


# GCSE

## Science

Session:2000 JuneType:Question paperCode:1794

© UCLES

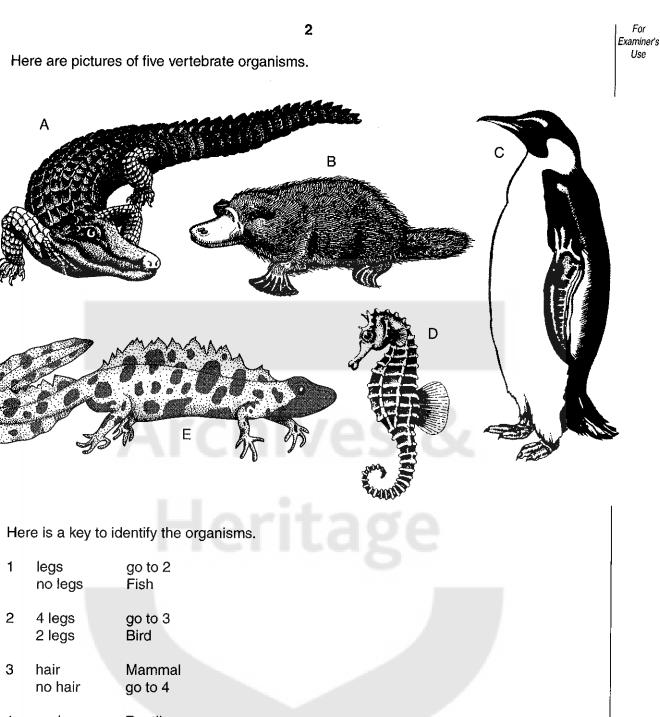


|      | General Certificate of Secondary Education<br>former Midland Examining Group syllabus     |             |                                          |                            |  |
|------|-------------------------------------------------------------------------------------------|-------------|------------------------------------------|----------------------------|--|
|      | SCIENCE: DOUBLE AWARD<br>SCIENCE: BIOLOGY<br>SCIENCE: BIOLOGY (NUFFIEL<br>FOUNDATION TIER |             | PAPER 1<br>PAPER 1<br><b>.D)</b> PAPER 1 | 1794/1<br>1780/1<br>1785/1 |  |
|      | Tuesday                                                                                   | 6 JUNE 2000 | Afternoon                                | 1 hour 30 minutes          |  |
|      | Candidates ans<br>Additional mate<br>Pencil,<br>Ruler (cm/m                               | •           |                                          |                            |  |
| TIME | 1 hour 30 minutes                                                                         |             |                                          |                            |  |

### **INSTRUCTIONS TO CANDIDATES**

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.


Write your answers in the spaces provided on the question paper.

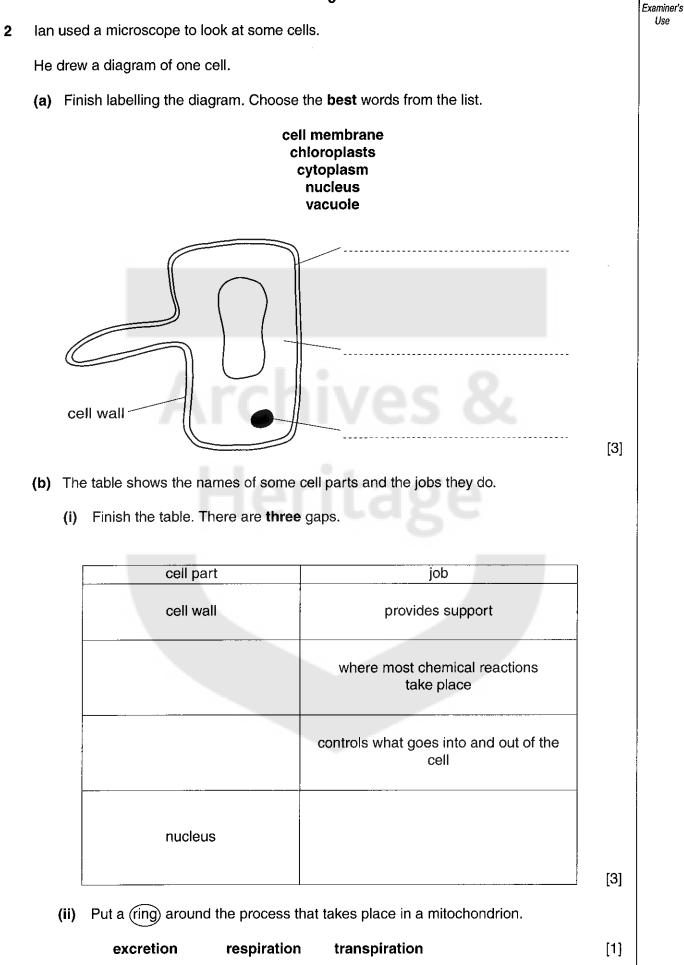
#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets [] at the end of each question or part question.

The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

| FOR EXAMINER'S USE |  |  |  |
|--------------------|--|--|--|
| 1                  |  |  |  |
| 2                  |  |  |  |
| 3                  |  |  |  |
| 4                  |  |  |  |
| 5                  |  |  |  |
| 6                  |  |  |  |
| 7                  |  |  |  |
| 8                  |  |  |  |
| 9                  |  |  |  |
| 10                 |  |  |  |
| 11                 |  |  |  |
| 12                 |  |  |  |
| TOTAL              |  |  |  |

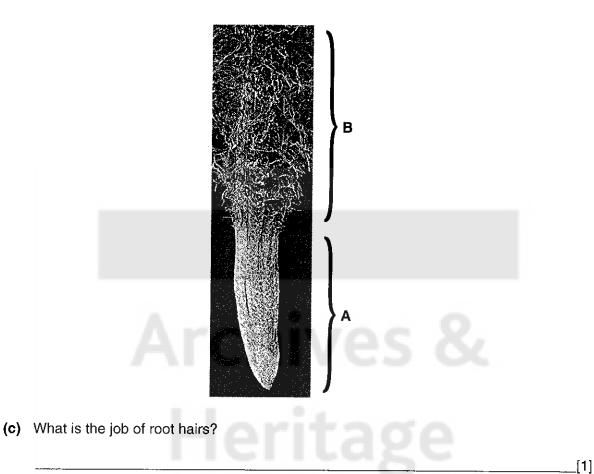



4 scales Reptile no scales Amphibian

1

Use the key to work out which vertebrate group each organism belongs to. Write your answers in the table.

| name of organism | vertebrate group |
|------------------|------------------|
| A                |                  |
| В                |                  |
| С                |                  |
| D                |                  |
| E                |                  |


[4]



For

This is a photograph of a root tip.

It shows a region with root hairs (B) and a region without root hairs (A).



4

(d) The table shows information about this root and its root hairs.

| surface area of the root (A and B) with the root hairs removed/ cm <sup>2</sup> | surface area of all the root<br>(A and B) with root hairs/ cm <sup>2</sup> |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| 6                                                                               | 24                                                                         |  |


Root hairs increase the surface area of the root.

How many times greater is the surface area of the root with root hairs than the surface area of the root without root hairs?

You **must** show how you work out your answer.

\_\_\_\_\_

[2]



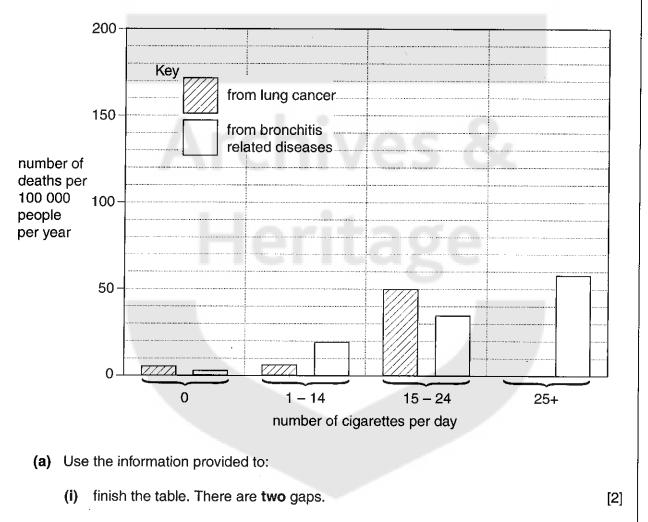
(b) Write on the diagram:

3

- (i) an A to show where most of the digested food is absorbed into the blood stream.
- (ii) a D to show where proteins are first digested.
- (iii) an E to show where undigested food is egested.

[3]

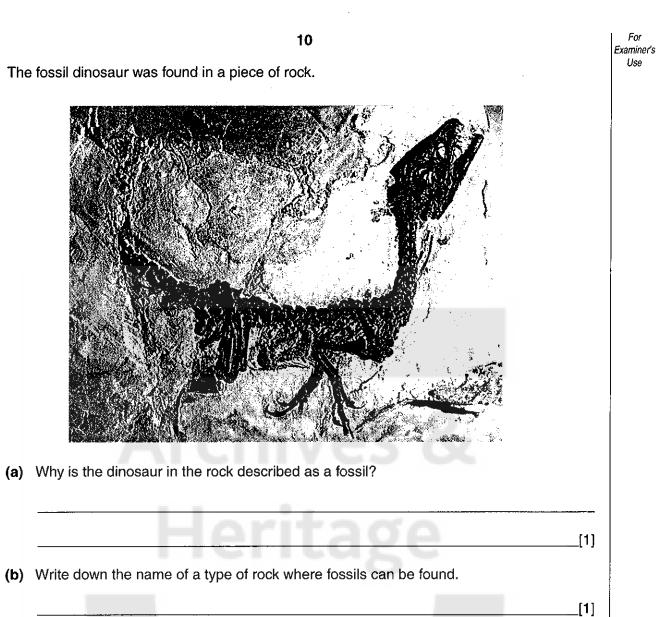
7 For Examiner's Use (c) The diagram shows food moving through the digestive system. 50000 - direction of movement ball of food Describe how food is moved through the digestive system. [2]


|          | 8                                                                                           |        |
|----------|---------------------------------------------------------------------------------------------|--------|
| his qu   | lestion is about what animals eat.                                                          |        |
|          | bird                                                                                        |        |
|          |                                                                                             |        |
|          | spider beetle                                                                               |        |
|          |                                                                                             |        |
|          | caterpillar groopfly                                                                        |        |
|          | grasshopper greenfly                                                                        |        |
|          |                                                                                             |        |
|          |                                                                                             |        |
|          | green plant                                                                                 |        |
| ) Ch     | noose words from the diagram to answer these questions.                                     |        |
| ,<br>(i) |                                                                                             | i      |
| (1)      |                                                                                             | [4]    |
|          |                                                                                             | [1]    |
| (ii)     | Write down the name of a primary consumer.                                                  |        |
|          | Heritage                                                                                    | [1]    |
| (iii)    | Write down the name of a predator.                                                          |        |
|          |                                                                                             | [1]    |
| ) Wr     | nat name is given to this type of diagram?                                                  |        |
| Pu       | t a (ring) around the correct answer.                                                       |        |
|          | food chain food pyramid food web                                                            | [1]    |
|          |                                                                                             |        |
|          | ggest what happens to the number of caterpillars if all the grasshoppers die.<br>ur answer. | схріаш |
|          |                                                                                             |        |
|          |                                                                                             |        |
|          |                                                                                             |        |

9

5 Doctors did a survey to investigate the effects of smoking on health.

The table and bar chart show some of the results of the survey.

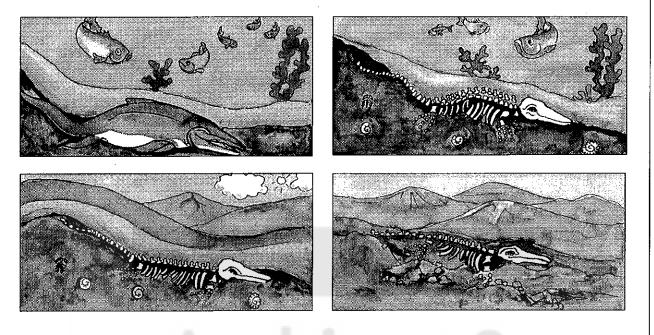

| number of elegentics per day | number of deaths per 100 000 people per year |                                  |  |
|------------------------------|----------------------------------------------|----------------------------------|--|
| number of cigarettes per day | from lung cancer                             | from bronchitis related diseases |  |
| 0                            | 3                                            | 2                                |  |
| 1-14                         | 6                                            |                                  |  |
| 15-24                        |                                              | 35                               |  |
| 25+                          | 200                                          | 59                               |  |



- (ii) draw the missing bar on the bar chart.
- (b) Describe the patterns shown by the two sets of results in the survey.

[3]

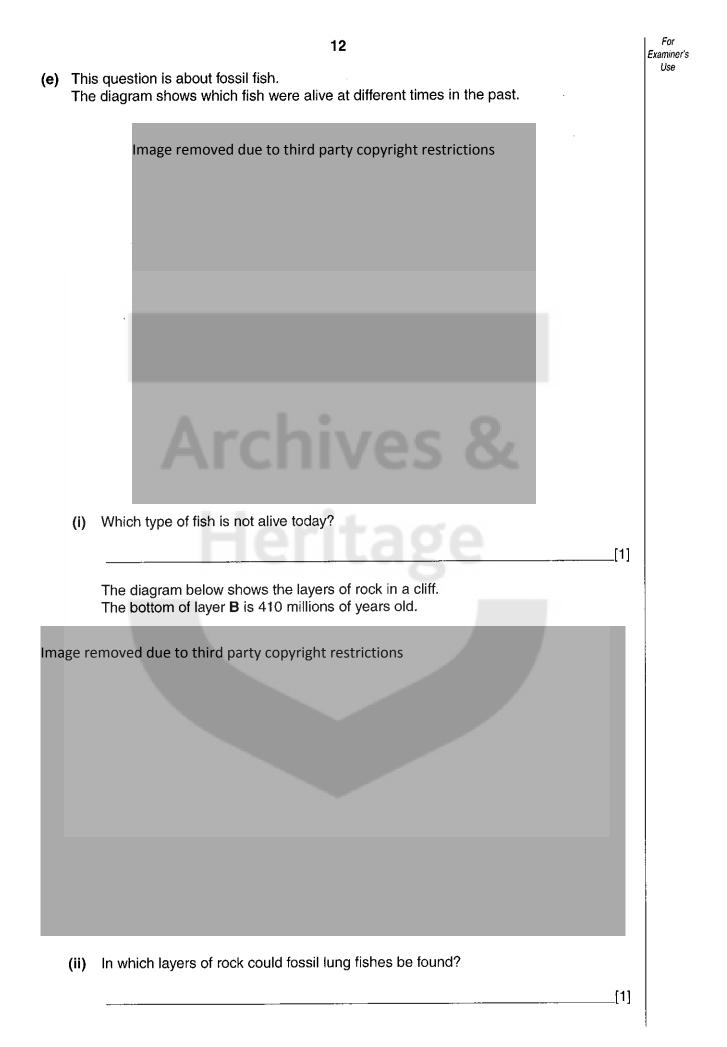
[1]




The fossil dinosaur was found in a piece of rock. 6

(c) Why are fossils important to scientists?

[1]


(d) The diagrams show how an animal changes into a fossil.

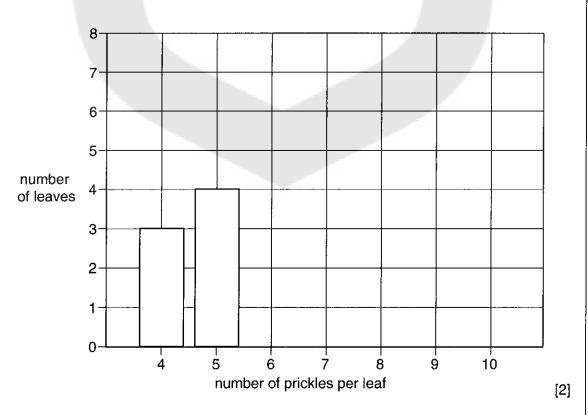


Write about how fossils are formed.

Use the information in the diagrams and your biological knowledge to answer the question.

[2]




- 7 This question is about variation.
  - (a) Here is a diagram of a holly leaf. A holly leaf has prickles around the edge.



In an investigation, Shaheen counted the number of prickles on thirty holly leaves. The table shows the results.

| number of prickles<br>per leaf | number of leaves |
|--------------------------------|------------------|
| 4                              | 3                |
| 5                              | 4                |
| 6                              | 6                |
| 7                              | 7                |
| 8                              | 3                |
| 9                              | 5                |
| 10                             | 2                |

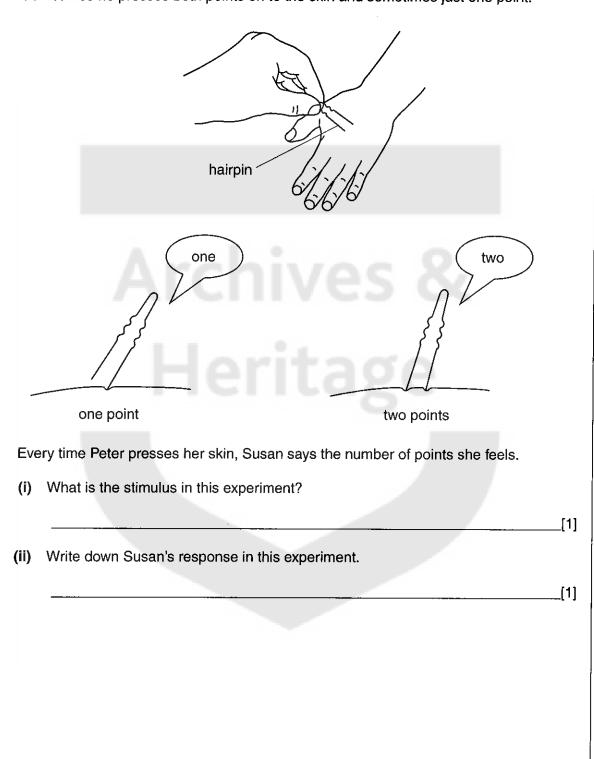
On the grid, finish the bar chart of these results. Two bars have been drawn for you.

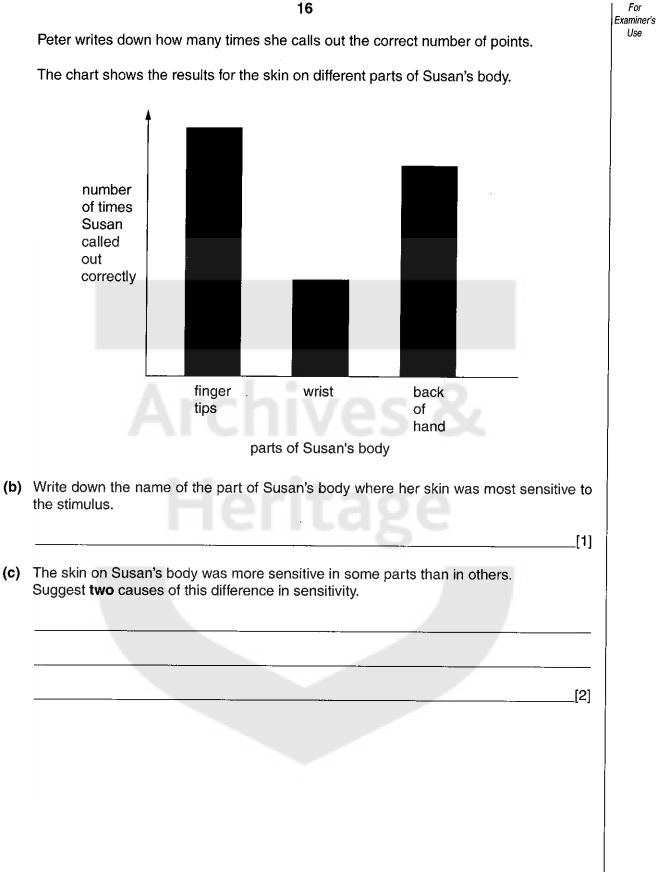


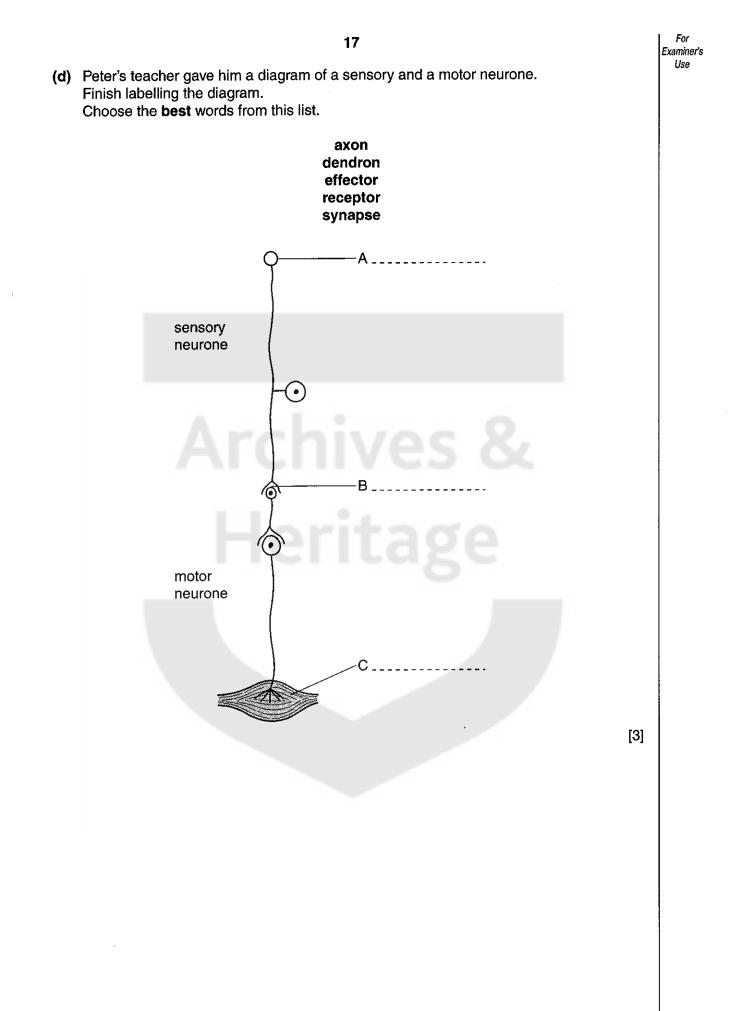
(b) Here is a list of human characteristics.

#### blood group body mass height length of index finger sex (gender)

(i) Write down two of these characteristics which show continuous variation.


|            | 1                                                                                                                                                                                 |      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | 2                                                                                                                                                                                 | _[1] |
| (ii)       | Write down two of these characteristics which show discontinuous variation.                                                                                                       |      |
|            | 1                                                                                                                                                                                 |      |
|            | 2                                                                                                                                                                                 | [1]  |
| Sor<br>Sor | man characteristics may be controlled by genes.<br>me may be modified by the environment.<br>me may be caused by the environment.<br>re is another list of human characteristics. |      |
|            | blood group<br>body mass                                                                                                                                                          |      |
|            | natural eye colour<br>scar                                                                                                                                                        |      |
|            | sex (gender)<br>skin colour                                                                                                                                                       |      |


(c) Write one of these characteristics in each of the three boxes in the table.


| method of control                                   | characteristic |    |
|-----------------------------------------------------|----------------|----|
| controlled by genes only                            |                |    |
| controlled by genes and modified by the environment |                |    |
| caused by the environment                           |                | [3 |

- 8 This question is about skin sensitivity.
  - (a) Peter presses Susan's skin with a hairpin.
     He presses the skin on her wrist, fingertips and the back of her hand.
     He tests each part ten times.
     Sometimes he presses both points on to the skin and sometimes just one point.

15







9

This question is about liquids in the body. (a) Some liquids are used to defend the body. Put (rings) around two liquids that help to do this. stomach acid sweat tears urine [2] (b) A boy falls off his bike and cuts his leg. Microbes may get into the cut. Microbes may cause an infection in the cut. Platelets and white blood cells are found in the blood. (i) Explain how these parts of the blood help to defend the body against infection. [3] (ii) Name two parts of our blood other than platelets and white blood cells. Describe the jobs they do. [2]

| 10 | Pla | nts r        | 19<br>nake their own food.                                                                                               |     | For<br>Examiner's<br>Use |
|----|-----|--------------|--------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|
|    | (a) | (i)          | Finish the word equation for this process.                                                                               |     |                          |
|    |     |              | water + $\longrightarrow$ glucose +                                                                                      | [2] |                          |
|    |     | (ii)         | Write down the name of this process.                                                                                     |     | •                        |
|    |     |              |                                                                                                                          | [1] |                          |
|    | (b) | (i)          | Where does the energy to drive this process come from?                                                                   |     |                          |
|    |     | (ii)         | Write down the name of the substance in leaves which traps this energy.                                                  | [1] |                          |
|    |     |              |                                                                                                                          | [1] |                          |
|    | (c) | (i)          | Glucose can be broken down by cells to release energy.<br>Write down the name of this process.                           |     |                          |
|    |     |              | -Archives &                                                                                                              | [1] |                          |
|    |     | <b>(</b> ii) | The glucose can also be built up into different substances.<br>These substances can then be used in many different ways. |     |                          |
|    |     |              | Name two of these substances and explain how they are used in a plant.                                                   |     |                          |
|    |     |              | Name                                                                                                                     |     |                          |
|    |     |              | How used                                                                                                                 |     | -                        |
|    |     |              | Name                                                                                                                     |     |                          |
|    |     |              | How used                                                                                                                 |     |                          |
|    |     |              |                                                                                                                          | [4] |                          |
|    |     |              |                                                                                                                          |     |                          |
|    |     |              |                                                                                                                          |     |                          |

A DESCRIPTION OF

A CALL STORE STORE

- 20
- **11** The table shows information about four different drugs.

| drug        | type of action | habit-forming |
|-------------|----------------|---------------|
| amphetamine | stimulant      | yes           |
| barbiturate | depressant     | yes           |
| cocaine     | stimulant      | yes           |
| paracetamol | analgesic      | no            |

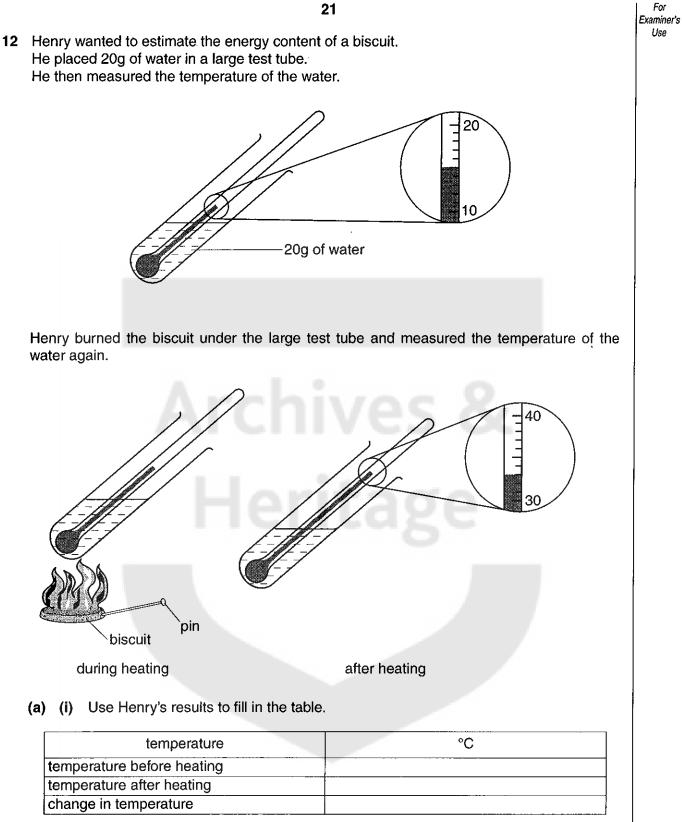
Use the information in the table and your biological knowledge to answer the following questions.

(a) Paracetamol is an analgesic.

What does analgesic mean?

\_[1]

\_[1]


(b) Write down the name of the drug shown in the table that will slow down the action of the nervous system.

| Name of drug |                                           |
|--------------|-------------------------------------------|
| Name of drug | <br>· · · · · · · · · · · · · · · · · · · |

(c) People who have taken cocaine find it difficult to stop taking it.

Suggest why cocaine can be habit-forming.

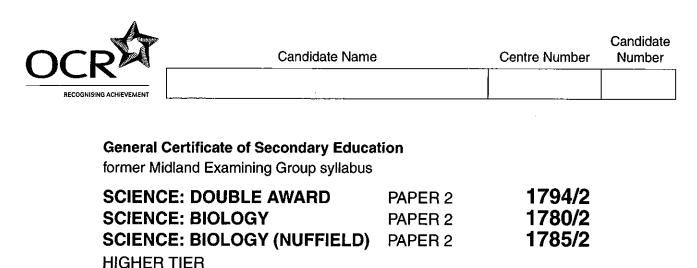
\_[2]



(ii) Henry knows that 1g of water needs 4.2 J of energy to increase its temperature by 1°C. Calculate how much energy the water obtained from Henry's biscuit.

You must show how you work out your answer.

energy = \_\_\_\_\_ [3] J (b) Henry repeated his experiment using the following apparatus. He found that the water obtained more energy from the biscuit. stirrer thermometer copper coil water crumbled burning biscuit oxygen -Write down two features of this apparatus which improved his result. Explain how these features improved his result. Feature 1\_\_\_\_\_ Explanation \_\_\_\_\_ Feature 2\_\_\_\_\_ Explanation\_\_\_\_\_ [4] 1794/1 S00








Copyright Acknowledgements:

Question 6 (e) © Reprinted by permission from Nature, Vol. 395, 1992, Macmillan Magazines Ltd.



Tuesday 6 JUNE 2000

Afternoon

1 hour 45 minutes

Candidates answer on the question paper. Additional materials required: Ruler (cm/mm), Pencil.

TIME 1 hour 45 minutes

### INSTRUCTIONS TO CANDIDATES

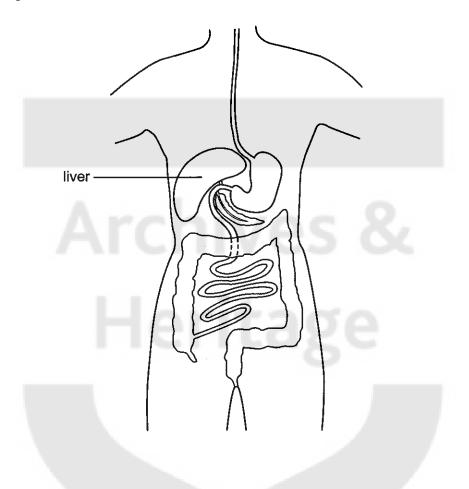
Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets [] at the end of each question or part question.


The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

| FOR EXAM | INER'S USE |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        | ,          |
| 8        |            |
| 9        |            |
| 10       |            |
| 11       |            |
| 12       |            |
| 13       |            |
| TOTAL    |            |

1 (a) The diagram shows part of the human digestive system and some organs.

Add labels to the diagram to show:

- (i) oesophagus
- (ii) pancreas
- (iii) large intestine



[3]

(b) The diagram shows food moving through the digestive system. direction of movement (2) a 2 ball of food Describe how food is moved through the digestive system. \_\_\_\_ [2] (c) The liver makes bile. Bile is stored in the gall bladder. It is released into the digestive system. Describe two ways in which bile helps in the digestion of food. 2 \_\_\_\_\_ [2] 2 The table shows information about four different drugs.

| drug        | type of action | habit-forming |
|-------------|----------------|---------------|
| amphetamine | stimulant      | yes           |
| barbiturate | depressant     | yes           |
| cocaine     | stimulant      | yes           |
| paracetamol | analgesic      | no            |

Use the information in the table and your biological knowledge to answer the following questions.

(a) Paracetamol is an analgesic.

What does analgesic mean?

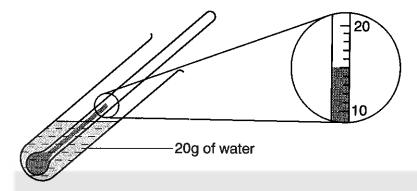
[1]

[1]

(b) Write down the name of the drug shown in the table that will slow down the action of the nervous system.

| Name of drug |  |  |  |
|--------------|--|--|--|
|--------------|--|--|--|

(c) People who have taken cocaine, find it difficult to stop taking it.


Suggest why cocaine can be habit-forming.

(a) A boy falls off his bike and cuts his leg. Microbes may get into the cut. Microbes may cause an infection in the cut. Platelets and white blood cells are found in the blood. (i) Explain how these parts of the blood help to defend the body against infection. [3] Name two parts of our blood other than platelets and white blood cells. (ii) Describe the jobs they do. [2] (b) Microbes also enter our bodies in the food we eat. Explain how our digestive systems destroy these microbes. [2]

5

3

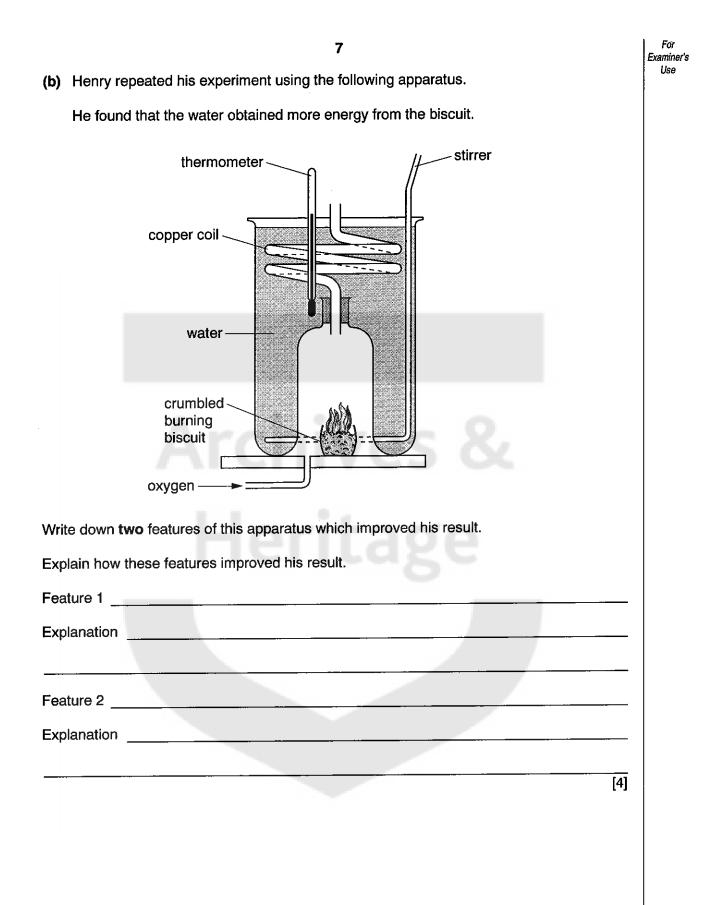
Henry wanted to estimate the energy content of a biscuit.
 He placed 20 g of water in a large test tube.
 He then measured the temperature of the water.



6

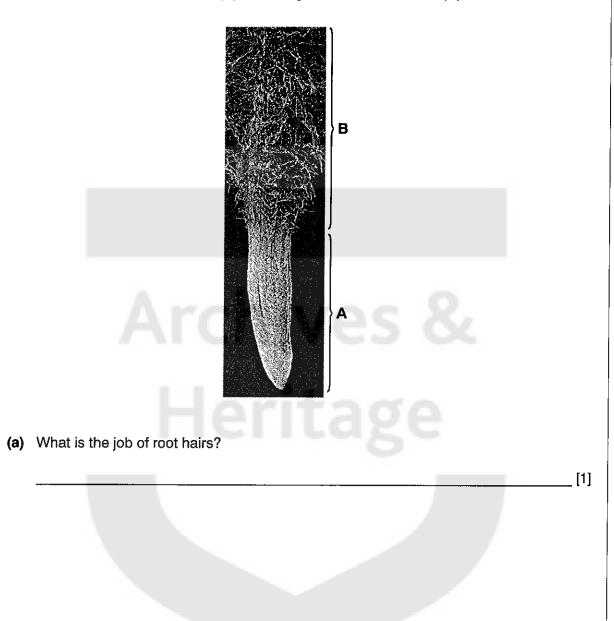
For Examiner's

Use


Henry burned the biscuit under the large test tube and measured the temperature of the water again.



(a) Henry knows that 1 g of water needs 4.2 J of energy to increase its temperature by 1°C.


Calculate how much energy the water obtained from Henry's biscuit.

You must show how you work out your answer.



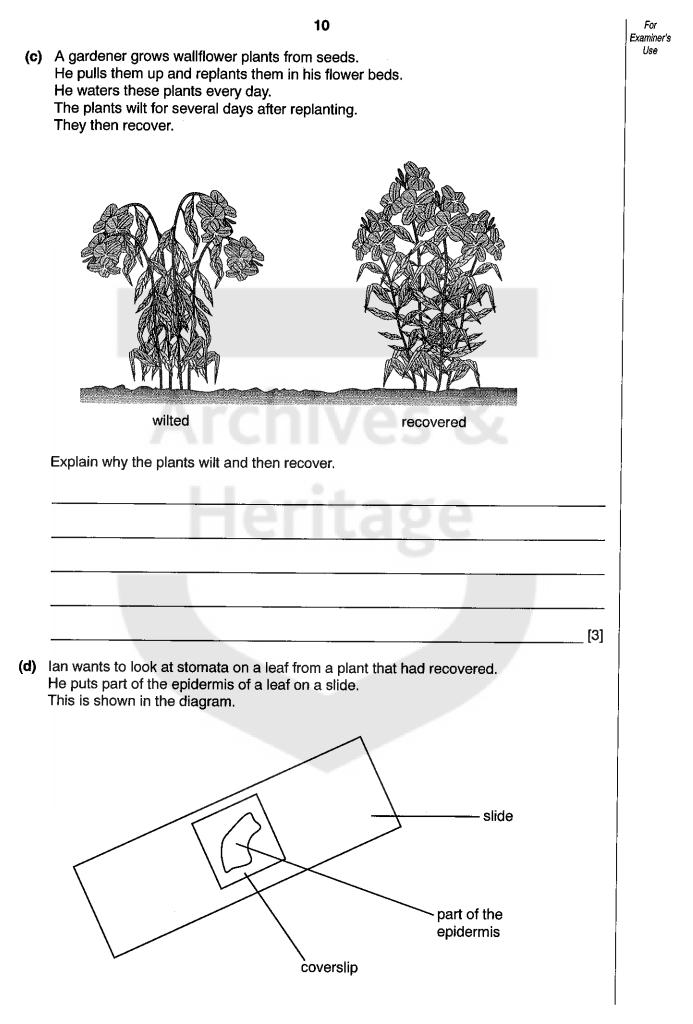
5 This is a photograph of a root tip.

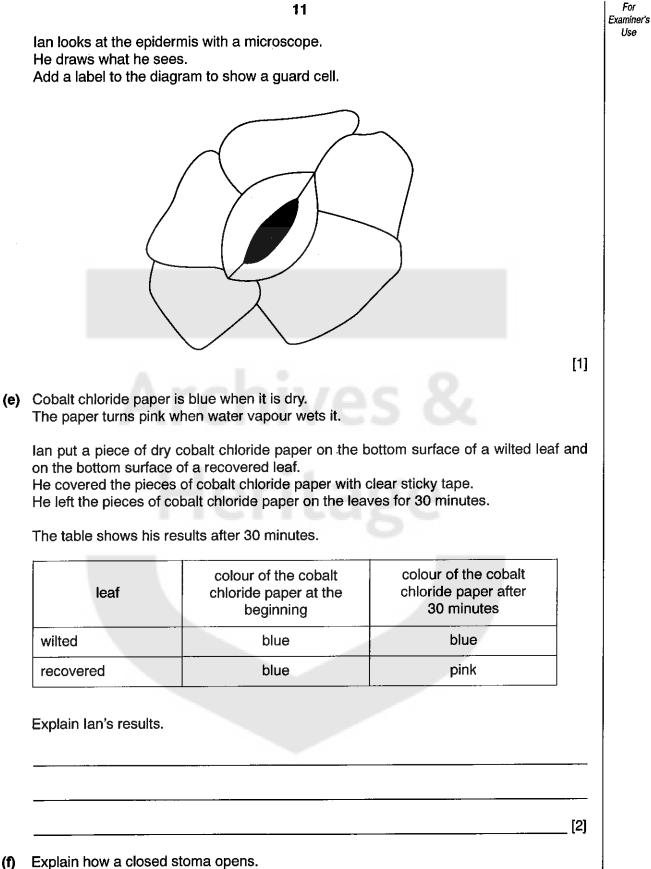
It shows a region with root hairs (B) and a region without root hairs (A).



8

(b) The table shows information about this root and its root hairs.


| surface area of all the root (A and B)        | surface area of all the root                |
|-----------------------------------------------|---------------------------------------------|
| with the root hairs removed / cm <sup>2</sup> | (A and B) with root hairs / cm <sup>2</sup> |
| 6                                             | 24                                          |

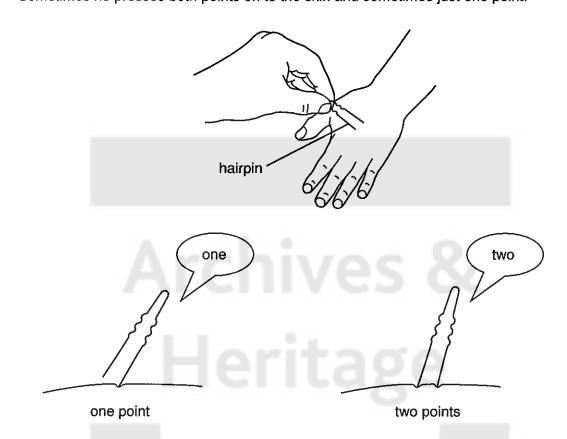

Root hairs increase the surface area of the root.

How many times greater is the surface area of the root with root hairs than the surface area of the root without root hairs?

You must show how you work out your answer.

| Archives 8 | times greater | [1] |
|------------|---------------|-----|
| Heritage   |               | ['. |
|            |               |     |
|            |               |     |
|            |               |     |
|            |               |     |
|            |               |     |
|            |               |     |





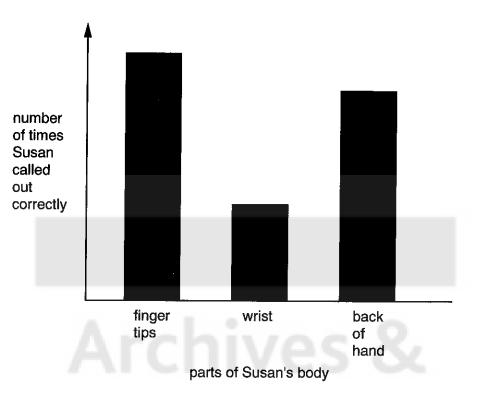

**(f)** 

[2]

6 This question is about skin sensitivity.

Peter presses Susan's skin with a hairpin. He presses the skin on her wrist, fingertips and the back of her hand. He tests each part ten times. Sometimes he presses both points on to the skin and sometimes just one point.




Every time Peter presses her skin, Susan says the number of points she feels.

Peter writes down how many times she calls out the correct number of points.

For Examiner's Use

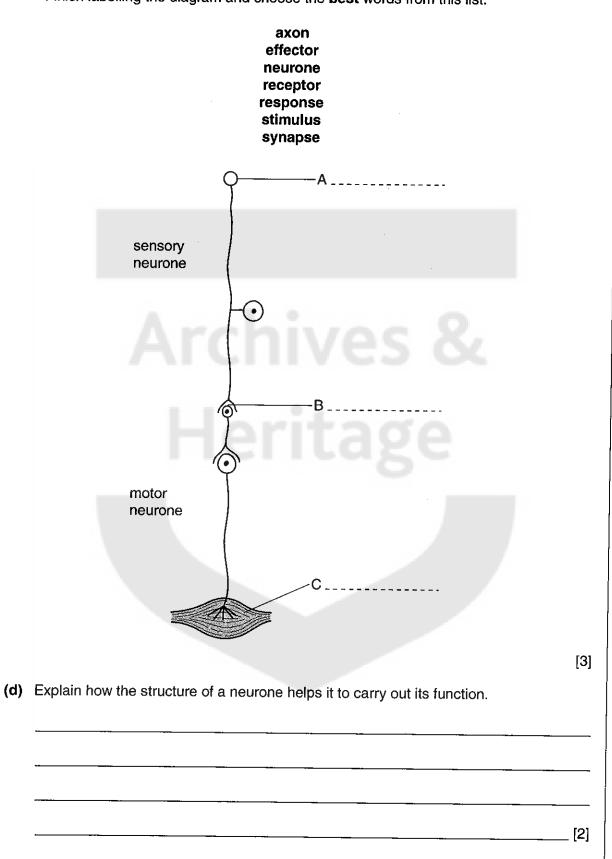
13

The chart shows the results for the skin on different parts of Susan's body.



(a) The chart shows that the skin on Susan's body was more sensitive in some parts than in others.

Suggest two causes of this difference in sensitivity.


(b) Explain how the energy from the stimulus reaches Susan's central nervous system.

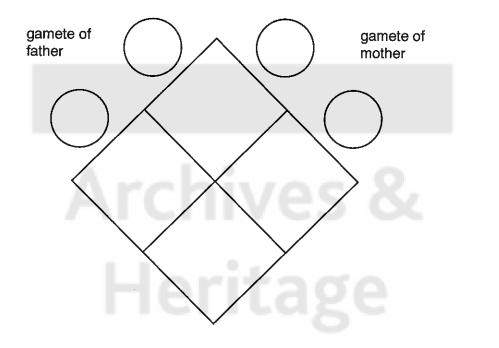
[Turn over

[2]

[3]

(c) Peter's teacher gives him a diagram of a sensory and a motor neurone. Finish labelling the diagram and choose the **best** words from this list.




For Examiner's Use (a) Kezia helps to look after the gerbils at school.
 A pair of gerbils with brown fur had babies.
 Three of the baby gerbils had brown fur and one had white fur.

7

(i) Finish the genetic diagram to explain this cross.
 Write the possible genotypes of the gametes of the parents in the circles.
 Write the expected genotypes of the babies in the squares.

15

Use B for the dominant allele for brown fur. Use b for the recessive allele for white fur.



(ii) Kezia wants only baby gerbils with white fur.

Write down the genotypes of the parents that she needs to cross to produce only gerbils with white fur.

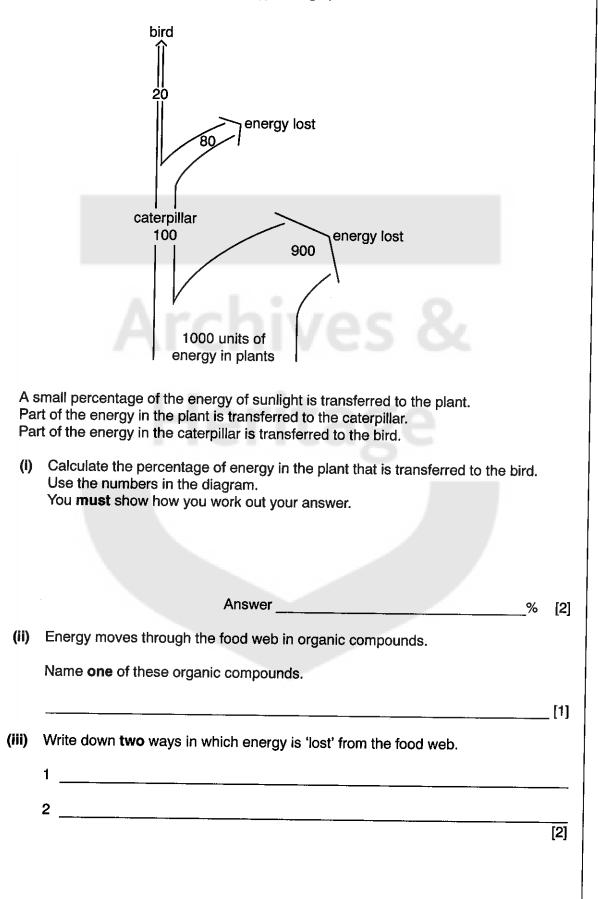
[1]

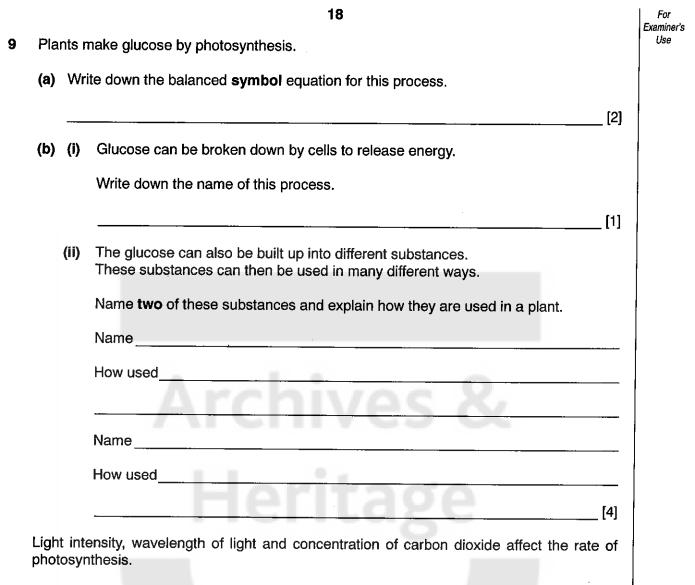
[2]

(b) One of the gerbils is born with two extra toes.

Kezia thinks this could be a mutation.

Suggest a possible environmental factor that may increase the probability of random gene mutation.


[1]


16 For Examiner's This question is about what animals eat and energy flow. Use 8 bird spider . beetle caterpillar grasshopper greenfly green plant (a) Suggest what happens to the number of caterpillars if all the grasshoppers die. Explain your answer. [2] (b) The grasshopper and the greenfly belong to the same trophic level. What is a 'trophic level'? (i) [1] Write down the name of the organism in the diagram which can be placed at two (ii) different trophic levels. [1]

For Examiner's Use

(c) Energy enters the food web as the energy of sunlight.

The diagram shows the flow of energy through part of the food web.

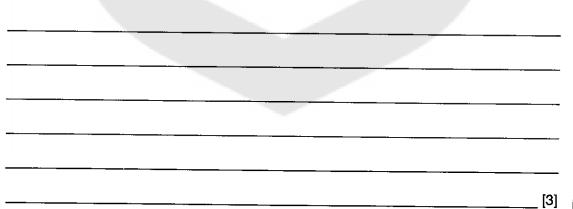


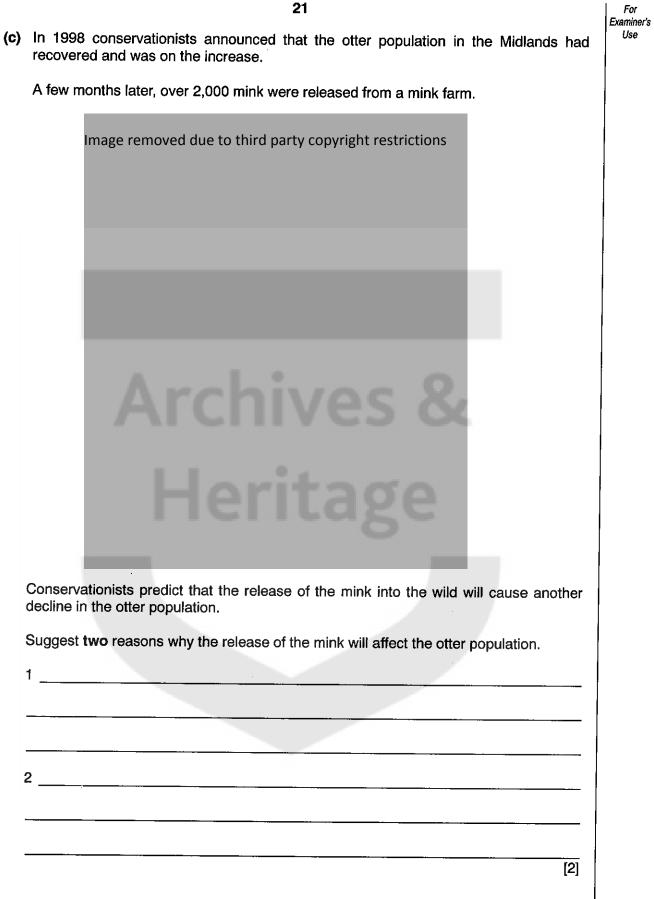


(c) Write down the name of another environmental factor that can affect the rate of photosynthesis.

\_[1]

For

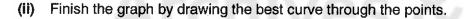

\_[1]


10 Otters live on riverbanks and feed on fish. They are successful predators.

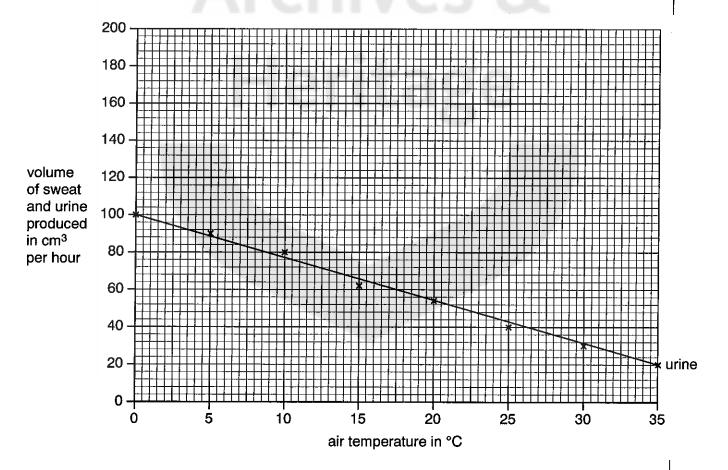


- (a) (i) Explain what is meant by the term predator.
  - (ii) Describe two adaptations shown by otters and explain how these adaptations make them successful predators of fish.
    - 1 \_\_\_\_\_\_ Archives & \_\_\_\_\_\_ 2 \_\_\_\_\_\_ Heritage [2]
- (b) Several years ago the otter population in the Midlands started to decline. Conservationists suggested that the decline could be because of the use of certain pesticides.

Suggest how the use of pesticides can cause a decline in the otter population over several years.

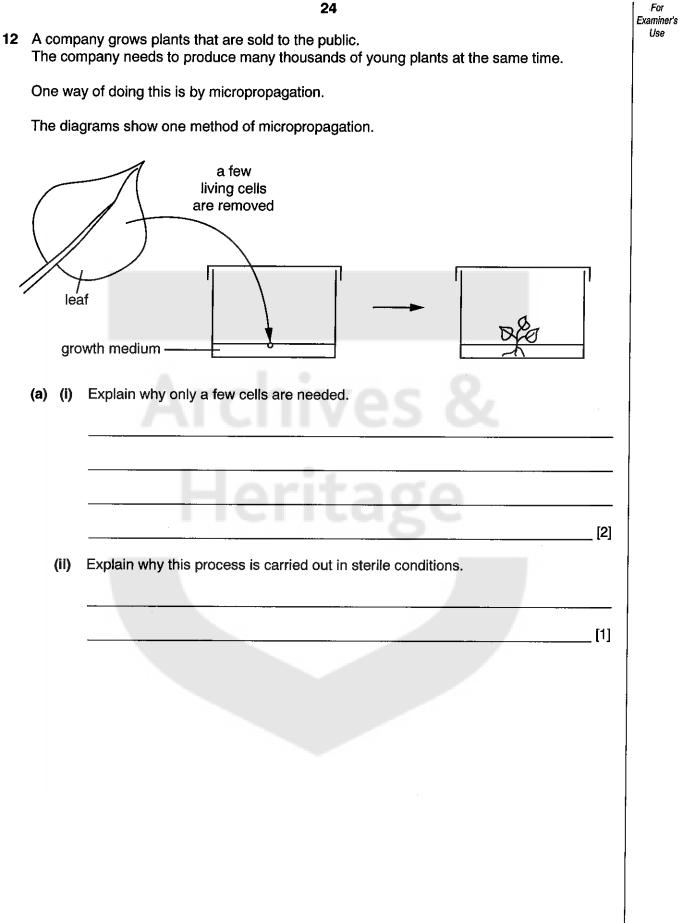






11 A scientist measured the volume of sweat and urine a student produced at different air temperatures.

| air temperature<br>in ° C | sweat produced<br>in cm <sup>3</sup> per hour | urine produced<br>in cm <sup>3</sup> per hour |  |
|---------------------------|-----------------------------------------------|-----------------------------------------------|--|
| 0                         | 4                                             | 100                                           |  |
| 5                         | 4                                             | 90                                            |  |
| 10                        | 8                                             | 80                                            |  |
| 15                        | 20                                            | 62                                            |  |
| 20                        | 40                                            | 54                                            |  |
| 25                        | 60                                            | 40                                            |  |
| 30                        | 100                                           | 30                                            |  |
| 35                        | 200                                           | 20                                            |  |

- (a) The graph shows the student's urine production.
  - (i) Plot the points to show the student's sweat production at different temperatures. Use the same grid. [2]




[1]



| For        |
|------------|
| Examiner's |
| Use        |

|          | increases.                                                           |   |
|----------|----------------------------------------------------------------------|---|
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
| <b>F</b> |                                                                      |   |
| Ехр      | lain why the volumes of sweat and urine change with air temperature. |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          | Archives X                                                           |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          | Horitado                                                             |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      | [ |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |
|          |                                                                      |   |



| phosphates.         It also contains hormones such as auxins.         Explain why the following substances are needed in the growth medium.         sucrose             | i)         | The growth medium contains sucrose, amino acids, vitamins, nitrates and |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|
| sucrose                                                                                                                                                                 | ,          | phosphates.                                                             |
| amino acids                                                                                                                                                             |            | Explain why the following substances are needed in the growth medium.   |
| amino acids                                                                                                                                                             |            | sucrose                                                                 |
| auxins       [3]         There are economic and biological advantages of micropropagation for the commercial oroduction of plants.                                      |            |                                                                         |
| [3] There are economic and biological advantages of micropropagation for the commercial production of plants. List four of these advantages.                            |            |                                                                         |
| There are economic and biological advantages of micropropagation for the commercial biological advantages of micropropagation for the commercial biological advantages. |            |                                                                         |
| ist four of these advantages.                                                                                                                                           |            |                                                                         |
| <u>Lleritage</u>                                                                                                                                                        | proc       | duction of plants.                                                      |
|                                                                                                                                                                         |            | four of these advantages.                                               |
|                                                                                                                                                                         | ' _        |                                                                         |
|                                                                                                                                                                         | '          | Heritage                                                                |
|                                                                                                                                                                         |            | Heritage                                                                |
|                                                                                                                                                                         |            |                                                                         |
| [4]                                                                                                                                                                     | <br>2      |                                                                         |
|                                                                                                                                                                         | <br>2      |                                                                         |
|                                                                                                                                                                         | <br>2<br>3 |                                                                         |
|                                                                                                                                                                         | <br>       |                                                                         |
|                                                                                                                                                                         | <br>2<br>3 |                                                                         |

1794/2 S00

- 1. A.L.

**13** This question is about controlling the rate of breathing.

The table shows how a person's breathing rate can vary.

| activity          | carbon dioxide<br>production in<br>cm <sup>3</sup> per minute | rate of breathing in breaths per minute |
|-------------------|---------------------------------------------------------------|-----------------------------------------|
| resting in bed    | 197                                                           | 16                                      |
| walking slowly    | 922                                                           | 18                                      |
| walking fast      | 2000                                                          | 20                                      |
| walking very fast | 2400                                                          | 21                                      |

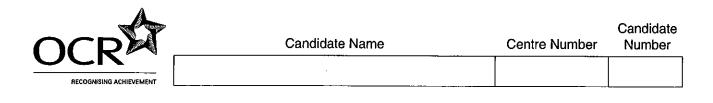
(a) Explain why the amount of carbon dioxide produced changes.

(b) Explain how the carbon dioxide concentration of the blood results in the change of breathing rate shown in the table.

[3]

[2]




27





Copyright Acknowledgements:

Question 10c. © Reproduced by kind permission of The Sentinel Newspaper.



|                                                             | former Midland Examining Group syllabus                  |                                     |                            |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|----------------------------|--|--|--|--|
| SCIENCE:                                                    | DOUBLE AWARD<br>Chemistry<br>Chemistry (NUFFI<br>DN TIER | PAPER 3<br>PAPER 1<br>IELD) PAPER 1 | 1794/3<br>1781/1<br>1786/1 |  |  |  |  |
| Monday                                                      | 12 JUNE 2000                                             | Morning                             | 1 hour 30 minutes          |  |  |  |  |
| Candidates ans<br>Additional mate<br>Pencil,<br>Ruler (cm/m | ·                                                        |                                     |                            |  |  |  |  |

TIME 1 hour 30 minutes

## **INSTRUCTIONS TO CANDIDATES**

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

## **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets [] at the end of each question or part question.

The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

A copy of the Periodic Table is printed on the back page.

| FOR EXAM | FOR EXAMINER'S USE |  |  |  |  |
|----------|--------------------|--|--|--|--|
| 1        | }                  |  |  |  |  |
| 2        |                    |  |  |  |  |
| 3        |                    |  |  |  |  |
| 4        |                    |  |  |  |  |
| 5        |                    |  |  |  |  |
| 6        |                    |  |  |  |  |
| 7        |                    |  |  |  |  |
| 8        |                    |  |  |  |  |
| 9        |                    |  |  |  |  |
| 10       |                    |  |  |  |  |
| 11       |                    |  |  |  |  |
| 12       |                    |  |  |  |  |
| 13       |                    |  |  |  |  |
| TOTAL    |                    |  |  |  |  |

- - (b) You can use Universal Indicator solution to show if a liquid is an acid, neutral or an alkali.

| рН                     | 1 | 2   | 3    | 4    | 5   | 6 | 7       | 8 | 9  | 10 11  | 12   | 13  | 14 |
|------------------------|---|-----|------|------|-----|---|---------|---|----|--------|------|-----|----|
|                        |   |     | acid |      |     |   | neutral |   |    | alkali |      |     |    |
| colour of<br>Indicator |   | red |      | orar | nge |   | green   |   | bl | ue     | purp | ole |    |

Pure water is neutral and has a pH value of 7.

How would you **use** the Universal Indicator solution to show this? Describe what you would **see**.

[2]

| 3                                                         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| This question is about crude oil.                         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Which three useful substan                                | ces do we get from crude oil                                                                                                                                                                                                                                                                       | ?                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Put (rings) around the three                              | e substances.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| aircraft fuel                                             | aluminium foil                                                                                                                                                                                                                                                                                     | limestone chips                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| paper                                                     | propane gas                                                                                                                                                                                                                                                                                        | road tar                                                                                                                                                                                                                                                                                                                                                                            | [9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                           |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Here are some statements                                  | about metals.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Only three of them are corre                              | ect.                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Put a tick (✓) in the box next to each correct statement. |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Metals conduct ele                                        | ectricity.                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Metals are always                                         | liquid.                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Helium is a metal.                                        |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Metals conduct he                                         | at. or Da                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| The halogens are                                          | netals.                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Some metals react                                         | with water.                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                           |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                           | Which three useful substant<br>Put (rings) around the three<br>aircraft fuel<br>paper<br>Here are some statements a<br>Only three of them are corre<br>Put a tick ( ) in the box next<br Metals conduct ele<br>Metals are always<br>Helium is a metal.<br>Metals conduct hea<br>The halogens are i | This question is about crude oil.   Which three useful substances do we get from crude oil   Put rings around the three substances.   aircraft fuel   aluminium foil   paper   propane gas   Here are some statements about metals. Only three of them are correct. Put a tick ( ) in the box next to each correct statement. Metals conduct electricity. Metals are always liquid. | This question is about crude oil.   Which three useful substances do we get from crude oil?   Put (rings) around the three substances.   aircraft fuel   aluminium foil   paper   paper   propane gas   road tar   Here are some statements about metals. Conly three of them are correct. Put a tick ( in the box next to each correct statement. Metals conduct electricity. Metals are always liquid. Helium is a metal. Metals conduct heat. The halogens are metals. |  |  |

4 Ranjan finds out how three metals react with some solutions.

Her results are shown in the table.

|                     | metal added                                        |           |                                              |  |  |
|---------------------|----------------------------------------------------|-----------|----------------------------------------------|--|--|
| name of solution    | magnesium                                          | copper    | iron                                         |  |  |
| copper(II) sulphate | blue colour fades<br>red-brown solid appears       | no change | blue colour fades<br>red-brown solid appears |  |  |
| iron(II) sulphate   | pale green colour fades<br>dark grey solid appears | no change | no change                                    |  |  |
| magnesium sulphate  | no change                                          | no change | no change                                    |  |  |

- (a) (i) Which metal does not react with any of the solutions?
  - (ii) Which metal reacts with two solutions?
  - (iii) Put the metals copper, iron and magnesium in order of reactivity.

|     | most reactive                                                                    |     |
|-----|----------------------------------------------------------------------------------|-----|
|     | least reactive                                                                   | [1] |
| (b) | Here is the equation for the reaction between magnesium and copper(II) sulphate. |     |
|     | magnesium + copper(II) sulphate $\longrightarrow$ copper + magnesium sulphate    |     |
|     | Ranjan sees a red-brown solid appear in this reaction.                           |     |
|     | She also sees that the blue colour fades.                                        |     |
|     | (i) Which is the red-brown solid?                                                |     |
|     | Put a tick ( $\checkmark$ ) in the correct box.                                  |     |
|     | copper                                                                           |     |

copper(II) sulphate

magnesium

magnesium sulphate

[1]

[1]

[1]

.

For

Use

| (ii) | Which substance has | s the blue colour that fades? |
|------|---------------------|-------------------------------|
|------|---------------------|-------------------------------|

Put a tick ( $\checkmark$ ) in **one** box.

| copper              |     |
|---------------------|-----|
| copper(II) sulphate |     |
| magnesium           |     |
| magnesium sulphate  | [1] |

(c) Ranjan's teacher tells her that the reaction between magnesium and copper(II) sulphate solution is exothermic.

5

Describe an experiment that Ranjan could do to see if this is correct.

(d) (i) Two of the metals that Ranjan used in the experiment are transition metals.

Put a (ring) around each of the two transition metals.

|     |      |                    | copper               | iron        | magnesium                           | [1]         |
|-----|------|--------------------|----------------------|-------------|-------------------------------------|-------------|
|     | (ii) | Choose one of      | these metals.        |             |                                     |             |
|     |      | Write down a u     | se for this met      | al and expl | ain why it is suitable for this use |             |
|     |      | metal chosen =     |                      |             |                                     |             |
|     |      | _                  |                      |             |                                     |             |
|     |      |                    |                      | <u> </u>    |                                     |             |
|     |      |                    |                      |             |                                     | [2]         |
| (e) | Zind | c is more reactive | than copper.         |             |                                     |             |
|     | Des  | cribe what you w   | vould <b>see</b> whe | n some zin  | c is added to copper(II) sulphate   | e solution. |

[2]

[2]

5 (a) The exhaust gases from older cars are tested each year.

These exhaust gases contain carbon monoxide, unburned hydrocarbons and smoke.

If the amount of one of these is too high, the car will fail its test.

Look at these results from an exhaust test.

Use these results to answer the questions.

| item                  | test result | maximum limit |
|-----------------------|-------------|---------------|
| carbon monoxide       | 4.0 %       | 3.5 %         |
| unburned hydrocarbons | 197 ppm     | 1200 ppm      |
| idle speed            | pass        |               |
| smoke level           | pass        |               |

- (i) What is the maximum limit of carbon monoxide allowed?
- (ii) This car failed its test. Why?

Put a tick ( $\checkmark$ ) in the correct box.

There is too much carbon monoxide.

There is too much unburned hydrocarbon.

There is too much smoke.

- (b) Why is carbon monoxide dangerous?
- (c) As well as carbon monoxide, unburned hydrocarbons, smoke and water, car exhausts contain other gases.

One of these gases may cause a change in the Earth's weather. Explain this.

[3]

[1]

[1]

[1]

- 7
- 6 Polythene and PVC are polymers.

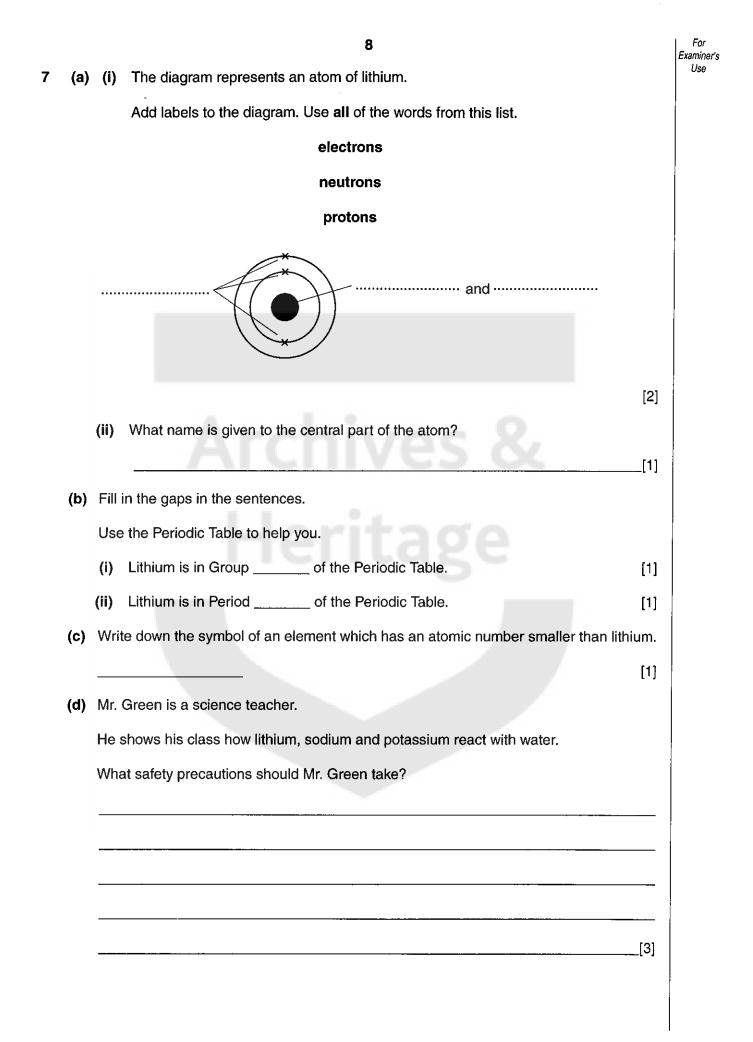
The table shows some of the properties of these polymers.

| polymer   | Does it melt<br>easily? | Does it<br>catch fire<br>easily? | Does it<br>conduct<br>electricity? | Can it be<br>coloured<br>easily? | Can it be<br>bent<br>easily? |
|-----------|-------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------|
| polythene | yes                     | yes                              | no                                 | no                               | yes                          |
| PVC       | yes                     | no                               | no                                 | yes                              | no                           |

Use only the information in the table to answer these questions.

(a) Polythene is not used to make saucepans.

Suggest two reasons.


1. \_\_\_\_\_

- 2. \_\_\_\_\_ [2]
- (b) A polymer is used to make the covering for electrical wires.

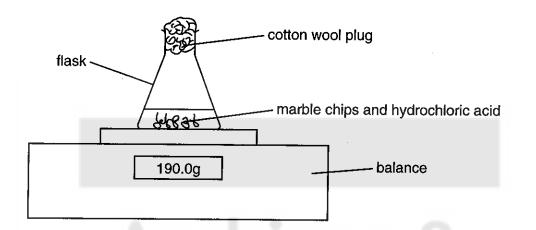
Explain why PVC is better than polythene for the covering on electrical wires.

(c) PVC is better than polythene for making window frames.
 Which property of PVC is the most important for this use?
 [1]
 (d) Write down the name of a household item that is made from polythene.

[1]



|   |     |       | 9                                                                                          |            | For<br>xaminer's |
|---|-----|-------|--------------------------------------------------------------------------------------------|------------|------------------|
| 8 | We  | can   | represent chemical reactions using equations.                                              |            | Use              |
|   | (a) | Loc   | ok at these word equations.                                                                |            |                  |
|   |     | A     | methane + oxygen $\longrightarrow$ carbon dioxide + water                                  |            |                  |
|   |     | В     | sodium hydroxide + nitric acid $\longrightarrow$ sodium nitrate + water                    |            |                  |
|   |     | С     | hydrogen peroxide                                                                          |            |                  |
|   |     | D     | sodium + water —— sodium hydroxide + hydrogen                                              |            |                  |
|   |     | Ans   | swer the following questions by choosing from <b>A</b> , <b>B</b> , <b>C</b> or <b>D</b> . |            |                  |
|   |     | Eac   | ch letter may be used once, more than once or not at all.                                  |            |                  |
|   |     | (i)   | Which equation represents a neutralisation reaction?                                       |            |                  |
|   |     | (ii)  | Which equation represents a combustion reaction?                                           |            |                  |
|   | (   | (iii) | Which equation shows the formation of an alkali?                                           | [3]        |                  |
|   | (b) | Fini  | sh the symbol equation for <b>C</b> .                                                      |            |                  |
|   |     |       | $\dots H_2O_2 \longrightarrow \dots H_2O + O_2$                                            | [1]        |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       |                                                                                            |            |                  |
|   |     |       | 1794/3 S00                                                                                 | [Turn over | r                |


•

[1]

9 Jo and Andy are finding out about rates of reaction.

They react hydrochloric acid with marble chips (calcium carbonate).

hydrochloric acid + calcium carbonate  $\longrightarrow$  calcium chloride + carbon dioxide + water They use this apparatus.



(a) The mass of the flask and its contents decreases during the experiment.

Suggest why this happens.

(b) Jo and Andy measure the total mass of the flask and its contents as the reaction takes place.

The table shows their results.

| time in minutes | mass of flask and contents in grams |
|-----------------|-------------------------------------|
| 0               | 190.0                               |
| 2               | 188.0                               |
| 4               | 187.0                               |
| 6               | 186.3                               |
| 8               | 186.1                               |
| 10              | 186.0                               |
| 12              | 186.0                               |



[Turn over

- 12
- 10 The table shows information about some compounds.

| formula          | name          | type of structure | melting point in °C |
|------------------|---------------|-------------------|---------------------|
| CaO              | calcium oxide | giant             | 2900                |
| H <sub>2</sub> O | water         | molecular         | 0                   |
| NaCl             |               | giant             | 808                 |
| SO <sub>2</sub>  |               | molecular         | -75                 |

(a) Finish the table by writing in the names for NaCl and  $SO_2$ .

(b) What links the melting point and the type of structure?

[2]

[2]

Use the information in the table to help you.

(c) Put a (ring) around the word which best finishes this sentence.

The forces holding the particles together in calcium oxide are called

chemical \_\_\_\_\_

| atoms | bonds | magnets | molecules | [1] |
|-------|-------|---------|-----------|-----|
|       |       |         |           |     |
|       |       |         |           |     |
|       |       |         |           |     |
|       |       |         |           |     |
|       |       |         |           |     |
|       |       |         |           |     |

For

Use

(d) Calcium and oxygen react together to form calcium oxide.

During the reaction two electrons move from a calcium atom to an oxygen atom. Calcium ions,  $Ca^{2+}$ , and oxide ions,  $O^{2-}$ , are formed.

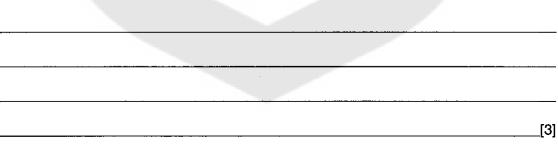
Finish the table. There are two spaces.

| element                  | number of electrons<br>in an atom | arrangement of electrons |
|--------------------------|-----------------------------------|--------------------------|
| calcium Ca               | 20                                | 2.8.8.2                  |
| oxygen O                 | 8                                 | 2.6                      |
| ion                      | number of electrons               | arrangement of electrons |
| 1011                     | in an ion                         | anangement of electrons  |
| calcium Ca <sup>2+</sup> |                                   |                          |

(e) Calculate the relative formula mass of calcium oxide, CaO.

Use the Periodic Table to help you.

[2]


[2]

(f) Strontium, Sr, reacts with oxygen in a similar way to calcium.

It forms a compound, strontium oxide, SrO.

Explain these facts.

Use your Periodic Table and your knowledge of the structure of atoms to help you.



- 14 For Examiner's Use The diagram shows how rocks are broken down and new rocks formed in the rock cycle. weathering and erosion rocks lifted up to surface sediments transported sediments deposited sea **IGNEOUS ROCK** SEDIMENTARY ROCK e.g. sandstone, chalk cementation METAMORPHIC
- (a) These are four processes involved in forming sedimentary rocks.

ROCK

e.g. slate

e.g. granite

crystallisation

melting

They are in the wrong order.

MAGMA

- Α depositing sediments
- В cementation

**IGNEOUS ROCK** 

e.g. basalt

11

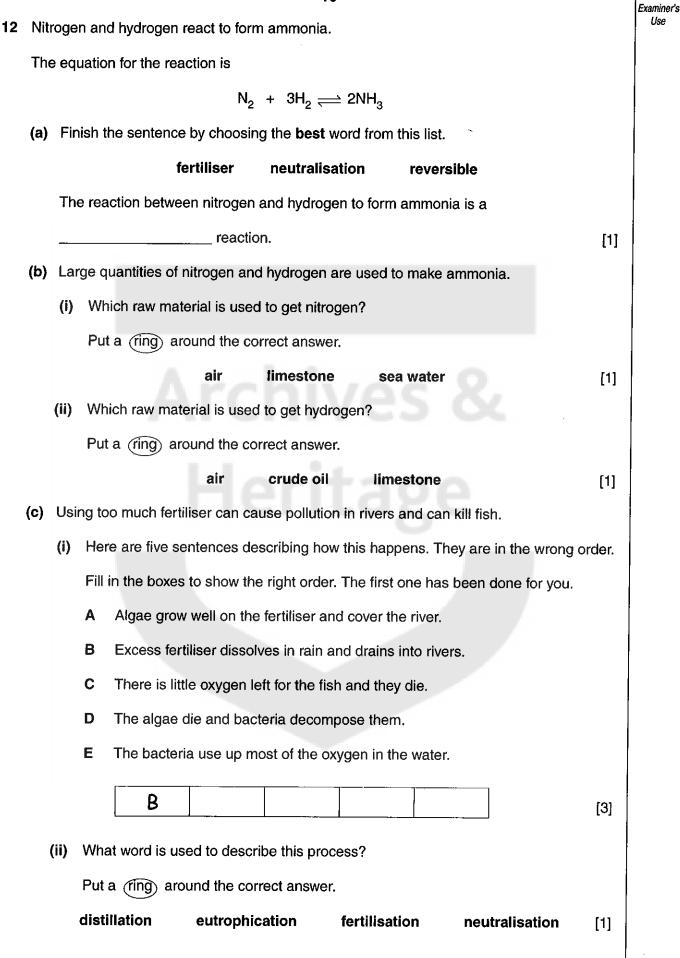
- С transporting sediments
- D weathering and erosion

Fill in the boxes to show the correct order. Use the diagram to help you.

- [3] (b) Write down two processes taking place when metamorphic rocks turn into igneous rocks.
  - 1 2 [2]
- (c) What conditions of temperature and pressure are needed to turn sedimentary rocks into metamorphic rocks?

[2]

(d) This table shows some information about slate, chalk and granite.


| rock    | Is the rock crystalline? | Can the rock contain fossils? |
|---------|--------------------------|-------------------------------|
| slate   | no                       | уев                           |
| chalk   |                          |                               |
| granite |                          |                               |

Finish the table by putting 'yes' or 'no' in each of the four spaces.

The diagram may help you.

[2]

For Examiner's Use



For

13 The table shows the approximate composition of the atmosphere. name of gas percentage of gas in the atmosphere argon 1 carbon dioxide 0.03 nitrogen 78 oxygen 20 Use the names of gases from the table to answer the questions. Each name may be used once, more than once or not at all. (a) Which gas makes up most of the atmosphere? [1] (b) Which gas makes up about 1/5th of the atmosphere? [1] (c) Which gas is made when animals respire? [1] (d) Which gas do plants use in photosynthesis? [1] (e) Which gas is in Group 0 of the Periodic Table? [1]

.



1794/3 S00

**BLANK PAGE** 



## **BLANK PAGE**

19

DATA SHEET The Periodic Table of the Elements

|       | 1  | 1        | · _· _·                       | 1                           | 1                                       | 2 <b>0</b><br>T                     | 1                                       | 1                       | r                                                   | <b></b>                                                                     |
|-------|----|----------|-------------------------------|-----------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
|       | 0  | Helium H | 10 <b>Se</b><br>Near <b>S</b> | 40<br>Ar<br>Argen           | Krypton<br>36                           | 131<br>Xenon<br>S4                  | Be Rudon Be                             | _                       | 175<br>Lu<br>1utetium<br>71                         | Lr<br>Lawrencium<br>103                                                     |
|       | ٦I |          | e Fronine<br>Bluorine         | 35.5<br>CL<br>Cthorine      | 80<br>Bromine<br>35                     | 127<br>I<br>todine<br>53            | At At At At 85                          |                         | 173<br><b>Yttentoluum</b><br>70                     | Nobelium<br>102                                                             |
|       | 5  |          | by <b>O</b> avgen             | 16<br>Sulphur<br>16         | Selenium<br>Selenium                    | 128<br>Tellurium<br>52              | Pobnium<br>84                           |                         | 69 <b>T</b> 169                                     | <b>Md</b><br>detevium                                                       |
|       | >  |          | 14<br>Nitrogen                | 31<br>Phosphorus<br>15      | 1                                       | 1                                   | 209<br>Bismuth<br>83                    |                         | 167<br>Erbium<br>68                                 | Frmium<br>100                                                               |
|       | 2  |          | 12<br>Carbon<br>6             | 28<br><b>Si</b> licon<br>14 | 73<br><b>Ge</b><br>Germanium<br>32      | 119<br>Tin<br>S0                    | 207<br>P <b>b</b>                       |                         | 165<br>Holmium<br>67                                | Einsteinium<br>99                                                           |
|       | =  |          | د<br>وم<br>م                  | 27<br>Aluminium<br>13       | 70<br>Ga<br>Calitum<br>31               | 115<br><b>Indium</b><br>49          | 204<br><b>T1</b><br>B1                  |                         | 162<br>DV<br>Dysprosium<br>66                       | Cf<br>Californium<br>98                                                     |
|       |    |          |                               |                             | 65<br>Zinc<br>30                        | 112<br>Cadmium<br>48                | 201<br><b>Hg</b><br>Mercury<br>80       | 9                       | 159<br><b>Tb</b><br>Terbium                         | BK<br>Berkelium<br>97                                                       |
|       |    |          |                               |                             | S C C                                   | 108<br>Ag<br>Silver                 | 197<br><b>Au</b><br>Gold<br>79          | C                       | 157<br>Gd<br>Gadolinium<br>64                       | 6<br>Curium<br>96                                                           |
| Group |    |          |                               |                             | 59<br>Nickel<br>28                      | 106<br>Pđ<br>Palladium<br>46        | 195<br>Pt<br>Platinum<br>78             | ρ                       | 152<br>Europium<br>63                               | Americium<br>95                                                             |
| ษั    |    |          | 2                             |                             | 59<br>Cobalt<br>27                      | 103<br><b>Rh</b> odium<br>45        | 192<br>Ir<br>Iridium<br>77              | `_                      | 150<br><b>Sa</b> marium<br>62                       | Plutonium<br>94                                                             |
|       |    | Hydrogen |                               |                             | دور <b>لارم کو</b><br>ایم <b>لار</b> دو | 101<br><b>Ru</b><br>Ruthenium<br>44 | 190<br><b>OS</b><br>Osmium<br>76        |                         | Promethium<br>61                                    | Naptunium<br>93                                                             |
|       |    |          |                               |                             | 55<br>Mn<br><sup>Manganese</sup><br>25  | TC<br>Technetium<br>43              | 186<br><b>Ren</b> tition<br>75          |                         | 144<br>Neodymium<br>60                              | 238<br>Uranium<br>92                                                        |
|       |    |          |                               |                             | S2<br>Chromium<br>24                    | 96<br>Molybdenum<br>42              | 184<br><b>V</b><br>Tungsten<br>74       |                         | 141<br><b>Pr</b><br>Praseodymium<br>59              | Protectinium<br>91                                                          |
|       |    |          |                               |                             | 51<br>Vanadium<br>23                    | 93<br>Nicbium<br>41                 | 181<br><b>Ta</b><br><sup>Tantalum</sup> |                         | 140<br>Cerium<br>58                                 | 232<br>Thortum<br>90                                                        |
|       |    |          |                               |                             | 22<br>Tfanlum<br>22                     | 91<br>Zr<br>Zirconium<br>40         | 178<br>Hafnium<br>72                    |                         |                                                     | nic mass<br>bol<br>nic) number                                              |
|       |    |          | r                             |                             | 45<br>Scandtum<br>21                    | 89<br>Yttrium<br>39                 | 139<br><b>La</b><br>tanthanum<br>57 *   | 227<br>Actinium<br>89 ↑ | l series<br>series                                  | a = relative atomic mass<br>X = atomic symbol<br>b = proton (atomic) number |
|       | =  |          | 9<br>Beryllium<br>4           | 24<br>Magnesium<br>12       | 20<br>Catcium <b>Ga</b>                 | 88<br>Strontium<br>38               | 137<br>Barium<br>S6                     | 226<br>Backum <b>R3</b> | *58-71 Lanthanoid series<br>†90-103 Actinoid series | م × م                                                                       |
|       |    |          | 2 Lithium<br>3                | 23<br><sup>20</sup>         | 39<br>Potassium<br>19                   | 85<br><b>Rubidium</b><br>37         | 133<br>Caestum<br>55                    | Francium<br>87          | *58-71 L<br>†90-103                                 | ء<br>Key                                                                    |
|       |    |          |                               |                             | 1794/3                                  | S00                                 |                                         |                         |                                                     |                                                                             |

The volume of one mole of any gas is 24  $dm^3$  at room temperature and pressure (r.t.p.).

| OCR                     | Candidate Name | Centre Number | Candidate<br>Number |
|-------------------------|----------------|---------------|---------------------|
| RECOGNISING ACHIEVEMENT |                |               |                     |

| SCIENCE<br>SCIENCE                                          | Ind Examining Group sylla<br><b>DOUBLE AWARD</b><br><b>CHEMISTRY</b><br><b>CHEMISTRY (NUFF</b><br>ER | PAPER 4<br>PAPER 2 | 1794/4<br>1781/2<br>1786/2 |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|----------------------------|
| Monday                                                      | 12 JUNE 2000                                                                                         | Morning            | 1 hour 45 minutes          |
| Candidates and<br>Additional mate<br>Pencil,<br>Ruler (cm/n |                                                                                                      | ·                  |                            |

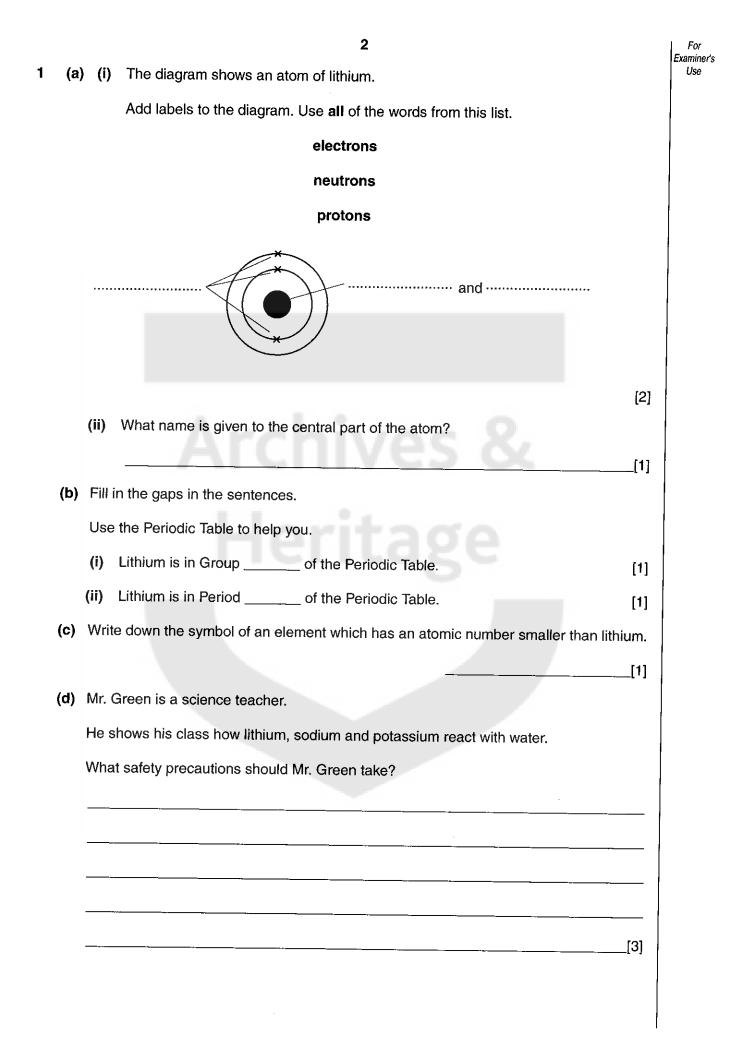
TIME 1 hour 45 minutes

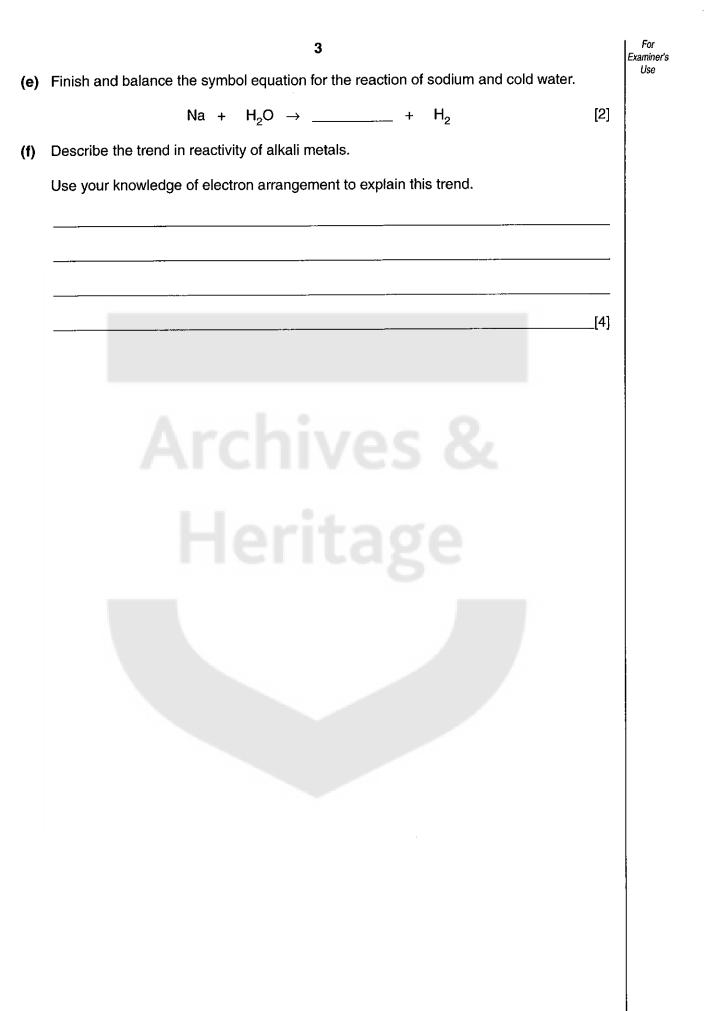
### **INSTRUCTIONS TO CANDIDATES**

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.


## **INFORMATION FOR CANDIDATES**


The number of marks is given in brackets [] at the end of each question or part question.

The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

A copy of the Periodic Table is printed on the back page.

| FOR EXAM | INER'S USE |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| 10       |            |
| 11       |            |
| TOTAL    |            |





2 The table shows information about some compounds.

| formula          | name            | type of structure | melting point in °C |
|------------------|-----------------|-------------------|---------------------|
| CaO              | calcium oxide   | giant             | 2900                |
| H <sub>2</sub> O | water           | molecular         | 0                   |
| NaCl             | sodium chloride | giant             | 808                 |
| SO <sub>2</sub>  | sulphur dioxide | molecular         | -75                 |

4

(a) What links the melting point and the type of structure?

Use the information in the table to help you.

(b) Calcium and oxygen react together to form calcium oxide.

During the reaction two electrons move from a calcium atom to an oxygen atom.

Calcium ions,  $Ca^{2+}$ , and oxide ions,  $O^{2-}$ , are formed.

Finish the table. There are two spaces.

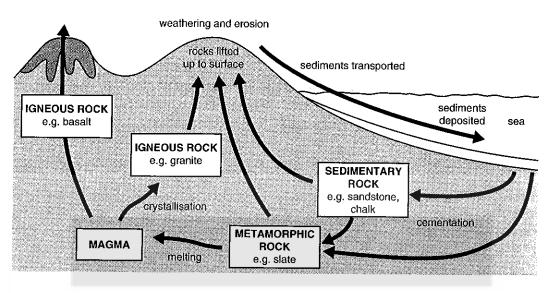
| element                  | number of electrons<br>in an atom | arrangement of electrons |
|--------------------------|-----------------------------------|--------------------------|
| calcium Ca               | 20                                | 2.8.8.2                  |
| oxygen O                 | 8                                 | 2.6                      |
| ion                      | number of electrons<br>in an ion  | arrangement of electrons |
| calcium Ca <sup>2+</sup> | 18                                |                          |
| oxide O <sup>2-</sup>    | 10                                |                          |

(c) Calculate the relative formula mass of calcium oxide, CaO.

Use the Periodic Table to help you.

[2]

[2]


[2]

| <b>(d)</b> S  | trontium, Sr, reacts with oxygen in a similar way to calcium.                               |     |
|---------------|---------------------------------------------------------------------------------------------|-----|
| lt            | forms a compound, strontium oxide, SrO.                                                     |     |
| E             | xplain these facts.                                                                         |     |
| U             | se your Periodic Table and your knowledge of the structure of atoms to help yo              | ou. |
| _             |                                                                                             |     |
| _             |                                                                                             |     |
| _             |                                                                                             |     |
|               |                                                                                             | [;  |
|               |                                                                                             |     |
| We ca         | n represent chemical reactions using equations.                                             |     |
| <b>(a)</b> Lo | ook at these word equations.                                                                |     |
| À             | methane + oxygen $\longrightarrow$ carbon dioxide + water                                   |     |
| В             | sodium hydroxide + nitric acid $\longrightarrow$ sodium nitrate + water                     |     |
| С             | hydrogen peroxide $\longrightarrow$ oxygen + water                                          |     |
| D             | sodium + water                                                                              |     |
|               |                                                                                             |     |
|               | nswer the following questions by choosing from <b>A</b> , <b>B</b> , <b>C</b> or <b>D</b> . |     |
| E             | ach letter may be used once, more than once or not at all.                                  |     |
| (i)           | Which equation represents a neutralisation reaction?                                        |     |
| <b>(ii</b> )  | Which equation represents a combustion reaction?                                            |     |
| <b>(iii</b> ) | Which equation shows the formation of an alkali?                                            |     |
|               |                                                                                             | [3  |
|               |                                                                                             |     |
| <b>(b)</b> Fi | nish the symbol equation for C.                                                             |     |
|               | $\dots H_2O_2 \longrightarrow \dots H_2O + O_2$                                             | [1  |
|               |                                                                                             | ['  |
|               |                                                                                             |     |
|               |                                                                                             |     |

.

For Examiner's Use

4 The diagram shows how rocks are broken down and new rocks formed in the rock cycle.



(a) These are four processes involved in forming sedimentary rocks.

They are in the wrong order.

- A depositing sediments
- B cementation
- **C** transporting sediments
- D weathering and erosion

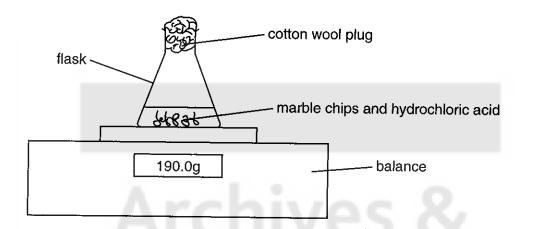
Fill in the boxes to show the correct order. Use the diagram to help you.

- (b) Write down two processes taking place when metamorphic rocks turn into igneous rocks. 1 \_\_\_\_\_\_ [2]
- (c) What conditions of temperature and pressure are needed to turn sedimentary rocks into metamorphic rocks?

\_[2]

|      |                |                                        | _                                 |                               |                        |
|------|----------------|----------------------------------------|-----------------------------------|-------------------------------|------------------------|
| (-N  | <b>T</b> 6.1 1 |                                        | 7                                 |                               | For<br>Examiner<br>Use |
| (d)  | inis ta        | able shows                             | s some information about s        | late, chalk and granite.      |                        |
|      |                | rock                                   | is the rock crystalline?          | can the rock contain fossils? |                        |
|      |                | slate                                  | no                                | yes                           |                        |
|      |                | chalk                                  |                                   |                               |                        |
|      |                | granite                                |                                   |                               |                        |
| Fini | ich tha t      | abla by pi                             | utting lues' or lue' in each o    | f the four endeed             |                        |
|      |                |                                        | utting 'yes' or 'no' in each o    | r the lour spaces.            |                        |
|      |                | m may hel                              |                                   |                               | [2]                    |
| (e)  |                |                                        | an be described as <b>extrusi</b> | ve or intrusive.              |                        |
|      | Basalt         | is an extr                             | usive rock.                       |                               |                        |
|      | Granite        | e is an intr                           | usive rock.                       |                               |                        |
|      | Descri         | be how ex                              | trusive rocks and intrusive       | rocks are formed from mag     | gma.                   |
|      |                |                                        |                                   |                               |                        |
|      |                | ······································ | 1. Locald                         |                               |                        |
|      |                |                                        | Heri                              | rage                          | [2]                    |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |
|      |                |                                        |                                   |                               |                        |

.


[1]

5 Jo and Andy are finding out about rates of reaction.

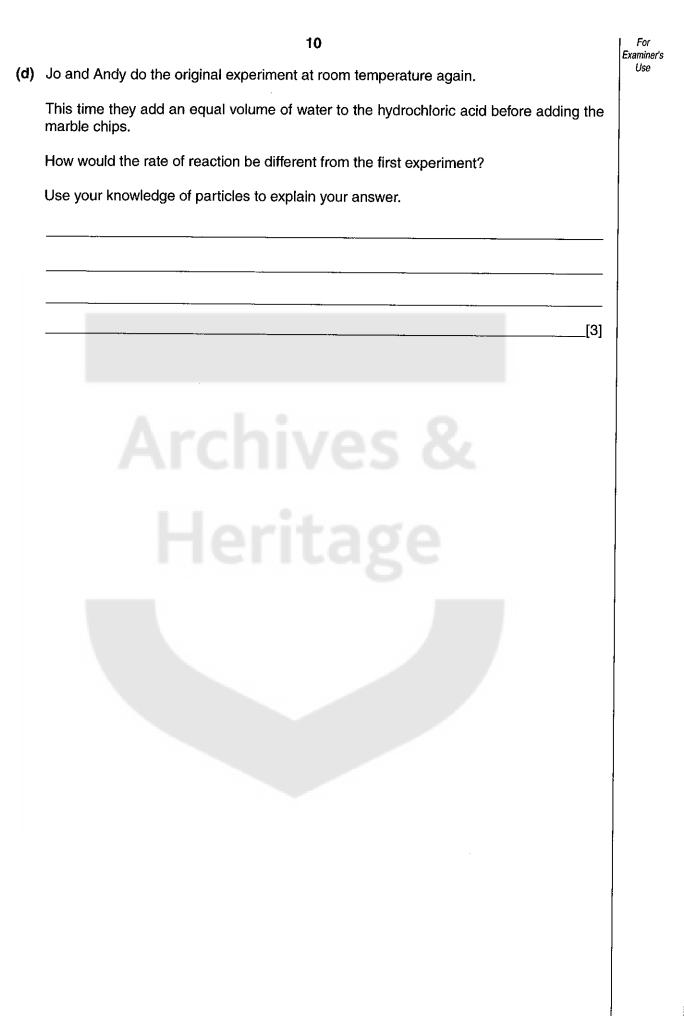
They react hydrochloric acid with marble chips (calcium carbonate).

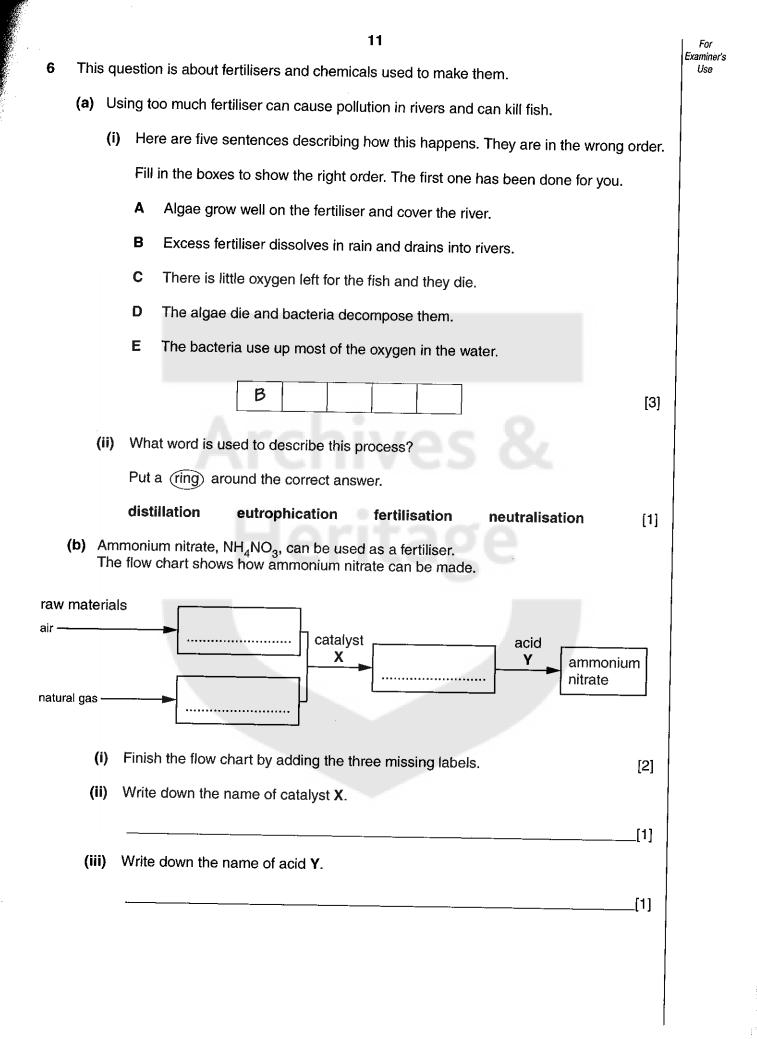
hydrochloric acid + calcium carbonate  $\longrightarrow$  calcium chloride + carbon dioxide + water

They use this apparatus.

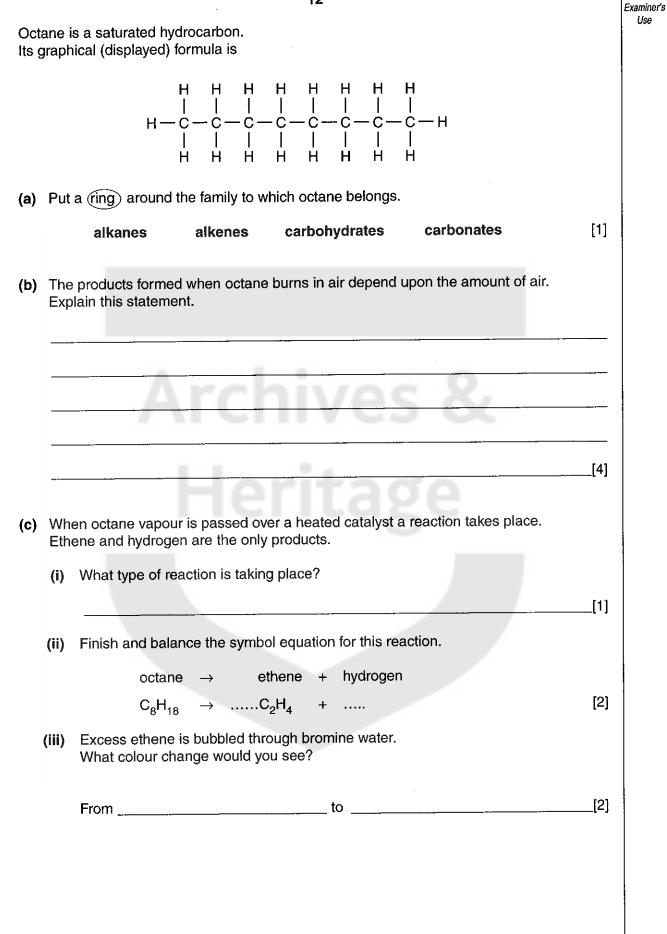


(a) The mass of the flask and its contents decreases during the experiment.


Suggest why this happens.


(b) Jo and Andy measure the total mass of the flask and its contents as the reaction takes place.

The table shows their results.


| time in minutes | mass of flask and contents in grams |
|-----------------|-------------------------------------|
| 0               | 190.0                               |
| 2               | 188.0                               |
| 4               | 187.0                               |
| 6               | 186.3                               |
| 8               | 186.1                               |
| 10              | 186.0                               |
| 12              | 186.0                               |

For 9 Examiner's Use [2] (i) Plot their results on the grid. (ii) Finish the graph by drawing the best curve through the points. [1] 190 189 188 total mass of flask and contents in grams 187 -186 -0 8 10 12 2 4 6 time in minutes Jo says that the reaction was faster between 0 and 2 minutes than between 2 and (iii) 4 minutes. How do the results show this? [2] (c) In the first experiment the hydrochloric acid was at room temperature. Jo and Andy repeat the experiment. The only difference is that the hydrochloric acid is at a higher temperature. Sketch a curve on the grid to show the results they get. [2]



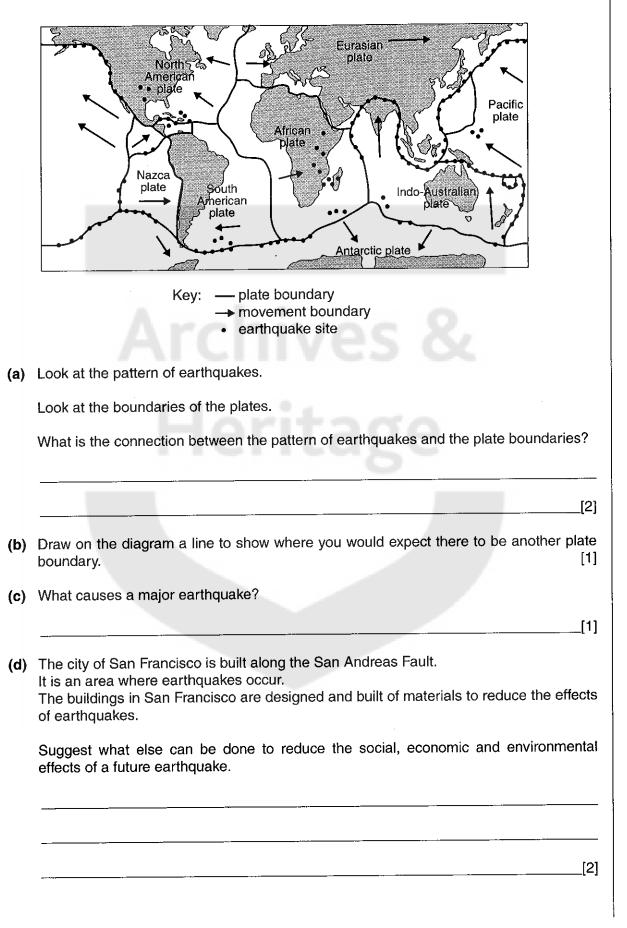


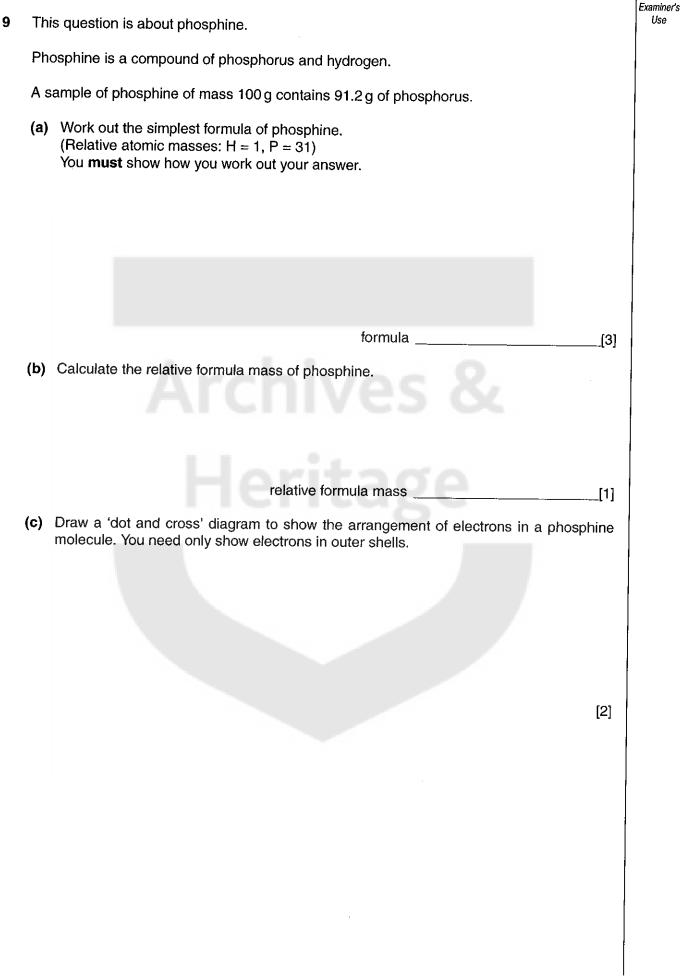
[Turn over



7

For


Use


|      | 13                                                                                                                                                  | For<br>Examiner's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eth  | ene is used as the raw material for making poly(ethene).                                                                                            | Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (i)  | Draw the graphical (displayed) formula of ethene and of poly(ethene).                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | ethene poly(ethene) [3]                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (ii) | Poly(ethene) has replaced paper and cardboard for many packaging uses.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Suggest one advantage and one disadvantage of poly(ethene) compared to paper<br>and cardboard. Do not consider the relative costs of the materials. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Advantage of poly(etnene)                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Disadvantage of poly(ethene)[2]                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | (i)                                                                                                                                                 | Ethene is used as the raw material for making poly(ethene).         (i) Draw the graphical (displayed) formula of ethene and of poly(ethene).         (ii) ethene       poly(ethene)         (iii) Poly(ethene) has replaced paper and cardboard for many packaging uses.         Suggest one advantage and one disadvantage of poly(ethene) compared to paper and cardboard. Do not consider the relative costs of the materials.         Advantage of poly(ethene)         Disadvantage of poly(ethene) |

.



# 8 The Earth's crust is broken up into large plates. The diagram shows some of these plates and the sites of major earthquakes.





For

|    |      |        | 16                                                                                                                            | For<br>Examiner's |
|----|------|--------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 10 | Αw   | /aste  | solution from a factory contains copper(II) sulphate.                                                                         | Use               |
|    | Co   | oper i | is recovered from this solution.                                                                                              |                   |
|    | Afte | er fur | ther treatment the water goes into a local river.                                                                             |                   |
|    | (a)  | Sug    | gest one reason why copper is recovered from the solution.                                                                    |                   |
|    |      |        | [1]                                                                                                                           |                   |
|    | (b)  |        | recover the copper, excess iron filings are added to the solution containing per(II) sulphate.                                |                   |
|    |      | The    | e reaction taking place is shown in the equation.                                                                             |                   |
|    |      |        | $Fe(s) + CuSO_4(aq) \rightarrow Cu(s) + FeSO_4(aq)$                                                                           |                   |
|    |      | (i)    | How is solid copper removed from the solution?                                                                                |                   |
|    |      |        | [1]                                                                                                                           |                   |
|    |      | (ii)   | Suggest why iron filings react faster than lumps of iron.                                                                     |                   |
|    |      |        | [1]                                                                                                                           |                   |
|    |      | (iii)  | Calculate the maximum mass of copper that could be recovered using 1 tonne of iron. (Relative atomic masses: Fe = 56,Cu = 64) |                   |
|    |      |        | You <b>must</b> show how you work out your answer.                                                                            |                   |
|    |      |        |                                                                                                                               |                   |
|    |      |        | maximum masstonnes [2]                                                                                                        |                   |
|    |      |        |                                                                                                                               |                   |

.

|    |      |       |               |                      | 17                       |                        |                                              |        | For<br>Examiner's |
|----|------|-------|---------------|----------------------|--------------------------|------------------------|----------------------------------------------|--------|-------------------|
| 11 | This | s qu  | estion is al  | bout the halogen e   | lements in Grou          | p 7 of the Perio       | dic Table.                                   |        | Use               |
|    | The  | e rea | ctivity of th | ne elements in Gro   | up 7 decreases           | down the group         | ).                                           |        |                   |
|    | (a)  | Wr    | ite down th   | ne name and symb     | ol of the <b>most</b> re | eactive halogen        | in Group 7.                                  |        |                   |
|    |      | Ele   | ment          |                      |                          | Syr                    | mbol                                         | [1]    |                   |
|    | (b)  | The   | e table give  | es information abo   | ut three halogen         | S.                     |                                              |        |                   |
|    |      |       | halogen       | colour               | melting point<br>in °C   | boiling point<br>in °C | state at room<br>temperature<br>and pressure |        |                   |
|    |      |       | chlorine      | greenish-yellow      | -101                     | -34                    | gas                                          |        |                   |
|    |      |       | bromine       | red                  | -7                       | 60                     | liquid                                       |        |                   |
|    |      |       | iodine        | dark grey            | 114                      | 185                    | solid                                        |        |                   |
|    |      | (ii)  | Melting p     | a melting point for  |                          | e data to explai       | n your choice.                               |        |                   |
|    |      |       | Explanat      | ion                  |                          |                        |                                              | [2]    |                   |
|    | I    | (iii) | Predict th    | ne colour of astatin | e.                       |                        |                                              |        |                   |
|    |      |       |               |                      |                          |                        |                                              | [1]    |                   |
|    |      | (iv)  | What are      | the name and for     | mula of the com          | pound formed b         | y sodium and ast                             | atine? |                   |
|    |      |       | Name          |                      |                          | Formula                |                                              | _ [2]  |                   |
|    |      |       |               |                      |                          |                        |                                              |        |                   |

1 (Arres)

ł

- (c) The table summarises the results of reactions when halogens are added to solutions of sodium halides.
  - (i) Finish the table by adding a tick (✓) if a reaction takes place and a cross(✗) if a reaction does not take place. Some have been done for you.
     [3]

| halogen added | solutions of    |                |               |  |  |
|---------------|-----------------|----------------|---------------|--|--|
| nalogen added | sodium chloride | sodium bromide | sodium iodide |  |  |
| bromine       | ×               | ×              | 1             |  |  |
| chlorine      | ×               |                |               |  |  |
| iodine        |                 |                | ×             |  |  |

(ii) Finish the sentence by choosing the **best** word from the list.

decomposition

displacement

neutralisation

The reaction of bromine with sodium iodide is an example of

a \_\_\_\_\_ reaction.

- (iii) Write an equation for the reaction taking place when bromine, Br<sub>2</sub>, is added to potassium iodide solution, KI.
- (d) Sodium chloride is used as a raw material for producing other sodium compounds.

These include

sodium carbonate

sodium hydrogencarbonate

sodium hydroxide

Choose two of these. For each one, write down a use of the sodium compound.

sodium compound

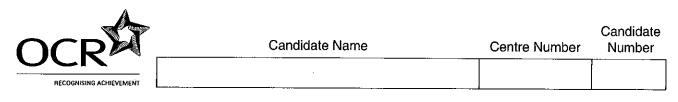
use

[2]

[1]

[2]






|                                    |       | 1  | T              | <u> </u>              | ]                           | 1                            |                                                |                                       | ו                            | [                                                   |                                                                             |
|------------------------------------|-------|----|----------------|-----------------------|-----------------------------|------------------------------|------------------------------------------------|---------------------------------------|------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
|                                    |       | 0  | ۵<br>Heiting 4 | Peor <b>B</b> 50      | 40<br>Argen                 | 8 Kypton 88                  | 131<br>Xenon<br>54                             | B6 Padon<br>86                        |                              | 175<br>Lutetium<br>71                               | Lr<br>Lawrencium<br>103                                                     |
|                                    |       | I۲ | -              | e Huorine<br>Fluorine |                             | 38<br>Bromine<br>38          | 127<br>I<br>todine<br>53                       | At<br>Astatine<br>85                  |                              | 173<br><b>Yb</b><br>Ytterbium<br>70                 | Nobelium<br>102                                                             |
|                                    |       | >  |                | a O 16                | 16<br>Suphur<br>16          | Selentium<br>Selentium       | 128<br><b>Te</b><br><sup>Tellurium</sup><br>52 | Polonium<br>84                        |                              | 69<br>Thulium T 169                                 | Mendelevium<br>101                                                          |
|                                    |       | >  |                | 14<br>Nitrogen<br>7   | Bhosphorus                  | 75<br>AS<br>Arsenic<br>33    | 122<br>Sb<br>Antimony<br>51                    | 83<br>Bismuth<br>83                   |                              | 167<br>68<br>Erbium<br>68                           | 100<br>Fermium                                                              |
|                                    |       | ≥  |                | 6 Carbon              | 28<br>Silicon               | 73<br>Germanium<br>32        | 80<br>119<br>119                               | 207<br>P <b>D</b><br>82 Lead          |                              | 165<br>Holmium<br>67                                | Elinsteinium<br>99                                                          |
|                                    | ,     |    |                | ی<br>Born H           | 27<br>Aluminium<br>13       | 70<br><b>Ga</b> llium<br>31  | 115<br>Indium<br>49                            | 204<br><b>T ا</b><br>1 Thalitum<br>81 |                              | 162<br>Dysprosium<br>66                             | Cf<br>Catitornium<br>98                                                     |
| nts                                |       |    |                |                       |                             | 65<br>Zn<br>30               | 112<br>Cadmium<br>48                           | 201<br>Hg<br>Mercury<br>80            | 0                            | 159<br>Techium<br>65                                | BK<br>Berkelium<br>97                                                       |
| The Periodic Table of the Elements | -     |    |                |                       |                             | Copper 64                    | 108<br><b>Ag</b><br>Silver                     | 197<br>Au<br>Gold                     | C                            | 157<br><b>Gd</b><br>Gadoiinium<br>64                | e curium<br>86                                                              |
| le of the                          | Group |    |                |                       |                             | 59<br>Nickel<br>28           | 106<br>Pd<br>Pelladium<br>46                   | 195<br>Platinum<br>78                 | Δ                            | 152<br>Europium<br>63                               | Americium<br>95                                                             |
| odic Tab                           | G     |    |                |                       | 59<br>59<br>Cobalt          | 103<br>Rhođium<br>45         | 192<br>Ir<br>Iridium<br>77                     | Ľ_                                    | 150<br><b>Samarium</b><br>62 | Plutonium<br>94                                     |                                                                             |
| The Perio                          |       |    | + Hydrogen     |                       |                             | 26 <b>T</b> 56<br>Icon       | 101<br>Ruthenium<br>44                         | 190<br><b>OS</b><br>انسا              |                              | Promethium<br>61                                    | Neptumium<br>93                                                             |
|                                    |       |    |                |                       |                             | 55<br><b>Manganese</b><br>25 | Technetium<br>43                               | 186<br><b>Re</b><br>Rhenium<br>75     |                              | 144<br>Neodymium<br>60                              | 238<br>Uranium<br>92                                                        |
|                                    |       |    |                |                       |                             | 52<br>Cr<br>Chromium<br>24   | 96<br>Mo<br>Motybdenum<br>42                   | 184<br><b>W</b><br>Tungsten           |                              | 141<br>Praseodymium<br>59                           | Protactinium<br>91                                                          |
|                                    |       |    |                |                       |                             | 51<br>Vanadium<br>23         | 93<br>Nibbium<br>14                            | 181<br>Tantatum<br>73                 |                              | Certum<br>S8                                        | 232<br>Thorium<br>90                                                        |
|                                    |       |    |                |                       |                             | 48<br>Titanium<br>22         | 91<br>Zirconium<br>40                          | 178<br>Hafnium<br>72                  |                              |                                                     | nic mass<br>Ibol<br>nic) литber                                             |
|                                    |       |    | Г              |                       |                             | 45<br>Sc<br>Scandium<br>21   | 39<br>Yitrium 🖌 89                             | 139<br>Lamhanum<br>57                 | 227<br>Actinium<br>89        | d series<br>series                                  | a = relative atomic mass<br>X = atomic symboi<br>b = proton (atomic) number |
|                                    |       | =  | -              | 9<br>Beryllium<br>4   | 24<br>Mg<br>Magnesium<br>12 | 40<br>Calcium<br>20          | 88<br>Strontium<br>38                          | 137<br><b>Bar</b> ium<br>56           | 226<br>Radium<br>88          | *58-71 Lanthanoid series<br>†90-103 Actinoid series |                                                                             |
|                                    |       | -  |                | 7<br>Lithium<br>3     | 23<br><b>Na</b><br>Sodium   | 39<br>Rotassium<br>19        | 85<br>Rubidium<br>37                           | 133<br><b>CS</b><br>Caesium<br>S5     | Francium<br>87               | *58-71 L<br>†90-103                                 | Key                                                                         |

DATA SHEET

The volume of one mole of any gas is  $24 \, dm^3$  at room temperature and pressure (r.t.p.).

1794/4 S00



|      |               | Certificate of Secondary E                                    |                                   |                            |
|------|---------------|---------------------------------------------------------------|-----------------------------------|----------------------------|
|      | SCIENC        | CE: DOUBLE AWARD<br>CE: PHYSICS<br>CE: PHYSICS (NUFFIE        | PAPER 5<br>PAPER 1<br>LD) PAPER 1 | 1794/5<br>1782/1<br>1787/1 |
|      | FOUND         | ATION TIER                                                    | -                                 |                            |
|      | Friday        | 16 JUNE 2000                                                  | Afternoon                         | 1 hour 30 minutes          |
|      |               | answer on the question paper.<br>naterials required:<br>n/mm) |                                   |                            |
| TIME | 1 hour 30 mir | nutes                                                         |                                   |                            |

### **INSTRUCTIONS TO CANDIDATES**

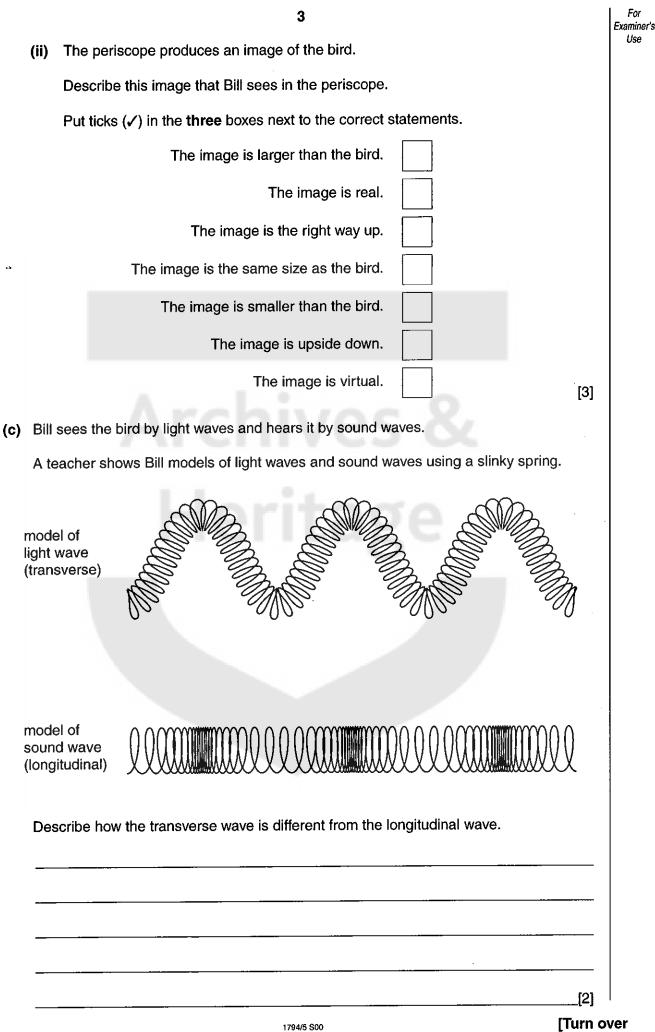
Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

### **INFORMATION FOR CANDIDATES**

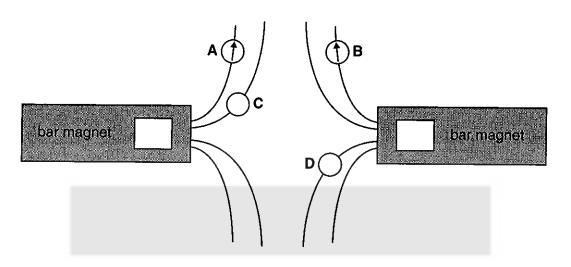
The number of marks is given in brackets [ ] at the end of each question or part question.

The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.


| FOR EXAN | IINER'S USE |
|----------|-------------|
| 1        |             |
| 2        |             |
| 3        |             |
| 4        |             |
| 5        |             |
| 6        |             |
| 7        |             |
| 8        |             |
| 9        |             |
| TOTAL    |             |

2 For Examiner's Use 1 This question is about light. (a) Stars are luminous objects. They give out light. Look at the five pictures below. Two of the objects are not luminous. They can only reflect light. Put (rings) around the two objects which are not luminous. 1 Sun 2 cell 3 candle flame 4 glowing bulb 5 Moon 1.51 [2] (b) Bill uses a periscope to watch a bird from a hideout in the woods. bird hideoút periscope ray of light

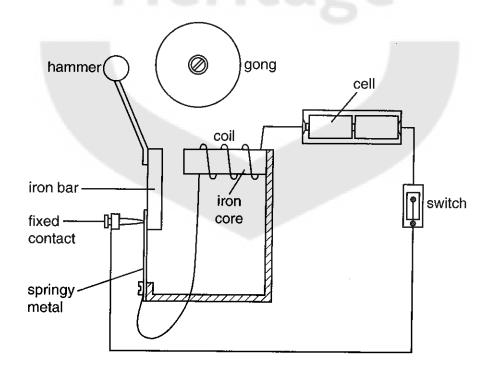
(i) Finish the diagram to show how light from the bird reaches Bill's eye.The ray has been started for you.


Bill's eye

[3]



For Examiner's Use


- 2 This question is about magnetism.
  - (a) The diagram shows the magnetic field between the ends of two bar magnets.



A, B, C and D are plotting compasses.

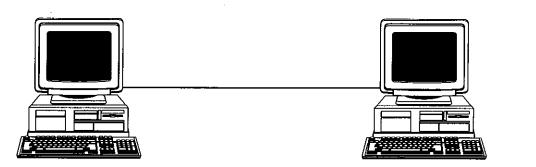
The needles of A and B point in the directions shown.

- (i) Draw arrows in the circles C and D to show the directions of the needles. [2]
- (ii) Label the two poles of the magnets nearest each other in the boxes shown. [2]
- (b) Graham makes a simple electric bell.



| (i)        | The hammer moves to the right and hits the gong.                                                                                                                                  |     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | Explain why.                                                                                                                                                                      |     |
|            |                                                                                                                                                                                   |     |
|            |                                                                                                                                                                                   | [2  |
| (ii)       | The hammer now moves back to the left.                                                                                                                                            |     |
|            | Explain why.                                                                                                                                                                      |     |
|            |                                                                                                                                                                                   |     |
|            |                                                                                                                                                                                   |     |
|            | Archives &                                                                                                                                                                        | [2] |
|            | aham wants the hammer to hit the gong harder.                                                                                                                                     | [2] |
| Ale        | x says 'Why not replace the iron core with a permanent bar magnet?'                                                                                                               | [2] |
|            |                                                                                                                                                                                   | [2] |
| Ale        | x says 'Why not replace the iron core with a permanent bar magnet?'                                                                                                               | [2] |
| Ale        | x says 'Why not replace the iron core with a permanent bar magnet?'                                                                                                               |     |
| Ale        | x says 'Why not replace the iron core with a permanent bar magnet?'                                                                                                               | [2] |
| Ale        | x says 'Why not replace the iron core with a permanent bar magnet?'                                                                                                               |     |
| Ale<br>(i) | x says 'Why not replace the iron core with a permanent bar magnet?' Why is this <b>not</b> a good idea?                                                                           |     |
| Ale<br>(i) | x says 'Why not replace the iron core with a permanent bar magnet?' Why is this <b>not</b> a good idea? Suggest <b>two</b> ways Graham could make the hammer hit the gong harder. | [1] |
| Ale<br>(i) | x says 'Why not replace the iron core with a permanent bar magnet?' Why is this not a good idea? Suggest two ways Graham could make the hammer hit the gong harder. 1.            | [1] |

- 3 This question is about the electromagnetic spectrum.
  - (a) The diagram shows the parts of the electromagnetic spectrum and their wavelength ranges.


6

Draw a straight line from each part of the spectrum to the correct range.

Each part must be joined to a different range. Two have been done for you.

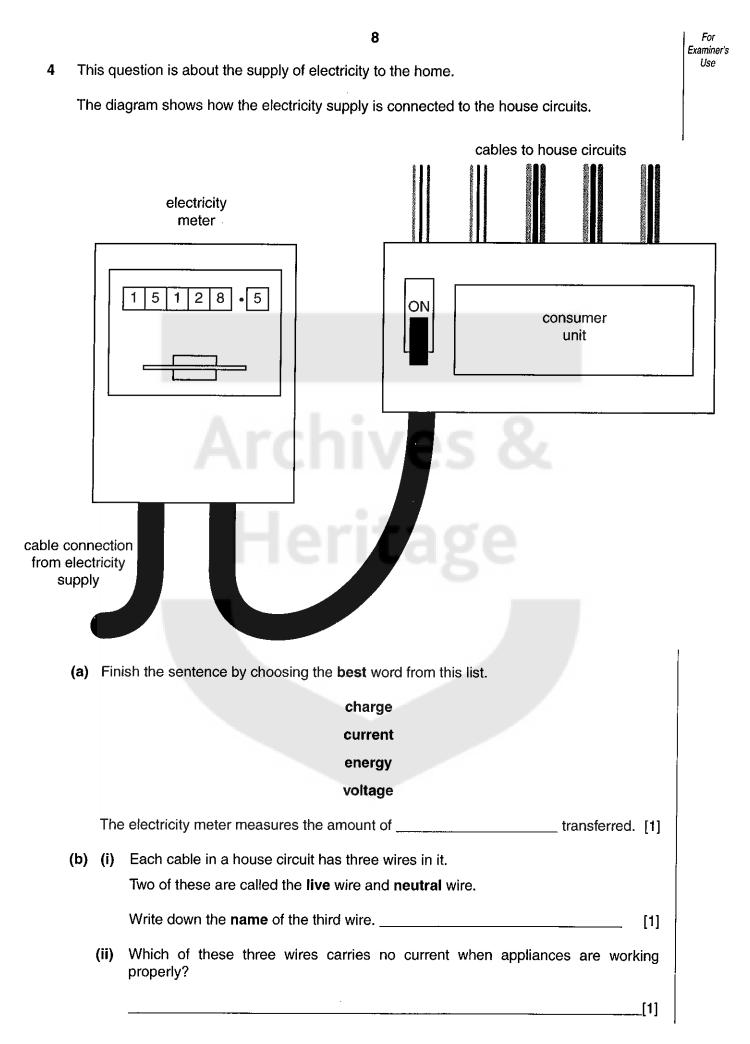
| part of spectrum              |                              | wavelength in mm                        |                          |
|-------------------------------|------------------------------|-----------------------------------------|--------------------------|
| X-rays                        |                              | 0.000 000 000 000 1<br>0.000 000 000 01 |                          |
| gamma rays                    |                              | 0.000 000 001                           |                          |
| ultraviolet                   |                              | 0.000 000 1                             |                          |
| infrared                      |                              | 0.000 01                                | increasing<br>wavelength |
| visible light                 |                              | 0.1                                     |                          |
| radio                         | lerita                       | 10                                      |                          |
| microwaves                    |                              | 100 000                                 |                          |
|                               |                              | 10 000 000                              | [4]                      |
| (b) Finish the sentences by c | hoosing the <b>best</b> word | s from this list.                       |                          |
| Each word may be used o       | once, more than once, o      | or not at all.                          |                          |
|                               | gamma rays                   |                                         |                          |
|                               | infrared<br>microwaves       |                                         |                          |
|                               | radio                        |                                         |                          |
|                               | ultraviolet                  |                                         |                          |
|                               | X-rays                       |                                         |                          |
| The Sun's rays contain        |                              | _ which can cause sunt                  | ourn and                 |
| W                             | hich can cause skin ca       | ncer.                                   |                          |
| Cancer can be treated with    | h                            |                                         |                          |
| Night photography uses        |                              |                                         | [4]                      |

(c) Two computers are linked by optical fibre. Data pulses are sent between them.



- (i) Write down the name of a part of the electromagnetic spectrum which is used to transmit the data pulses.
- (ii) The diagram shows part of an optical fibre.

path of electromagnetic wave carrying data pulse

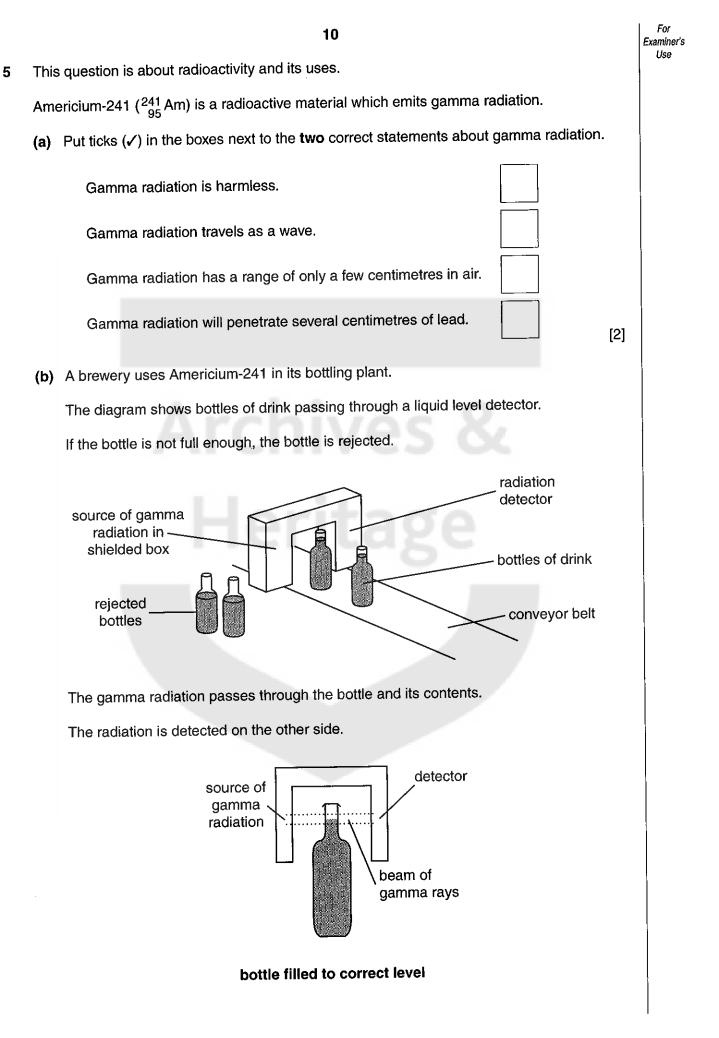

Describe and explain the path of the electromagnetic wave passing along the fibre.

You may add to the diagram or draw other diagrams to help your answer.

[3]

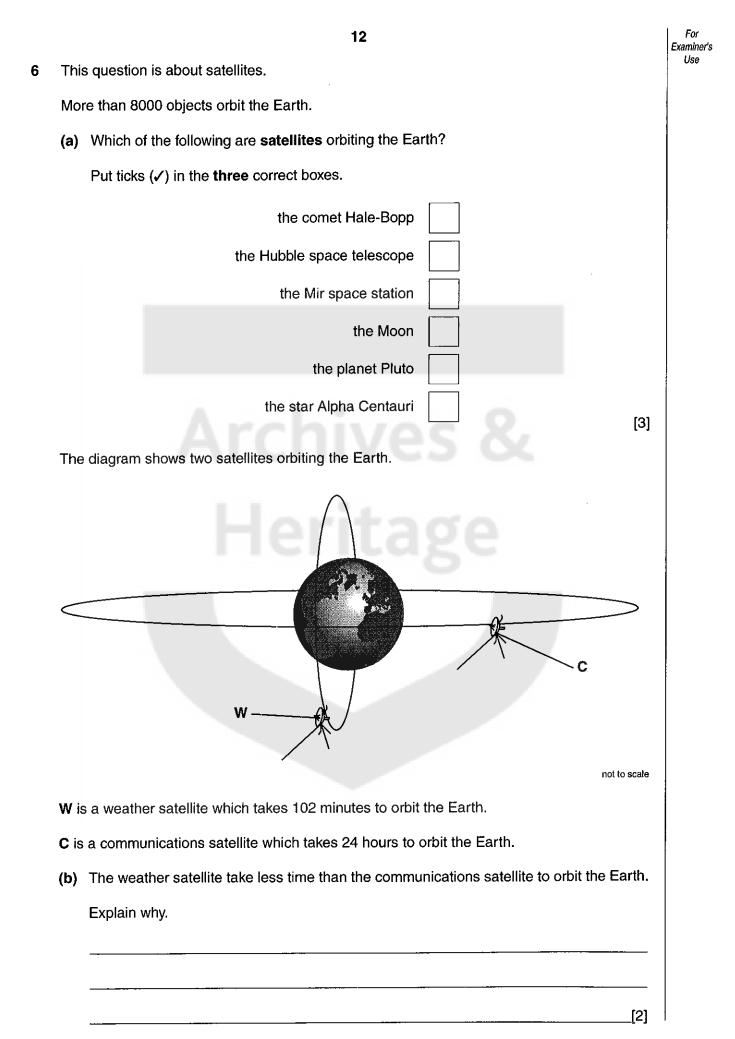
[1]

For Examiner's Use




- For Examiner's Use (iii) A fault occurs in a house circuit. The current in the live wire is now too big. What happens in the consumer unit? [1] (c) The circuit to the immersion heater has thicker wires than the lighting circuit. Suggest why. [2]
- (d) James writes down information about the appliances used in his home between 6 p.m. and 7 p.m.

This is what he wrote.


| appliance    | power rating | time switched | energy used |
|--------------|--------------|---------------|-------------|
|              | in kW        | on in hours   | in kWh      |
| fan heater   | 1.0          | 1.0           | 1.0         |
| TV and video | 0.1          | 1.0           |             |
| kettle       | 2.0          | 0.1           |             |
| water heater | 3.5          | 0.2           |             |
| all lights   | 0.5          | 1.0           |             |

(i) Finish the table by calculating the energy used by each appliance. The first one has been done for you. [2] (ii) Which appliance has cost the most to use between 6 p.m. and 7 p.m.? [1] (iii) The meter reading was 15128.5 kWh at 6 p.m. What is the new meter reading at 7 p.m.? You must show how you work out your answer. new meter reading [2] 1794/5 S00 [Turn over



|                                 | 11                                                                                                        | For<br>Examiner's |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
| source of<br>gamma<br>radiation | detector<br>source of<br>gamma<br>radiation<br>beam of<br>gamma rays<br>detector<br>beam of<br>gamma rays | Use               |
| bott                            | tle not full enough bottle too full                                                                       |                   |
| (i)                             | What happens to the amount of radiation detected if the bottle is not full enough?                        |                   |
|                                 | [1]                                                                                                       |                   |
| (ii)                            | What happens to the amount of radiation detected if the bottle is too full?                               |                   |
|                                 | Archivac 8                                                                                                |                   |
| (iii)                           | For this process to work, all of the bottles must be accurately made to be the same thickness.            |                   |
|                                 | Suggest why.                                                                                              |                   |
|                                 | [2]                                                                                                       |                   |
| (iv)                            | Why is gamma radiation used instead of alpha radiation?                                                   |                   |
|                                 | [1]                                                                                                       |                   |
| (v)                             | Some modern bottling machines use ultrasound instead of gamma radiation to check the liquid level.        |                   |
|                                 | Suggest why ultrasound is used instead of gamma radiation.                                                |                   |
|                                 | [2]                                                                                                       |                   |
|                                 |                                                                                                           |                   |
|                                 |                                                                                                           |                   |
|                                 |                                                                                                           |                   |

Contraction of the local division of



[1]

- (c) Write down the name of the force which keeps the satellites in orbit.
- (d) Asif, in London, telephones his friend, Miguel, in New York.

The microwave signal goes to the communications satellite and back to Earth, a total distance of 90 000 km.

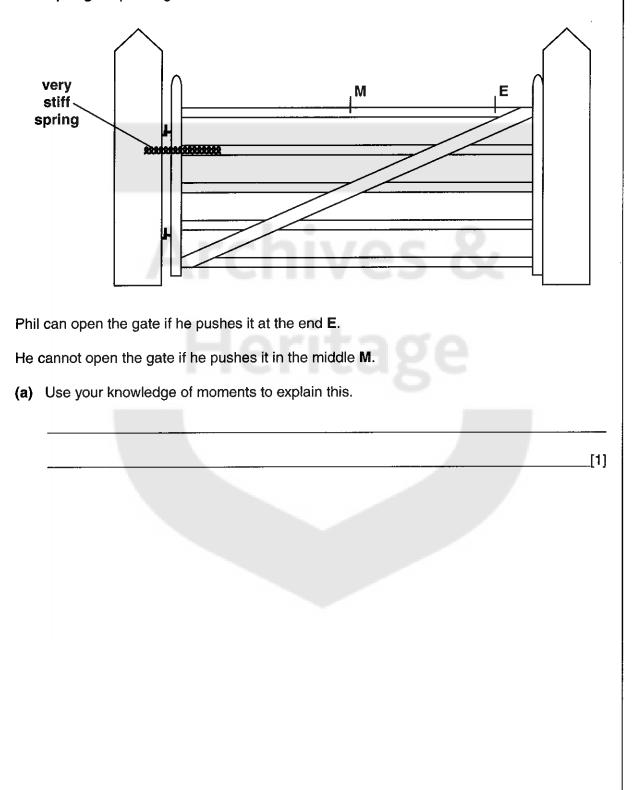
The time delay between when Miguel starts speaking and when Asif hears his voice is 0.3 s.

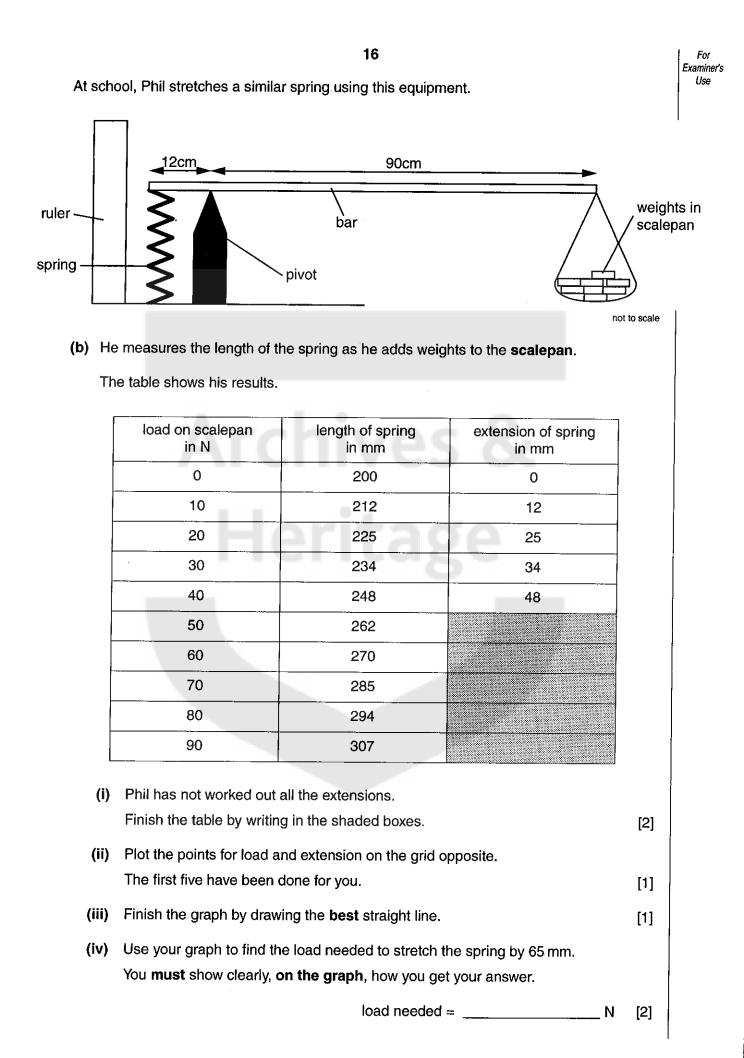
Calculate the speed of the signal.

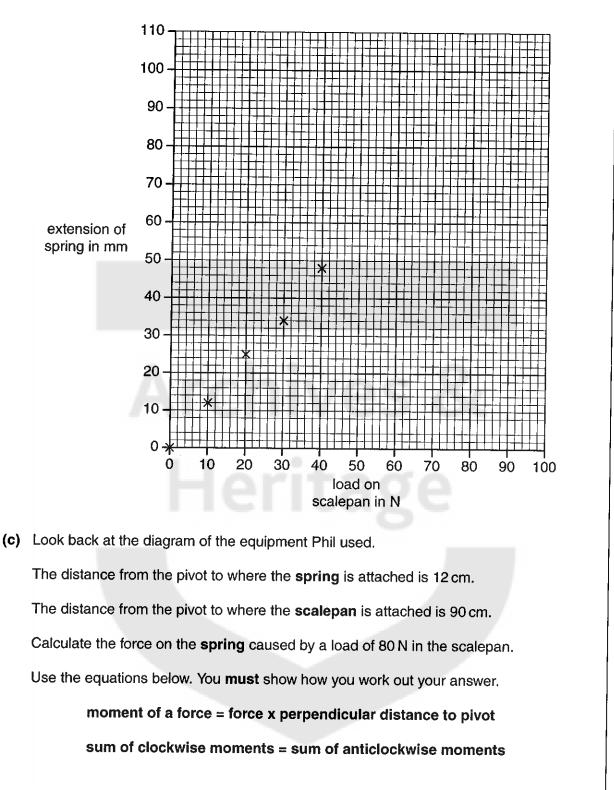
You must show how you work out your answer.

| Arc |       | <b>.</b> |     |
|-----|-------|----------|-----|
|     | speed | km/s     | [3] |
|     |       |          |     |
|     |       |          |     |
|     |       |          |     |

|   |      | 14                                                                                                                                                                                                            | For<br>Examiner's |
|---|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 7 | This | s question is about transferring energy.                                                                                                                                                                      | Use               |
|   | Ene  | ergy can be transferred by conduction, convection, evaporation and radiation.                                                                                                                                 |                   |
|   | (a)  | Finish these sentences.                                                                                                                                                                                       |                   |
|   |      | The Sun transfers energy to the Earth by                                                                                                                                                                      |                   |
|   |      | Air rises above hot areas of the land. This transfers energy by [2]                                                                                                                                           |                   |
|   | This | s marathon runner has been running for more than 23 miles.                                                                                                                                                    |                   |
|   | He i | is very hot and sweaty.                                                                                                                                                                                       |                   |
|   | (b)  | Sweating helps the runner to lose energy.                                                                                                                                                                     |                   |
|   |      | Use your ideas about energy transfer to explain how this happens.                                                                                                                                             |                   |
|   | (c)  | After the race, the runner is given a <b>shiny</b> foil blanket. This stops him cooling down too quickly. Use your ideas about energy transfer to explain <b>two</b> ways in which this happens. 1. 2. 2. [4] |                   |


.


8 This question is about forces.

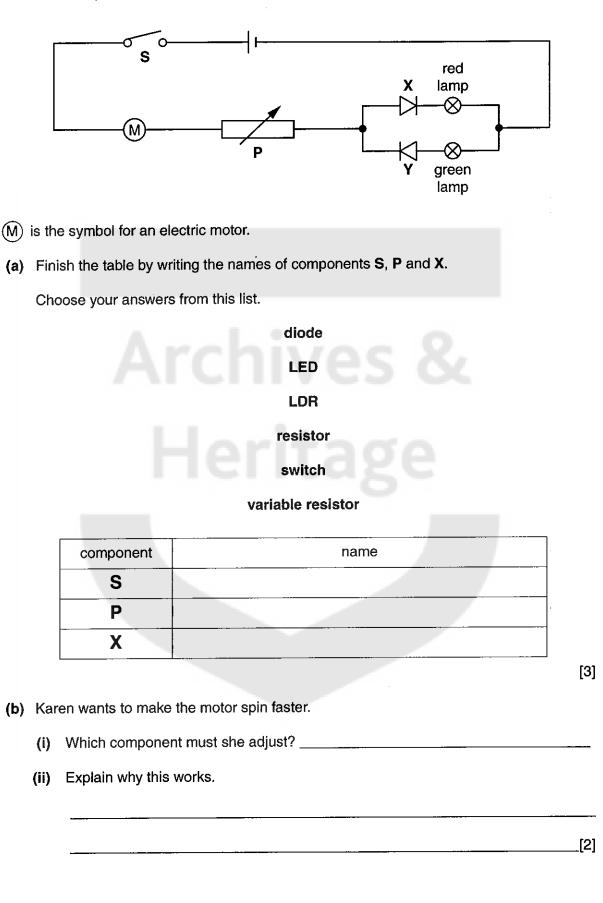

Phil lives on a farm.

State of the state

One of the farm gates has a **very stiff spring** attached between the gate and the gate post. This **spring** keeps the gate closed.








force on spring = \_\_\_\_

[3]

Ν

For Examiner's Use 9 Karen wires up this circuit.



(c) Karen closes S. She writes this down.

| ~ |                     |
|---|---------------------|
|   | • Motor spins       |
|   | • Red lamp is on    |
|   | • Green lamp is off |
|   |                     |

Use your ideas about current in circuits to explain her observations.

[3] (d) Karen reverses the cell. The motor spins in the opposite direction. What happens to the lamps? Finish the sentences. The red lamp \_\_\_\_\_ [1] The green lamp \_\_\_\_



| OCR | Candidate Name | Centre Number | Candidate<br>Number |
|-----|----------------|---------------|---------------------|
|     |                |               |                     |

|                                                                 | ficate of Secondary Educated Examining Group syllabus |                               |                            |
|-----------------------------------------------------------------|-------------------------------------------------------|-------------------------------|----------------------------|
| SCIENCE: I                                                      | PHYSICS (NUFFIELD)                                    | PAPER 6<br>PAPER 2<br>PAPER 2 | 1794/6<br>1782/2<br>1787/2 |
| Friday                                                          | 16 JUNE 2000                                          | Afternoon                     | 1 hour 45 minutes          |
| Candidates answ<br>Additional materia<br>Pencil<br>Ruler (cm/mm | ·                                                     |                               |                            |

TIME 1 hour 45 minutes

## **INSTRUCTIONS TO CANDIDATES**

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

## **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets [] at the end of each question or part question.

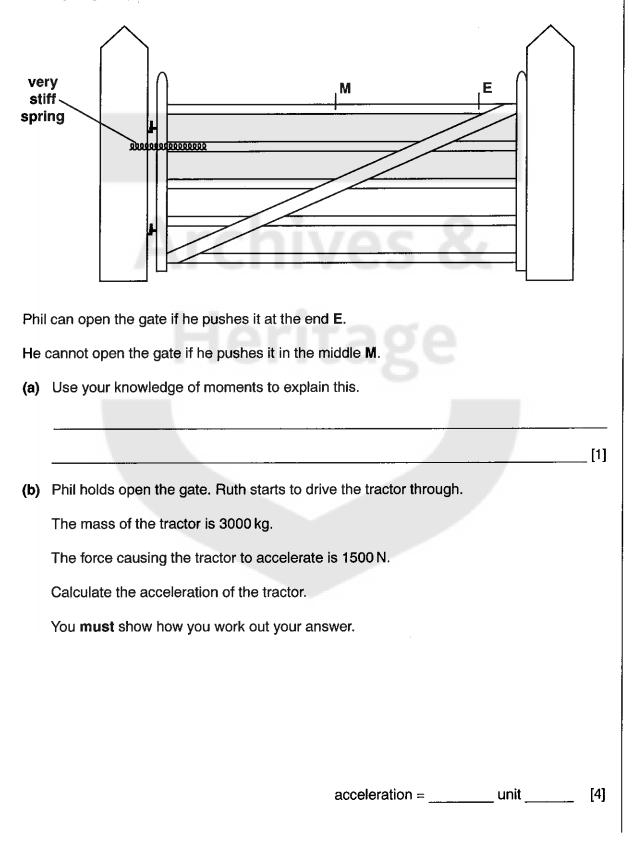
The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

| FOR EXAM | NER'S USE |
|----------|-----------|
| 1        |           |
| 2        |           |
| 3        |           |
| 4        |           |
| 5        |           |
| 6        |           |
| 7        |           |
| 8        |           |
| 9        |           |
| 10       |           |
| TOTAL    |           |

## This question paper consists of 23 printed pages and 1 blank page.

For Examiner's Use

1 This question is about transferring energy.


Energy can be transferred by conduction, convection, evaporation and radiation.

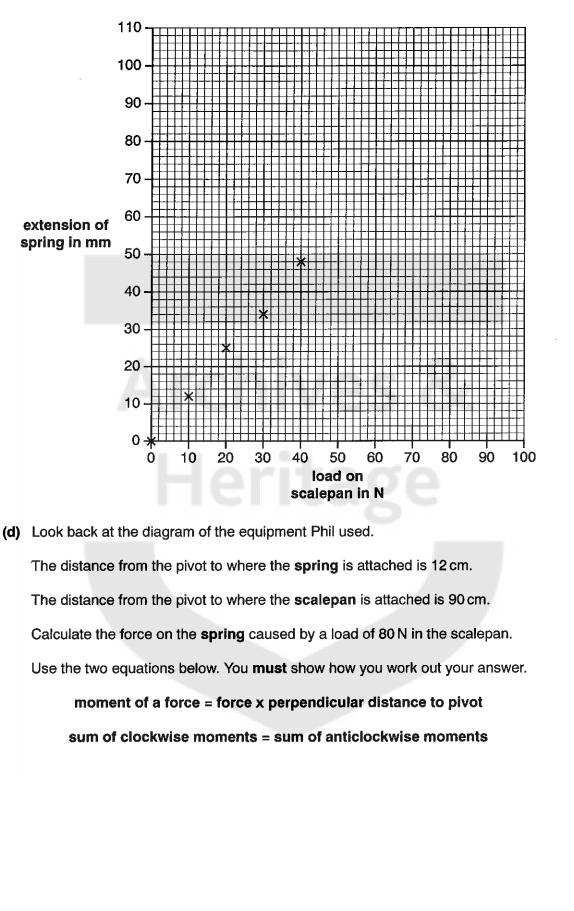
(a) The Sun transfers energy to the Earth. Before reaching the Earth only one process is involved in this transfer. State the process and give a reason for your answer. Process Reason \_\_\_\_\_ [2] This marathon runner has been running for more than 23 miles. He is very hot and sweaty. (b) Sweating helps the runner to lose energy. Use your ideas about energy transfer to explain how this happens. [3] (c) After the race, the runner is given a shiny foil blanket. This stops him cooling down too quickly. Use your ideas about energy transfer to explain two ways in which this happens. 1. \_\_\_\_\_ 2. \_\_\_\_\_ [4]

2 This question is about forces.

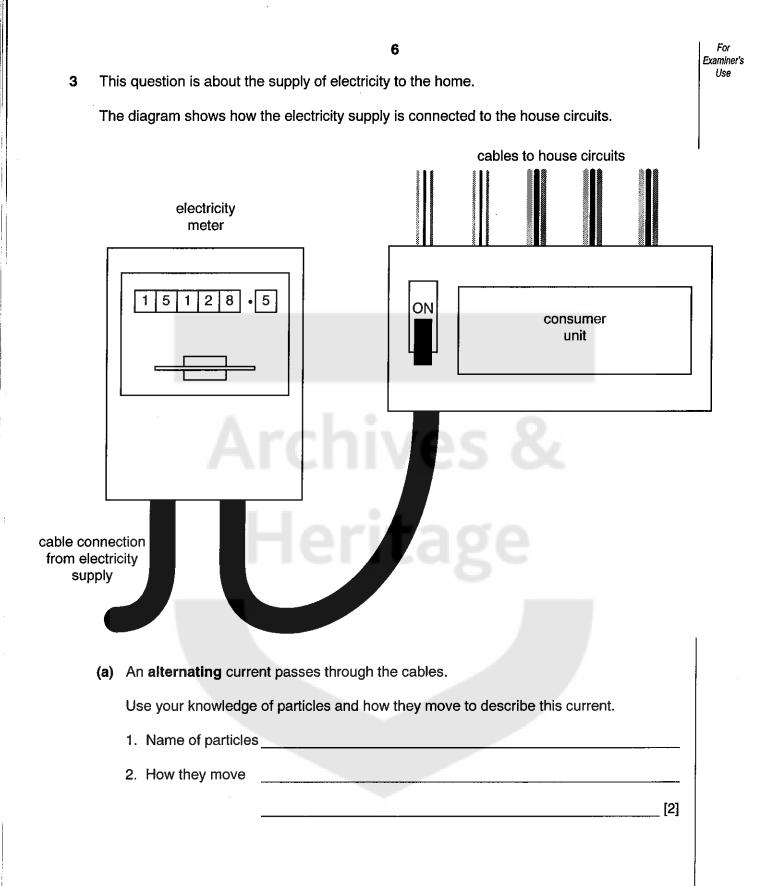
Phil lives on a farm.

One of the farm gates has a **very stiff spring** attached between the gate and the gate post. This **spring** keeps the gate closed.




| load on scalepan<br>in N | length of spring<br>in mm | extension of spring<br>in mm |
|--------------------------|---------------------------|------------------------------|
| 0                        | 200                       | 0                            |
| 10                       | 212                       | 12                           |
| 20                       | 225                       | 25                           |
| 30                       | 234                       | 34                           |
| 40                       | 248                       | 48                           |
| 50                       | 262                       | 62                           |
| 60                       | 270                       | 70                           |
| 70                       | 285                       | 85                           |
| 80                       | 294                       | 94                           |
| 90                       | 307                       | 107                          |

(i) Plot the points for load and extension on the grid opposite. The first five have been done for you. [1]
(ii) Finish the graph by drawing the **best** straight line. [1]
(iii) Use your graph to find the load needed to stretch the spring by 65 mm.


You must show clearly, on the graph, how you get your answer.

load needed = \_\_\_\_\_ N [2]

For Examiner's Use



force on spring = \_\_\_\_\_ N [3]



[2]

(b) The circuit to the immersion heater has thicker wires than the lighting circuit.

Suggest why. (c) James writes down information about the appliances used in his home between 6 p.m. and 7 p.m.

This is what he wrote.

| appliance    | power rating | time switched | energy used |
|--------------|--------------|---------------|-------------|
|              | in kW        | on in hours   | in kWh      |
| fan heater   | 1.0          | 1.0           | 1.0         |
| TV and video | 0.1          | 1.0           |             |
| kettle       | 2.0          | 0.1           |             |
| water heater | 3.5          | 0.2           | 10          |
| all lights   | 0.5          | 1.0           |             |

- (i) Finish the table by calculating the energy used by each appliance. The first one has been done for you.
- (II) Which appliance has cost the most to use between 6 p.m. and 7 p.m.?
- [1]

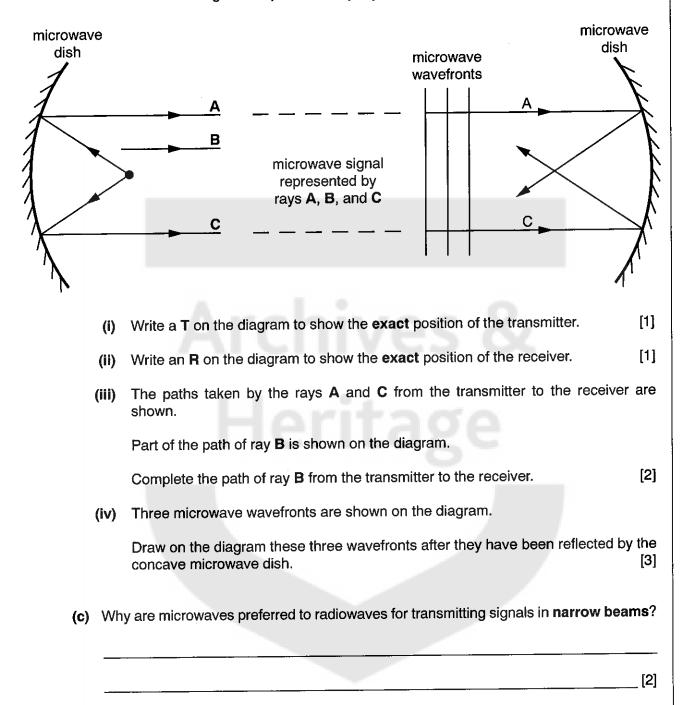
[2]

(iii) The meter reading was 15128.5 kWh at 6 p.m.

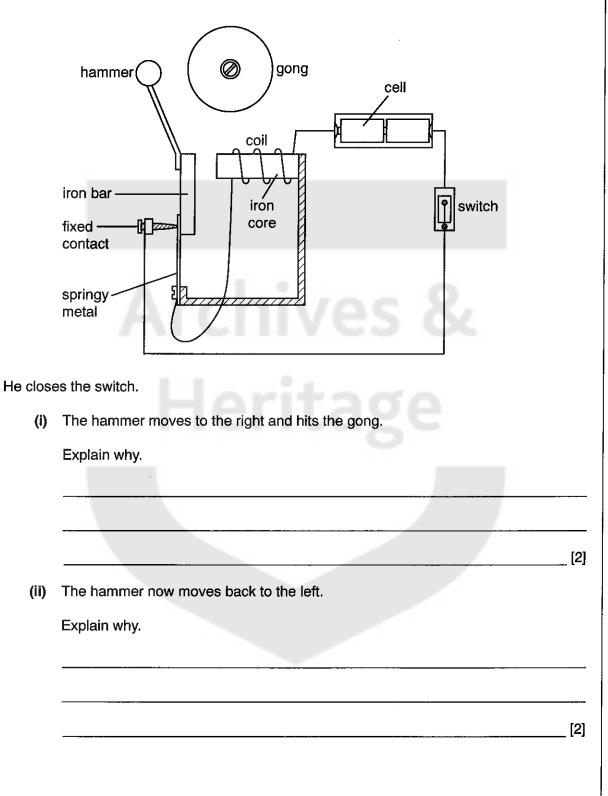
What is the new meter reading at 7 p.m.?

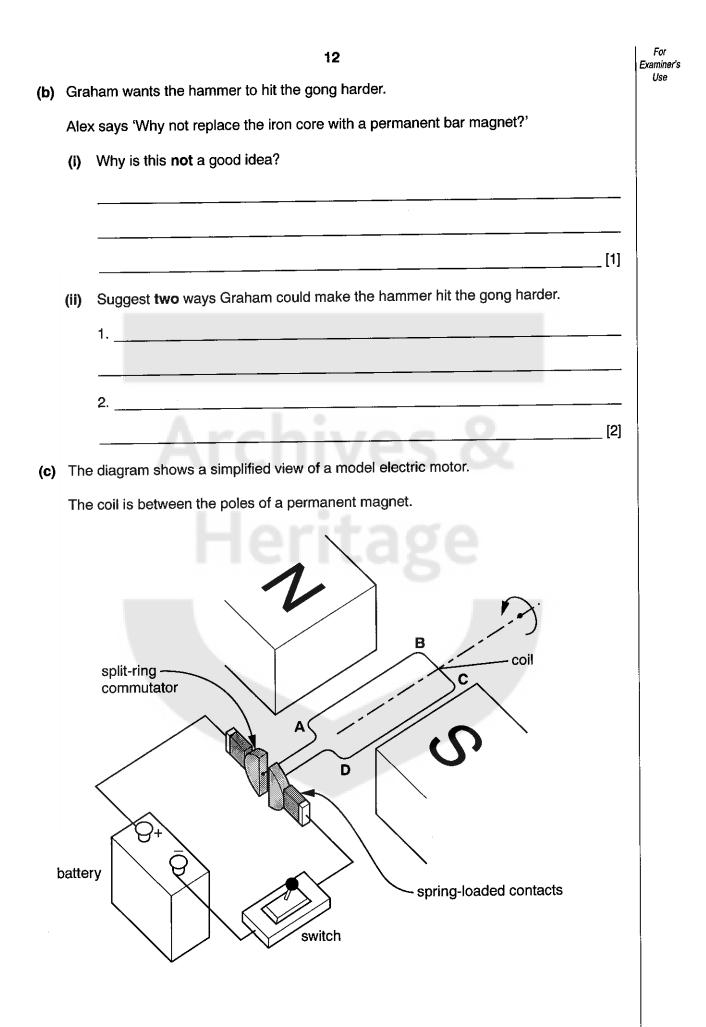
You must show how you work out your answer.

new meter reading \_


[2]

For 8 Examiner's Use This question is about optical fibres. 4 (a) The diagram shows part of an optical fibre. path of electromagnetic wave carrying data pulse Describe and explain the path of the electromagnetic wave passing along the fibre. You may add to the diagram or draw other diagrams to help your answer. [3] (b) Doctors use endoscopes (fibrescopes) to see inside a patient's stomach. The diagram shows part of the endoscope. It shows two bundles of optical fibres inside a plastic tube. two bundles plastic tube of optical fibres stomach (i) Explain why endoscopes must have two bundles of optical fibres.


[2]


| /11/    | The fibres is one of the bundles must be successful in the same well-                       | hat  |
|---------|---------------------------------------------------------------------------------------------|------|
| (ii)    | The fibres in one of the bundles must be arranged in the same pattern at ends. Explain why. | both |
|         |                                                                                             | _[1] |
| (iii)   | How does using an endoscope help a doctor to study a patient's stomach?                     |      |
|         |                                                                                             | _[1] |
|         |                                                                                             |      |
| his qu  | estion is about telecommunications.                                                         |      |
|         | Archives &                                                                                  |      |
|         | Heritage                                                                                    |      |
| ishes v | (Telecom) Tower in London has many<br>which receive and transmit signals<br>icrowaves.      |      |
|         | e signal received from another transmitter<br>ery weak.                                     |      |
| Suę     | ggest a way of overcoming this problem.                                                     |      |
|         |                                                                                             | _[1] |
|         |                                                                                             |      |
|         |                                                                                             |      |
|         |                                                                                             |      |
|         |                                                                                             |      |
|         |                                                                                             |      |

(b) The diagram shows how two concave microwave dishes transmit and receive signals. The microwave signal is represented by rays **A**, **B** and **C**.

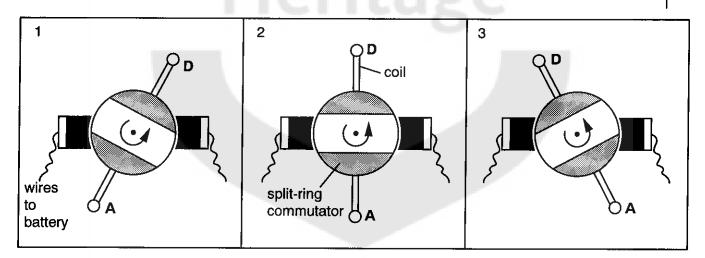


- 6 This question is about electromagnetism.
  - (a) Graham makes a simple electric bell.





[3]

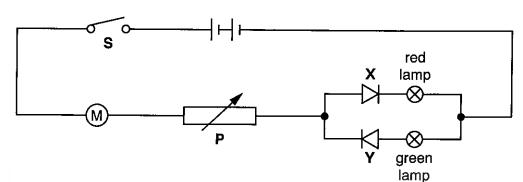

When the switch is closed the coil ABCD starts to spin.

(i) Use your ideas about forces on conductors in magnetic fields to explain why it starts to spin.

13

Drawing on the diagram may help your answer.

- (ii) What will happen if the battery terminals are reversed?
  - Explain why.
- (iii) The diagrams show the split-ring commutator as the coil of the motor spins through the vertical position.




Explain how the split-ring commutator allows the motor to continue to spin.

Drawing forces on the diagram may help your answer.

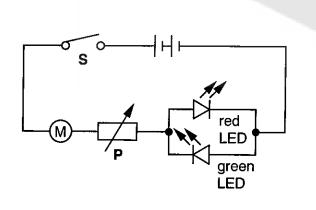
[2]

7 Karen wires up this circuit.



(M) is the symbol for an electric motor.

(a) Karen closes S. She writes this down.


| • Motor spins       |        |
|---------------------|--------|
| • Red lamp is on    | IVes & |
| • Green lamp is off |        |

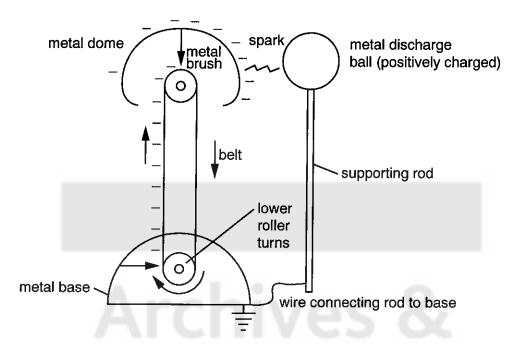
She now reduces the resistance of  $\mathbf{P}$ . What observations will she make about the motor and the lamps now?

motor red lamp green lamp

(b) She replaces X, Y and the lamps with red and green LEDs.

[3]




current-voltage graph for a red LED

in volts

|   | 15                                                                                                                                |       |       |
|---|-----------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| ç | graph shows how current varies with voltage across a red LED.                                                                     |       |       |
|   | graph for a green LED is very similar.                                                                                            |       |       |
|   | Use the graph to find the current through the red LED when the voltage a 1.6 V.                                                   | cross | it is |
|   | You <b>must</b> show clearly on the graph how you get your answer.                                                                |       |       |
|   | current =                                                                                                                         | _ mA  | [2]   |
|   | Calculate the resistance of the red LED when the voltage across it is 1.6                                                         | V.    |       |
|   | You <b>must</b> show how you work out your answer.                                                                                |       |       |
|   |                                                                                                                                   |       |       |
|   |                                                                                                                                   |       |       |
|   | resistance = unit                                                                                                                 |       | [4]   |
|   | resistance = unit<br>Use information from the graph to explain how the resistance change<br>voltage increases from zero to 2.0 V. |       | the   |
|   | Use information from the graph to explain how the resistance change                                                               | es as | the   |
|   | Use information from the graph to explain how the resistance change<br>voltage increases from zero to 2.0 V.                      | es as | the   |
|   | Use information from the graph to explain how the resistance change<br>voltage increases from zero to 2.0 V.                      | es as | the   |
|   | Use information from the graph to explain how the resistance change<br>voltage increases from zero to 2.0 V.                      | es as | the   |
|   | Use information from the graph to explain how the resistance change<br>voltage increases from zero to 2.0 V.                      | es as | the   |

8 This question is about static electricity.

Frances is using a Van de Graaff generator to make sparks.



The lower roller is turned.

Negative charge is carried by the belt up to the upper roller.

The negative charge is transferred by the brush to the metal dome.

(a) (i) The discharge ball becomes positively charged.

The supporting rod must be conducting for this to happen. Explain why.

[2]

(II) Write an X on the metal discharge ball to show where there is most positive charge. [1]

[2]

[3]

V

(b) A spark occurs when enough negative charge collects on the metal dome.

The air becomes conducting.

(i) Use your knowledge of particles and how they move to describe the current between the dome and the ball.

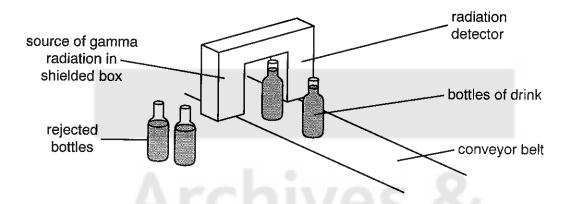
(ii) 0.001 mC of charge is transferred in a spark. 90 mJ of energy is released.

voltage = \_

Calculate the voltage between the dome and the ball which causes this transfer.

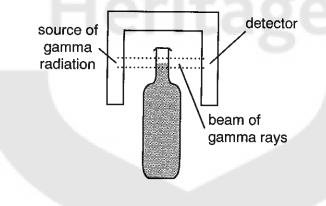
You **must** show how you work out your answer.



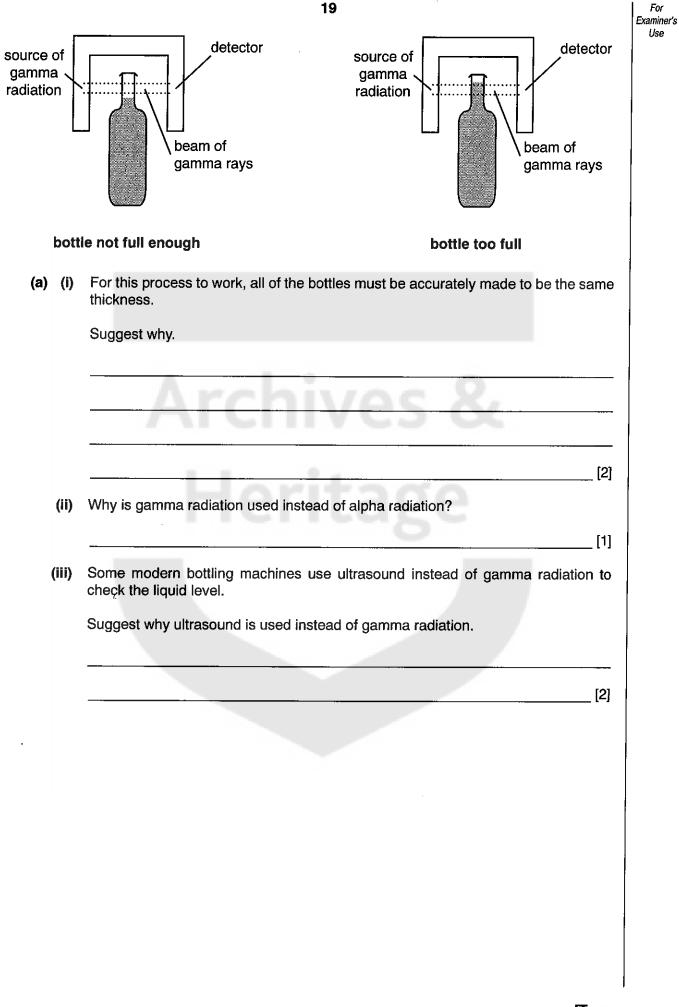

9 This question is about radioactivity and its uses.

Americium-241 ( $^{241}_{95}$  Am) is a radioactive material which emits gamma radiation.

A brewery uses Americium-241 in its bottling plant.


The diagram shows bottles of drink passing through a liquid level detector.

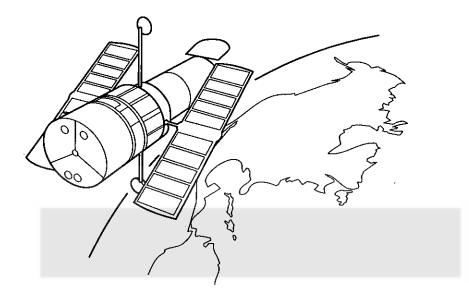
If the bottle is not full enough, the bottle is rejected.




The gamma radiation passes through the bottle and its contents.

The radiation is detected on the other side.




bottle filled to correct level

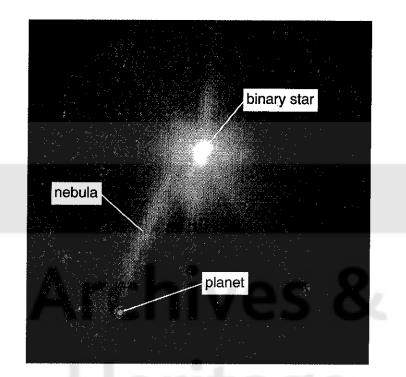


| active<br>rce<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A.<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cobalt-60 is another radioactive material used in industry which emits g<br>radiation.<br>It has a half-life of 5 years.<br>Plot accurately on the grid the activity of the Cobalt-60 after 5, 10, 15 a<br>years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points. | amma<br>nd 20 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Cobalt-60 is another radioactive material used in industry which emits gamma adiation.<br>It has a half-life of 5 years.<br>Hot accurately on the grid the activity of the Cobalt-60 after 5, 10, 15 and 20 years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points. [3]<br>the drawing the dest line through the point (×) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cobalt-60 is another radioactive material used in industry which emits gradiation.<br>It has a half-life of 5 years.<br><b>Plot accurately</b> on the grid the activity of the Cobalt-60 after 5, 10, 15 a years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points. | nd 20         |
| radiation.<br>It has a half-life of 5 years.<br>Plot accurately on the grid the activity of the Cobalt-60 after 5, 10, 15 and 20 years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points. [3]<br>further the graph by drawing the best line through the points. [3]<br>thy of active the difference of the differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | radiation.<br>It has a half-life of 5 years.<br><b>Plot accurately</b> on the grid the activity of the Cobalt-60 after 5, 10, 15 a years.<br>The activity at the start has been marked for you (X).<br>Finish the graph by drawing the best line through the points.                                                                         | nd 20         |
| Plot accurately on the grid the activity of the Cobalt-60 after 5, 10, 15 and 20 years.<br>The activity at the start has been marked for you (x).<br>Finish the graph by drawing the best line through the points. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plot accurately on the grid the activity of the Cobalt-60 after 5, 10, 15 a years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points.                                                                                                                                |               |
| <pre>years.<br/>The activity at the start has been marked for you (x).<br/>Finish the graph by drawing the best line through the points. [3]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | years.<br>The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points.                                                                                                                                                                                                            |               |
| The activity at the start has been marked for you (×).<br>Finish the graph by drawing the best line through the points. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>http://www.sectivity.at.the start has been marked for you (x). Finish the graph by drawing the best line through the points. </pre>                                                                                                                                                                                                     | [3]           |
| Finish the graph by drawing the best line through the points. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Finish the graph by drawing the best line through the points.                                                                                                                                                                                                                                                                                | [3]           |
| hit of factive fraction of the set of the American-241 (half-life 460 years). The same starting point (X) as before. Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vity of bactive                                                                                                                                                                                                                                                                                                                              |               |
| active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active | vity of pactive                                                                                                                                                                                                                                                                                                                              |               |
| active<br>rce<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A.<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | active                                                                                                                                                                                                                                                                                                                                       |               |
| active<br>rce<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A.<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | active                                                                                                                                                                                                                                                                                                                                       |               |
| active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active | active                                                                                                                                                                                                                                                                                                                                       | +             |
| active<br>rce (iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | active                                                                                                                                                                                                                                                                                                                                       | 1 1           |
| active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active | active                                                                                                                                                                                                                                                                                                                                       |               |
| active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active<br>active | active                                                                                                                                                                                                                                                                                                                                       |               |
| (ii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years) changes during the twenty years.<br>Use the same starting point ( $\times$ ) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┣─╆┥┤╎╎╏┅╇╼┿┥╎╎╏╞┥┽╼╀╎╏╎╎┥╋┑┽╵╎╎╎╎╏╞╍┿╼┿╍╎╎╎╎╎┾╶┿╸                                                                                                                                                                                                                                                                                           |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                              |               |
| time in years<br>(iii) Sketch on the grid how the activity of the Americium-241 (half-life 460 years)<br>changes during the twenty years.<br>Use the same starting point (X) as before.<br>Label your line A. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                            |               |
| changes during the twenty years.<br>Use the same starting point ( $\times$ ) as before.<br>Label your line <b>A</b> . [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                              |               |
| changes during the twenty years.<br>Use the same starting point ( $\times$ ) as before.<br>Label your line <b>A</b> . [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (iii) Sketch on the grid how the activity of the Americium 241 (helf life 460 )                                                                                                                                                                                                                                                              |               |
| Use the same starting point ( $\times$ ) as before.<br>Label your line <b>A</b> . [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              | ears)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Label your line A.                                                                                                                                                                                                                                                                                                                           | [1]           |
| (iv) I loo your graph to evaloin why Cahalt CO is not a suitable waits action and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (iv) Use your graph to explain why Cobalt-60 is not a suitable radioactive sour                                                                                                                                                                                                                                                              |               |

[2]

**10** The Hubble Space Telescope orbits the Earth at a height of 600 km.




(a) Calculate the time it takes for a microwave signal to reach Earth from the satellite.The speed of the microwave signal is 300 000 km/s.

You must show how you work out your answer.

| time = |  | _s | [3] |
|--------|--|----|-----|

(b) This picture was taken by the Hubble Space Telescope in August 1997.

It shows the birth of binary stars. These are a pair of stars which orbit around each other.



Read the following sentences from the NASA press release.

Then use them to help you answer the questions.



## HUBBLE'S FIRST DIRECT LOOK AT POSSIBLE PLANET AROUND ANOTHER STAR

This NASA Hubble Telescope infra-red picture of new-born binary stars shows a long thin nebula pointing towards a faint object. This could be the first planet outside our solar system to be pictured directly.

The brightest objects in the picture are the binary stars. These illuminate a large cloud of gas and dust from which the stars formed. So much dust surrounds these stars that they are almost invisible at optical wavelengths. However, infra-red light penetrates the dust, revealing the new-born stars.

At the bottom left of the picture, there is a point of light many times fainter than the stars. Calculations show that this object is much too dim to be an ordinary star. The brightness of this object suggests it could be a hot planet several times the mass of Jupiter. The planet is 200 billion kilometres from the star (1400 times the Earth's distance from the Sun). A bright streak (nebula) stretches from the star towards the planet. This may suggest that the planet was ejected from the star system.

Present ideas predict that very young giant planets are still warm from being formed by gravitational contraction. Temperatures can be as high as a few thousand degrees Celsius. This makes them relatively bright in infra-red light compared with old giant planets such as Jupiter.

5

10

|                  | 23                                                                                                                                          |       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (i)              | The picture of the star system has been formed using infra-red light rather to visible light.                                               | thar  |
|                  | Use your knowledge of waves to explain the difference between infra-red light visible light.                                                | anc   |
|                  |                                                                                                                                             | _ [1] |
| (ii)             | Why was visible light not used?                                                                                                             |       |
|                  |                                                                                                                                             | _ [1] |
| Sta              | 's form from clouds of gas and dust. Explain how.                                                                                           |       |
|                  |                                                                                                                                             | _[1]  |
| Cal              | culations show that the object referred to in line 9 is a planet rather than a star.                                                        |       |
| (i)              | What information about the planet in the passage supports this?                                                                             |       |
|                  | Lloritogo                                                                                                                                   | _ [1] |
| (ii)             | Suggest what process cannot be occurring in the planet's core.                                                                              |       |
|                  |                                                                                                                                             | [1]   |
|                  |                                                                                                                                             | ho    |
|                  | would you expect the acceleration due to gravity at the surface of the planet to have a surface of the planet to have a surface of Jupiter? | 000   |
|                  |                                                                                                                                             | _ [1] |
| muc<br>——<br>Wha |                                                                                                                                             | _ [1] |

**BLANK PAGE** 

