 
there is the assumption that at the population level, prior attainment does not change from year to 
year. 
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Newton (2010) bemoaned the tendency for statistical equating to be idolised and every other 
‘weaker’ form of linking evaluated in terms of how well it lives up to the equating ideal (“deficit 
rhetoric” was Newton’s phrase).  Newton’s framework for ‘thinking about linking’ distinguished 
three perspectives: i) phenomenal, where comparability is defined in terms of the outcomes from 
learning that equally graded students have in common; ii) causal, where comparability is defined in 
terms of antecedent factors like prior attainment, effort, teaching quality; and iii) predictive, where 
comparability is defined in terms of potential – the likelihood of future success that students with 
the same grade have in common.  Use of the framework clarifies the kinds of inferences that can 
be drawn about students with the same grade.  In this framework, the use of prior attainment as 
the (sole) linking construct would be a ‘specific causes- causal’ definition of comparability (Newton 
ibid.).  However, the price to pay for using this definition in the GCSE and A level context is that it 
would only seem to support inferences of the kind ‘Students with a grade A this year have (on 
average) the same level of prior attainment as students with a grade A last year (or from a different 
board).’  We are not sure that this is the definition of comparability that the wider public adopts 
when making inferences from exam grades.  We would suggest that in fact something closer to our 
statistical definition in the introduction is what the majority of stakeholders are applying when they 
interpret grades, even if not in explicitly statistical terms.  That is, there is the understanding that a 
student with the same level of attainment should get the same grade on different exams in the 
same subject – either over time within board or across boards.  If this is right then it is worth 
evaluating the comparable outcomes method as though it were a statistical equating method. 
 
Given the need for transparency in the system, there is probably an a priori case for using 
observed score equating methods, rather than IRT or true score methods.  But perhaps some 
consideration should be given to whether the frequency estimation method (i.e. the comparable 
outcomes method) is always preferable to the chained method.  For example, Kolen & Brennan 
(2004, p298) recommend frequency estimation when the two groups being equated are of similar 
ability.  This is most likely to happen when the cohorts are stable (i.e. no large change in entry size, 
relatively little ‘flux’ from schools switching boards).  Guo, Oh & Eignor (2013) also showed that if 
the two tests being equated were of similar difficulty and the (observable) conditional distributions 
of test score given anchor score are the same for both groups then the frequency estimation 
assumptions are met and the method is appropriate (although arguably not that necessary the 
more similar in difficulty the tests are!).  As noted previously, some research comparing equating 
methods has found that the chained method has less bias than the frequency estimation method 
when there are larger group differences, so in circumstances where there appears to have been a 
relatively large change in prior attainment it may be worth checking whether a chained method 
gives a different result and if so, widening the allowable tolerance in the direction of the chained 
result.  Note that it would be fairly easy to modify the comparable outcomes method so that it used 
chained equating to generate a ‘putative’ grade distribution and hence identify scores 
corresponding to the key grade boundaries. 
 
However, chained equating may be less acceptable in principle because it so clearly requires that 
the anchor and the tests being equated are measuring the same thing, which is implausible in this 
context. Using the chained method would produce changes in grade distribution in line with 
changes in prior attainment regardless of the correlation between prior attainment and exam 
scores, whereas the frequency estimation method produces changes in the grade distribution in 
line with changes in prior attainment to the extent that prior attainment and exam scores are 
correlated. The use of prior attainment may be more easily justifiable as a ‘covariate’ used to adjust 
for systematic differences in ability (e.g. Bränberg & Wiberg, 2011) – this is an area for further 
investigation. 
 
The likely return to linear examinations at GCSE and A level will also make it possible to use 
smoothing methods12 which can reduce random equating error – von Davier (2013, p612) suggests 
that this can be effective in samples smaller than 20,000, which would include most A levels and 

                                                
12

 Smoothing requires a bivariate distribution of test and anchor scores to smooth and as noted earlier, there is no single 
aggregate raw score distribution for a modular examination. 
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many GCSEs.  The kernel approach, which integrates pre-smoothing of the distributions and 
optimising the continuisation of the discrete raw scores, would seem to be the most principled way 
to do this. However, this would only work for equating within boards across years. 
 
The return to linear examinations will also allow scope for reconsidering the rules for the 
calculation of intermediate boundaries.  Since it will be possible in principle to equate the full raw 
score scales, it would be possible to set the intermediate boundaries at their nearest equated score 
point rather than by linear interpolation between the key boundaries. With the current approach the 
standard maintaining method is more accurate for examinees at the key boundaries than 
elsewhere in the distribution, which could possibly be seen as unfair. 
 
In summary, we have shown that, when considered as a method for maintaining standards within 
boards over time, the comparable outcomes method is equivalent to the frequency estimation 
equipercentile equating method, applied at a small number of points in the score range 
corresponding to the key grade boundaries.  The following suggestions are intended as starting 
points for discussion about how within-board standard maintaining could be done for reformed 
GCSEs and A levels, on the assumption that they will be mostly linear examinations producing a 
single aggregate raw score scale. 
 
1. Acknowledge that the comparable outcomes method is best suited to a statistical definition of 
standard maintaining and that prior attainment is being used in effect as an anchor test.  Use the 
opportunities of the return to linear exams to explore other statistical equating methods treating 
prior attainment as an anchor test, in particular investigating whether there would be benefit in 
smoothing the score distributions, and equating whole mark scales rather than just the key 
boundary points.  Use the outcomes as an explicitly identified ‘statistical equating result’. 
 
2. Aim to construct examinations with aggregate raw score scales that have grade boundaries at 
desirable points (not too high/low/bunched etc.)  Modify subsequent examinations in the light of 
information from the initial ones to move towards these desirable points (target boundaries).  Use 
expert judgment and statistical data from similar items in previous sessions to estimate, before the 
exam has been taken, any departures from default target grade boundary locations on newly 
constructed exams.  Use the outcomes as an explicitly identified ‘test construction result’. 
 
3.  Use expert judgment of the quality of candidates’ scripts to link mark scales from the two 
exams, for example by the rank-ordering method (Bramley, 2005) or to link boundary points using 
the blind comparative direct judgment method described in Benton (2014).  Use the outcomes as 
an explicitly identified ‘perceived quality of work’ result. 
 
4. Combine the results either according to a weighting formula specified in advance – in other 
words so that the final result is determined once the results in steps 1 to 3 are known; or by a 
process of discussion and debate, producing a rationale for the weight given to each result in steps 
1 to 3. 
 
A scheme like this would make it more clear to the stakeholders what evidence was informing the 
standard-maintaining processes, and what weight was being given to it.  It would not of course in 
itself help resolve disagreements in opinion about what evidence should be given more weight but 
might lead to more productive discussions and ultimately a system that is more widely trusted. 
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