GCSE ## **Physics** Session: 1994 June Type: Mark scheme Code: 1700 #### **GCSE EXAMINATIONS SUMMER 1994** MARKING SCHEME for **PHYSICS PAPER 2 (1700/2)** #### Notes: - 1. This Marking Scheme is a working document prepared for use by Examiners, all of whom are required to attend a Standardisation meeting to ensure that the Marking Scheme is consistently interpreted and applied in the marking of candidates' scripts. - 2. MEG will not enter into any discussion or correspondence about any Marking Scheme. It is acknowledged that there may be different views about some matters of emphasis or detail of a Marking Scheme. It is also recognised that, without the benefit of attendance at a Standardisation meeting, there may be different interpretations of the application of a Marking Scheme. ## MIDLAND EXAMINING GROUP ## General Certificate of Secondary Education | Scie | nce: P | HYSICS | 20 JUNE 1994 | |------|---------|---|--------------| | | | PAPER 2 | | | | | | | | Ques | stion 1 | | | | (a) | AB - | acceleration / increase in velocity / increase in speed / speeding up / getting faster (Allow decreasing acceleration) | [1] | | | BC - | decreasing acceleration / slower acceleration | [1] | | | CD - | constant speed / terminal velocity / steady speed / maximum speed / speed of 50 m/s / stopped accelerating | [1] | | | DE - | deceleration / slowing down / decrease in speed | [1] | | (b) | weigh | nt / gravitational (force) / gravity / pull of Earth | [1] | | (c) | (air re | esistance / air friction / wind resistance
esistance) increases / air resistance equals weight /
sistance equals gravity / balanced forces / forces | [1] | | (d) | becau | / after 18 s use she is slowing down / decelerating / speed decreases and mark is dependent on first mark) | [1] | | Que | stion 2 | | | | (a) | ` | ize of) the force | [1] | | | • | perpendicular) distance from the pivot (nut) / position reabouts) (of force) on spanner / the direction of the force | [1] | | (b) | (i) | Two arrows drawn through the hands correct directions shown (condone curved arrows) | | [1]
[1] | |-----|---------|--|------------------|------------| | | (ii) | larger (diameter) wheel | | [1] | | Que | stion 3 | | | | | (a) | (i) | work done = 250×0.4
= 100 , J (allow Nm or j) | | [1],[1] | | | (ii) | power = 33.3 W (accept 33 W) | | [3] | | | | Award the marks indicated for the following | answers: | | | | | power = 2000 J/min | [3] | | | | | power = 1.67 W | [2] | | | | | $power = (100 \times 20)/1$
= 2000 | [2] | | | | | $power = (100 \times 20)/1$
= 2000 W or J | [2] | | | | | power = 2000 (no working) | [1] | | | | | power = 2000 W or J (no working) | [1] | | | (b) | (i) | Between A and B: | | | | | | Hooke's law obeyed / extension (directly) pr
to load / spring will go back to original length | oportional
th | [1] | | | | Between B and C: | | | | | | spring is beyond its elastic limit (limit of proportionality) / extension is no longer (dir proportional to load / spring won't go back to | o original | | | | | length / Hooke's law not obeyed / permanent
becomes easier to stretch | t deformation / | [1] | | | (ii) | 40 (N) | | [1] | | | (iii) | 200 (N) OR 5 x answer to (b) (ii) | | [1] | ## **Question 4** | (a) | (i) | conduction | [1] | |------|---------|--|-------------------| | | (ii) | hot water becomes less dense / hot water expands
hot water rises / cold water falls
water circulates / convection occurs / currents set up
(for writing about air allow a maximum of 2 marks) | [1]
[1]
[1] | | (b) | (i) | infra-red / (electromagnetic) radiation | [1] | | | (ii) | conduction | [1] | | Ques | stion 5 | | | | (a) | sound | d (waves) / longitudinal waves | [1] | | | | gh frequency / high pitch / short wavelength / above our
ng / above 20 000 Hz | [1] | | (b) | lt is r | reflected (rebounds or bounces off), from the sea bed. | [1],[1] | | (c) | 0.5 (| s) | [1] | | (d) | 0.2 (| s) | [1] | | | (For | (c) as 5 s and (d) as 2 s, allow 1 mark) | | | (e) | dista | nce = 1500 x 0.2
= 300, m | [1],[1] | | (f) | | (m) OR half of answer in (e) | [1] | | | stion 6 | | (11 | | (a) | (i) | voltmeter | [1] | | | (ii) | correct symbol used shown in parallel with wire | [1]
[1] | | | (iii) | resistance = $1.5 / 0.5$
= 3.0 , Ω (accept 3, Ω) | [1]
[1],[1] | | | (iv) | 60 cm length - 6.0 Ω
15 cm length - 1.5 Ω / $\frac{1}{4}$ of previous answer | [1]
[1] | | | (v) | resistance doubles as length of wire doubles / resistance is (directly) proportional to length / resistance changes by 1 ohm for each 10 cm | [2] | |--------|--|---|-------------------| | | | (Allow I mark for resistance increases with length) | | | (b) | (resista | ance) increases | [1] | | | | ndient increases / evidence of an actual calculation of two
nce values/ graph gets steeper / graph curves upwards | [1] | | Questi | ion 7 | | | | (a) | Earth vineutral | 1 wire - blue | [1]
[1]
[1] | | (b) | so that it connects first when put into a socket / to open the shutters (flaps) (on the live/neutral) | | | | (c) | Allow | any two of the following: | | | | a suita | t wires go to each terminal / wires in correct positions; ble fuse has been fitted; rews are tight / the wires are secure; ble (grip) is tight; | | | | no bar | we wires are visible / no wires touch each other / yed wires | [1],[1] | | (d) | | nelts / fuse breaks / fuse blows (up) / fuses | [1] | | | large current flows / current flows to Earth / low resistance to Earth disconnects live circuit / disconnects supply/ switches (it / current / live / circuit / supply / heater) off | | | | Quest | ion 8 | | | | (a) | cone moves / cone vibrates and then stops | | [1] | | (b) | (i) | an a.c. changes (reverses) direction (continually)/a d.c. flows in one direction | [1] | | | (ii) | the cone vibrates / the cone moves backwards and forwards | Ш | | | (iii) | continuous tone / continuous sound / high pitch / whine whistle / hum | s [1] | ·, , + | (c) | A quiet(er) note / low volume / low amplitude soft(er) note | [1] | |-------------|--|---------| | | of low(er) pitch /low frequency / deep(er) pitch | [1] | | | long wavelength / low(er) note. | (') | | Ques | tion 9 | | | (a) | atoms / group of atoms / molecules / particles / atoms | [1] | | | which have lost (gained) an electron / charged | [1] | | | (second mark dependent on first mark) | | | (b) | greater ionisation (produced) / shorter range in air / alpha | (11 | | | particles cannot escape | [1] | | | (allow converse points about gamma rays) | | | (c) | Positive ions move to Y, negative ions move to X./ | [1],[1] | | , | Positive ions move to negative plate, negative ions to | | | | positive plate./ Positive ions move up, negative ions move | | | | down. | | | | (allow 1 mark for opposite but incorrect directions) | | | (d) | battery going flat / source decaying / dust / steam / sprays / | . [1] | | ` ' | battery runs out of energy (power) | | | (e) | so that the source does not need changing regularly / so that | [1] | | \ -/ | it works for a long time / to prevent the alarm sounding as the | | | | source decays / so that it does not stop producing ions | | | (f) | smoke rises / hot air rises | 11 | | (., | | | | (g) | (No) - alpha particles have a short range / particles don't penetrate the case / alpha particles cannot penetrate the skin | [1] | | | penetrate the case / alpha particles cannot penetrate the skin | 1.1 | | Que | stion 10 | | | (a) | (i) (logic level) 1 / high / 5 V | [1] | | | (ii) (logic level) 0 / low / 0 V | [1] | | | | [1] | | (b) | $\mathbf{Q} \cdot 1$ | 1.1 | | | door LDR | | | | open dark | | | | open light | | | | closed dark | | | | one pair of the above scores 2 | | | | two pairs of the above score 3 | [3] | #### Special cases: "LDR is in dark" but no other answer, scores 1 mark "LDR is in dark" but no other answer, scores 1 mark "door is open or LDR is in the dark" scores 3 marks Q is 0 and "door is closed and LDR in the light" scores 2 #### The Awarding of Marks for Spelling, Punctuation and Grammar | Syllabus | 1700/2 | |----------|--------| | |
L | Marks are to be awarded for the use of accurate spelling, punctuation and grammar according to the following criteria: | | | Marks | |-----------------------------------|---|-------| | Below
Threshold
Performance | | Ü | | Threshold
Performance | Candidates spell, punctuate and use the rules of grammar with reasonable accuracy; they use a limited range of specialist terms appropriately. | | | Intermediate
Performance | Candidates spell, punctuate and use the rules of grammar with considerable accuracy; they use a good range of specialist terms with facility. | 2-3 | | High
Performance | Candidates spell, punctuate and use the rules of grammar with
almost faultless accuracy, deploying a range of grammatical
constructions; they use a wide range of specialist terms adeptly
and with precision. | 4 | The marks will be awarded on an impression basis and will reflect the candidate's performance in the paper as a whole. ### **GCSE EXAMINATIONS SUMMER 1994** MARKING SCHEME for PHYSICS PAPER 3 (1700/3) #### Notes: - 1. This Marking Scheme is a working document prepared for use by Examiners, all of whom are required to attend a Standardisation meeting to ensure that the Marking Scheme is consistently interpreted and applied in the marking of candidates' scripts. - 2. MEG will not enter into any discussion or correspondence about any Marking Scheme. It is acknowledged that there may be different views about some matters of emphasis or detail of a Marking Scheme. It is also recognised that, without the benefit of attendance at a Standardisation meeting, there may be different interpretations of the application of a Marking Scheme. #### Physics 1700/3 Paper 3 Summer 1994 #### Mark Scheme (as modified after the Examiners' meeting) Alternative answers for the same mark are separated by / . Other answers not suggested here may be equally valid and should be given the marks. The words the candidates use may be quite different from those given here but should convey the same sense. Reward correct physics which answers the question. #### Numerical problems The scheme shows how marks can be scored for partially correct answers. Correct answers with no working shown gain full marks. In all problems allow 'error carried forward'; a candidate who makes a mistake in the first line does not necessarily score 0 for the whole problem. Credit should be given for correct later working, even if the wrong numbers are used because of the earlier error. Don't penalise the same error twice in the same problem. Units: the last mark in numerical problems is for the correct (or error carried forward) number plus unit. Units are not expected in the working except in the final answer. Equivalent answers to those in the scheme are permitted (e.g. $2\,$ MW, $2000\,$ kW, or $2\,\times\,10^6\,$ W) Significant figures: subtract maximum of 1 mark per paper for final answers given to 4 or more significant figures. - (b) to get the image the right way up / image is upside-down / image is inverted - (c) lens is closer to slide than to screen / sensible reference to geometry of ray diagram 1 [5] 1 2 (a) force = 3 N(b) pressure causes upwards force on rod / molecules bombarding base of rod force (pressure) increases with depth (c) (i) 5.4 N (ii) x/5.4 = 15/3x = 27 cm (If 2.4 N used instead of 3 N then answer of 33.8 cm scores 1) pressure (exerted by water) is proportional to depth / pressure increases uniformly with depth [7] force exerted by engine decreases / Y decreases 3 (a) resistive force on train increases / X increases (difference between Y and X decreases scores 2) (b) resultant force on train = (100 - 12) kN = 88 kN 2 $(allow \pm 1 kN)$ a = F/m $a = 88 \times 10^3$ 400×10^{3} $a = 0.22 \text{ m/s}^2$ $(a = 0.25 \text{ m/s}^2; a = 0.03 \text{ m/s}^2; a = 0.28 \text{ m/s}^2 \text{ max. 3 marks})$ (c) 50 m/sresultant force is then zero / forces are balanced / forces X and Y are equal force = 40 kN(d) power = force x distance moved (or = force x velocity) time taken power = $40 \text{ kN} \times 50 \text{ m/s}$ [13] = 2000 kW(a) any 4 points: 4 at P waves arrive in step / in phase / crest on crest at P constructive interference occurs / reinforcement 0.8 m = half wavelength / path difference = half wavelength waves reaching Q are out of step / out of phase / crest on trough at Q destructive interference occurs / cancellation (some points may be made diagramatically) (b) (i) wavelength halved / 0.8 m (ii) wave of same amplitude as X drawn period on screen halved magnetic field in coil is changing / 5 (a) (i) magnetic field is cutting coil cuurent (or voltage or e.m.f.) induced / electromagnetic induction occurs shape shows two cycles with constant amplitude (+ve and -ve) (ii) and period (+ 2 small squares) (other details of shape are not being tested) (b) (i) larger current (or power or voltage) gives brighter bulb 1 magnetic field changes (cut) more rapidly increased frequency of alternation / increased heat production in the coil 1 extra work (or energy or power) (ii)1 to light the lamp 1) (OR extra force has to be exerted on pedals frictional force between tyre and cycle wheel 1) current in dynamo causes (electromagnetic) forces 1) which oppose the change which causes them / which [9] 1) requires extra force on pedals 1 buzzer stays on 6 (a) to reset latch / to stop buzzer sounding / 1 to make B logic 1 resistance of copper too low to prevent a short circuit when P is pressed / logic level would not change when P is pressed / logic would remain 0 (c) LDR resistance = 400 ohm and R = $R = 2 \times 400$ or I =4 400 R = 200 ohmincrease R / replace LDR with one of lower resistance 2 [9] (d) (change R / change LDR scores 1) 2 7 $power = 240 \times 240$ 36 1 = 1600 Wresistance proportional to 1/area (b) area is 4 times smaller 144 ohm (72 ohm or 9 ohm scores max. 1 mark; resistance quadrupled scores loses either or both the first two marks but can gain later marks by error carried forward) any 5 points: (b) (i) 8 molecules moving in all directions / random motion heating the gas increases the speed (or energy) of molecules molecules hit the wall harder molecules hit the wall more often increased pressure (or force) pushes the piston up fewer collisions when equilibrium attained (ii) propane liquefies propane becomes solid / propane freezes piston moves down a very long way / atmospheric pressure pushes piston down / pressure inside falls / piston becomes fixed when propane solid [15] | (a) (i) | like charges repel / nucleus repels alpha alpha particle and nucleus positively charged | 1
1 | | |---------|--|----------------|------| | (ii) | it returns the way it came
(could be shown by a diagram) | 1 | | | (iii) | nucleus very small
large distances between nuclei / lots of empty sp | 1
Dace | | | | most alphas too far from nucleus to experience mu | ich ford
1 | се | | (b) (i) | any two: | , | | | | nuclear accidents nuclear reactors discharges from nuclear power stations or Sellafi nuclear weapons testing industrial use TV tubes (or other cathode ray tubes) occupational use physics lessons (old) luminous watches smoke alarms | eld
2 | | | | | | | | (ii) | radon breathed in / radon enters lungs
alpha particles cause lots on ionisation
risk of radiation-induced disease / risk of cance | 1
1
er 1 | | | (iv) | after one half life 50 % left
after six half lives 1.56 % left / after 7 < 1 % | 1
left | | | | 6.5 half lives (allow from 6.3 to 7 half lives) | 1 | | | | time = 6.5 x 56 = 364 s
(allow 350 s to 392 s; allow 6 min) | 1 | | | | (Correct answer with no working or reasoning scor | res 2) | | | | $ (OR \left(\frac{1}{2}\right)^n = 0.01 $ | 2) | | | | (n = 6.64
(time = 372 s | 1)
1) | [15] | ## The Awarding of Marks for Spelling, Punctuation and Grammar | Syllabus | 1703/3 | |----------|-------------------| | | . , , , , , , , , | Marks are to be awarded for the use of accurate spelling, punctuation and grammar according to the following criteria: | | | Marks | |-----------------------------------|--|-------| | Below
Threshold
Performance | | C | | Threshold
Performance | Candidates spell, punctuate and use the rules of grammar with reasonable accuracy; they use a limited range of specialist terms appropriately. | 1 | | Intermediate
Performance | Candidates spell, punctuate and use the rules of grammar with considerable accuracy; they use a good range of specialist terms with facility. | 2-3 | | High
Performance | Candidates spell, punctuate and use the rules of grammar with almost faultless accuracy, deploying a range of grammatical constructions; they use a wide range of specialist terms adeptly and with precision. | 4 | The marks will be awarded on an impression basis and will reflect the candidate's performance in the paper as a whole.