

A Level

Chemistry A

Session:	2010 June
Туре:	Mark scheme
Code:	H034-H434
Units:	F321; F322; F324; F325

© UCLES

Chemistry A

Advanced Subsidiary GCE F321

Atoms, Bonds and Groups

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

- 1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.
- 2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the science is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.
- 3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the Additional Guidance.
- 5 If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.
- 6 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

/

• if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (e.g. 'can't do', 'don't know') OR
- if there is any sort of mark which is not an attempt at the question (e.g. a dash, a question mark)
- 7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.
 - alternative and acceptable answers for the same marking point
 - **not** = answers which are not worthy of credit
 - reject = answers which are not worthy of credit
 - **ignore** = statements which are irrelevant
 - **allow** = answers that can be accepted
 - () = words which are not essential to gain credit
 - = underlined words must be present in answer to score a mark
 - ECF = error carried forward
 - AW = alternative wording
 - ora = or reverse argument

- F321
- 8 Annotations: the following annotations are available on SCORIS.
 - ✓ = correct response
 - × = incorrect response
 - bod = benefit of the doubt
 - nbod = benefit of the doubt <u>**not**</u> given
 - ECF = error carried forward
 - ^ = information omitted
 - I = ignore
 - R = reject
- 9 The Comments box

The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.

Please do not use the comments box for any other reason.

Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

Question	Expected Answers	Marks	Additional Guidance
1 a i	¹¹⁸ Sn 50p 68n 50e Complete row ✓	1	
ii	¹²⁰ ₅₀ Sn has (two) more neutrons / 70 neutrons ✓ ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)
b i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope'
	compared with 1/12th (the mass) \checkmark		ALLOW compared with (the mass of) carbon-12 which is 12
	of (one atom of) carbon-12 ✓		ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12
C	moles of Sn = $\frac{2080}{118.7}$ = 17.52 \checkmark 17.52 × 6.02 × 10 ²³ = 1.05 × 10 ²⁵ atoms \checkmark	2	ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118, which makes moles of Sn = 17.63 ALLOW 105 × 10 ²³ atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100 × 1 ALLOW ECF for any calculated moles of Sn (based on use of any A_r value) × 6.02×10^{23} if shown to 3 sig figs DO NOT ALLOW mass of Sn × 6.02×10^{23}

Qu	esti	on	Exp	ected Answer	S	Marks	Additional Guidance
1	d		<u>78.8</u> and	<u>21.2</u>		2	ALLOW SnO ₂ for one mark if no working shown
			118.7	16.0			ALLOW use of 118 for this part
			OR				
			= 0.66(4) and	= 1.3(25)	\checkmark		IGNORE incorrect rounding provided given to two sig figs
							IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A _r of tin (118.7
			0.66(4) = 1	<u>1.325</u> = 2			or 118) used
			0.66(4)	0.66(4)			
			ans = SnO₂ ✓				ALLOW Sn ₂ O for 1 mark ECF if both inverted mole calculations are shown
							ALLOW Sn ₃ O ₅ with evidence of use of both atomic numbers for one mark
							ALLOW 2 marks if candidate has adopted the following approach
							78.8% of mass = 118.7
							100% of mass = 118.7/0.788 = 150.6 (151)
							150.6 – 118.7 = 31.9 (32) Both masses would get one mark
							31.9/16 = 2
					Total	9	

Qu	Question		Expected Answers	Marks	Additional Guidance
2	а	i	Any two from $\sqrt{}$ H ⁺ SO ₄ ²⁻ HSO ₄ ⁻	2 max	DO NOT ALLOW OH ⁻ IGNORE state symbols Charge is essential ALLOW H_3O^+ for H^+ and SO_4^{-2} for SO_4^{2-} One answer incorrect = 1 mark max Two answers incorrect = 0 marks
		ii	Effervescence OR fizzing OR bubbling OR gas produced \checkmark K ₂ CO ₃ dissolves OR disappears OR colourless solution is formed \checkmark H ₂ SO ₄ + K ₂ CO ₃ \rightarrow K ₂ SO ₄ + CO ₂ + H ₂ O \checkmark	3	DO NOT ALLOW 'carbon dioxide produced' without 'gas' DO NOT ALLOW incorrectly named gas produced DO NOT ALLOW 'precipitate forms' = CON ALLOW 'it' for K ₂ CO ₃ DO NOT ALLOW mark for 'dissolves' from state symbols in equation DO NOT ALLOW 'potassium' IGNORE state symbols ALLOW ionic equation
	b	i	$\frac{24.6}{1000}$ × 0.100 = 0.00246 mol ✓ (2.46 × 10 ⁻³ mol) 1000	1	DO NOT ALLOW 0.0025 as this would lead to 100% in part (iii) DO NOT ALLOW 0.0024 due to incorrect rounding
		ii	$0.00246 \times 2 = 0.00492 \text{ mol } \checkmark (4.92 \times 10^{-3} \text{ mol})$	1	ALLOW ECF for ans (i) × 2
			Moles of NaOH in 250 cm ³ = $0.00492 \times \frac{250}{25} = 0.0492 \text{ mol } \checkmark$ Mass of NaOH in original sample $= 0.0492 \times 40.0 = 1.968 \text{ g } \checkmark$ % purity $\frac{1.968}{2.00} \times 100 = 98.4\% \checkmark$	3	ALLOW ECF for ans (ii) \times 10 ALLOW 1.97g ALLOW ECF for moles of NaOH \times 40 ALLOW 98.5% (from use of 1.97) ALLOW ECF for mass of NaOH \times 100 2.00 DO NOT ALLOW ECF for 3rd marking point if answer >100% ALLOW ECF for 3rd marking point if answer = 100% ALLOW molar approach for second and third marks i.e. mol of (expected) NaOH in 2.00 g = 2/40 = 0.05(00) mol (0.0492/0.0500) \times 100 = 98.4% 1.6% (the percentage of the impurity present) is likely to be 2 marks, but please check 9.84% has not multiplied up by 10 for first marking point is likely to be 2 marks, but please check
			Total	10	

Qı	Question		Expected Answers	Marks	Additional Guidance
3	a		3d 4p ✓	1	Correct order is essential ALLOW '3D'
	b	i	A region (within an atom) that can hold (up to) two electrons ✓ (with opposite spin)	1	ALLOW 'can be found' for 'can hold' ALLOW 'area' OR 'volume' OR 'space' for region DO NOT ALLOW 'place' for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
		ii	11 🗸	1	
	С		18 🗸	1	
	d	i	2nd, 3rd OR 1817, 2745 ✓ 10th, 11th OR 38458, 42655 ✓	2	Mark as pairs IGNORE references to 12th and 13th Three answers with one correct pair = 1 mark Four answers with one correct pair = 1 mark Five answers with both pairs correct = 1 mark Five answers with only one pair correct = 0 marks Six (or more) answers = 0 marks
		ii	$Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-} \checkmark \checkmark$	2	ALLOW $AI^{2+}(g) - e^- \rightarrow AI^{3+}(g)$ for 2 marks ALLOW 1 mark for $AI(g) \rightarrow AI^{3+}(g) + 3e^-$ as states are correct ALLOW 1 mark for $AI^{2+}(g) + 2e^- \rightarrow AI^{3+}(g) + 3e^-$ as states are correct ALLOW 1 mark if symbol of AI is incorrect, but equation is otherwise fully correct. ALLOW e for electron (i.e. no charge) IGNORE states on electron
			Total	8	

Que	uestion		Expected Answers	Marks	Additional Guidance
4	а	i	1 = purple / lilac / violet / pink / mauve \checkmark 3 = orange \checkmark	2	ALLOW any combination of these but no others for 1 ALLOW yellow as an alternative for 3 DO NOT ALLOW 'precipitate' in either
		ii	$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2 \checkmark$	1	IGNORE state symbols ALLOW correct multiples, including fractions
		iii	Addition of Br₂(aq) to I⁻(aq) ions ✓	1	 ALLOW Addition of bromine to iodide (i.e. aqueous not needed) DO NOT ALLOW Addition of bromine to iodine ALLOW Addition of l₂ to Br⁻, but NOT if accompanied by description of displacement of bromine ALLOW Br₂ + l⁻ even if seen in an unbalanced equation
	b	i	Cl ₂ is 0 AND HCl is −1 AND HClO is (+)1 ✓	3	ALLOW 1- ALLOW 1+ Oxidation states may be seen above the equation DO NOT ALLOW CI ⁻ in HCI DO NOT ALLOW CI ⁺ in HCIO in text of answer DO NOT ALLOW chlorIDE in place of 'chlorine'
			Chlorine has been both oxidised and reduced OR		IF CORRECT OXIDATION STATES ARE SEEN, ALLOW second and third marking
			Chlorine's oxidation state has increased and decreased ✓		points for: Chlorine is oxidised to form HCIO Chlorine is reduced to form HCI ALLOW CI or Cl ₂ for 'chlorine'
			Chlorine has been oxidised (from 0) to +1 AND chlorine has been reduced (from 0) to $-1 \checkmark$ (These two points together subsume the second marking point)		IGNORE reference to electron loss / gain if correct DO NOT ALLOW 3rd mark for reference to electron loss / gain if incorrect ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' if chlorine / chloride is not mentioned
		ii	Kills bacteria OR 'kills germs' kills micro-organisms OR makes water safe to drink OR sterilises water ✓ OR 'disinfects'	1	ALLOW to make water potable ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water'
	С	i	Thermal decomposition ✓	1	DO NOT ALLOW just 'decomposition' or 'thermodecomposition'
		ii	$\frac{1.47}{84.3} = 0.0174 \text{ mol of MgCO}_3 \checkmark$ $0.0174 \times 24.0 = 0.418 \text{ dm}^3$ OR (Calculator value × 24.0) = 0.419 dm ³ ✓	2	ALLOW mol of MgCO ₃ as calculator value of 0.017437722 or correct rounding to 2 sig figs or more DO NOT ALLOW 0.0175 (this has taken M _r of MgCO ₃ as 84) ALLOW , for 2nd mark calculated moles of MgCO ₃ \times 24(.0) as calculator value or correct rounding to 2 sig figs or more [e.g. 0.017 \times 24(.0) = 0.408] DO NOT ALLOW 84.3 or 1.47 \times 24(.0) as no mole calculation has been done ALLOW two marks for correct answer with no working shown

Q	uesti	ion	Expected Answers	Marks	Additional Guidance
4	С	iii	The ease of (thermal) decomposition decreases (down the group) ora ✓	1	ALLOW (thermal) stability increases IGNORE more heat would be needed IGNORE 'takes longer' or 'is slower' IGNORE reference to trend in reactivity IGNORE answers which include 'more / less mol of CO ₂ '
			Total	15	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а		(+) $(+)$	3	Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row
			+ $ +$ $ +$ $ +$ Delocalised electrons		ALLOW as label: + ions, positive ions, cations If '+' is unlabelled in diagram, award label from a correct statement within the text
			'Li ⁺ ' or ' + ions ' with some attempt to show electrons		DO NOT ALLOW 2+ 3+ etc.ions
					DO NOT ALLOW for label or in text: nuclei OR positive atom OR protons
			Scattering of labelled electrons between other species OR		ALLOW e ⁻ OR e as label for electron
			a statement anywhere of delocalised electrons (can be in text or in diagram) ✓		
			The attraction between + ions and e [−] is strong OR metallic bonding is strong ✓		ALLOW a lot of energy is needed to break the (metallic) bond
					DO NOT ALLOW incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'
	b	i	F F	1	ALLOW diagram consisting of all dots OR all crosses Circles not essential ALLOW 'FI' for fluorine
			Dot and cross bond + 6 matching electrons on each F atom \checkmark		
		ii	F ₂ has induced dipoles OR temporary dipoles OR van der Waals' forces (between the molecules) ✓ which are weak ✓	2	ALLOW little energy needed to overcome intermolecular bonding for second mark ALLOW 'weak' intermolecular bonding for second mark ALLOW max 1 mark if structure is referred to as giant with first and second marking points correct Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic or unspecified bonding

Que	esti	on	Expected Answers	Marks	Additional Guidance
5	С	i	Li shown with either 2 or 0 electrons and F shown with 8 electrons with 7 crosses and one dot (or <i>vice versa</i>) \checkmark correct charges on both ions \checkmark	2	For first mark, if 2 electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons ALLOW 'FI' for fluorine Circles not essential DO NOT ALLOW Li ⁺ with 8 electrons
		ii	Ions cannot move in a solid \checkmark Ions can move OR are mobile when molten \checkmark	2	ALLOW ions are fixed in place IGNORE electrons IGNORE 'charge carriers' or 'charged particles' DO NOT ALLOW ions can move when in solution IGNORE charge carriers IGNORE 'delocalised ions' or 'free ions' ALLOW 'Ions can only move when molten' for one mark Any mention of electrons moving when molten is a CON
	d	i	$2B + 3F_2 \longrightarrow 2BF_3 \checkmark$	1	ALLOW B ₂ ALLOW multiples including fractions
		ii	 Shape: trigonal planar ✓ Bond angle: 120° ✓ Explanation: Pairs of electrons repel (one another equally) ✓ Boron has 3 bonded pairs (and 0 lone pairs) ✓ 	4	 'Trigonal planar' must be seen and spelt correctly at least ONCE DO NOT ALLOW 'atoms repel' or 'electrons repel' ALLOW 'bonds repel' ALLOW diagram showing B atom with three dot-and-cross pairs of electrons, but no lone pairs for 4th mark Must refer to boron / central atom
					ALLOW 'bonds' for 'bonded pairs'

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	e		F is more electronegative than N OR ${}^{\delta^{+}}F-N^{\delta^{+}} \checkmark$ Dipoles do not cancel OR NE ₂ is pyramidal (in words) / asymmetrical \checkmark	2	 ALLOW F attracts electrons more than N ALLOW N has a partial positive charge and F has a partial negative charge (partial must be seen) DO NOT ALLOW diagrams that contradict statements about polarity ALLOW unsymmetrical non-symmetrical etc.
	f		 (As you go across the period) The atomic radii decreases ✓ The nuclear charge increases OR protons increase ✓ electrons are added to the same shell OR shielding remains the same ✓ greater (nuclear) attraction on (outer) electrons / (outer) shell(s) ✓ 	4	Use annotations with ticks, crosses ECF etc. for this part Assume 'across the period from Li to F' ALLOW (outer shell) electrons get closer (to nucleus) IGNORE 'atomic number increases', but ALLOW 'proton number' increases IGNORE 'nucleus gets bigger' 'Charge increases' is insufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases' Nuclear OR proton(s) OR nucleus spelt correctly ONCE and used in context of 2nd marking point ALLOW shielding is similar ALLOW screening for shielding DO NOT ALLOW 'subshells' DO NOT ALLOW 'distance is similar' This will CON first marking point ALLOW 'greater (nuclear) pull for greater nuclear attraction' DO NOT ALLOW 'pulled in more' as this is a restatement of the first marking point
	_		Total	21	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Chemistry A

Advanced Subsidiary GCE F322

Chains, Energy and Resources

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

- 1 The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.
- 2 An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the science is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.
- 3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the Additional Guidance.
- 5 If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.
- 6 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

1

• if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (e.g. 'can't do', 'don't know') OR
- if there is any sort of mark which is not an attempt at the question (e.g. a dash, a question mark)
- 7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.
 - = alternative and acceptable answers for the same marking point
 - **not** = answers which are not worthy of credit
 - reject = answers which are not worthy of credit
 - **ignore** = statements which are irrelevant

allow = answers that can be accepted

- () = words which are not essential to gain credit
 - = underlined words must be present in answer to score a mark
- ECF = error carried forward
- AW = alternative wording
- ora = or reverse argument

- 8 Annotations: the following annotations are available on SCORIS.
 - ✓ = correct response × = incorrect response bod = benefit of the doubt nbod = benefit of the doubt **not** given = error carried forward ECF ۸ = information omitted = ignore L R = reject

Highlighting is also available to highlight any particular points on the script.

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: **2(c)(ii), 3(b)(i), 5(d), 6(b)** and **7**

9 The Comments box

The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.

Please do not use the comments box for any other reason.

Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

C	Question		Expected Answers	Marks	Additional Guidance
1	а	i	Series having same functional group and a general formula ✓	1	ALLOW same functional group and members vary by CH ₂ ALLOW organic compounds with the same functional group that differ in length of their hydrocarbon chain
		II	More surface contact OR bigger molecules ✓	2	BOTH answers need to be comparisons ALLOW higher relative formula mass OR has more electrons OR longer chain length OR more carbon atoms IGNORE surface area / bigger compounds
			More van der Waals' forces ✓		ALLOW stronger van der Waals' forces / stronger induced dipoles VDW forces is not sufficient More intermolecular forces is not sufficient DO NOT ALLOW breaking bonds within the chain / breaking covalent bonds IGNORE reference to bonds if not linked to covalent bonds
	b	i	Pent-1-yne OR pent-2-yne ✓	1	ALLOW pentyne Look for answer in the table if not on answer line but answer line takes precedence
		ii	C_nH_{2n-2}	1	ALLOW C _n H _{2(n-1)}

C	Question		Expected Answers	Marks	Additional Guidance
1	b	iii	Correct displayed formula ✓	1	
		iv	Correct skeletal formula of cyclic hydrocarbon with formula $C_6H_{10} \checkmark$	1	Examples of correct skeletal formulae include
	C		Energy required to break bonds = (+) 2912 \checkmark Energy released to make bonds = (-)4148 \checkmark Enthalpy of combustion = -1236 \checkmark	3	 ALLOW full marks for correct answer with no working out ALLOW (2 × 415) + (837) + (2.5 × 498) ALLOW (4 × -805) + (2 × -464) OR (4 × 805) + (2 × 464) ALLOW ECF for calculation of enthalpy of combustion ALLOW 2 marks for +1236 with no working out

C	Question		Expected Answers	Marks	Additional Guidance
1	d	i	(Enthalpy change) when one mole of a compound ✓	3	IGNORE energy required / energy released ALLOW (energy change) when one mole of a substance DO NOT ALLOW enthalpy change for one mole of products
			is made from its elements (in their standard states) \checkmark		
			(Standard conditions are) 298 K and 100 kPa ✓		ALLOW 1 atmosphere pressure / 101 kPa / 10^5 Pa / 1.01 × 10^5 Nm ⁻² / 1000 millibars / 25 °C / any stated temperature in words IGNORE 1 mol dm ⁻³ for solutions
		11	From energy cycle Enthalpy change to get elements = $-(-60) - (2 -286) / (+)$ 632 \checkmark	3	ALLOW full marks for -128 with no working out
			Enthalpy change from elements = $-987 + (+227) / (-)760 \checkmark$		ALLOW ECF from errors in calculation
			Enthalpy change = −128 ✓		ALLOW two marks for answer of -414 / +128 / -1392 / +1392
					ALLOW one mark for answer of +414
	e	i	26.0 × 100 100.1 ✓ 26.0% ✓	2	First mark for 100.1 OR (64.1 + 36.0) OR (74.1 + 26.0) at bottom of fraction with or without × 100 ALLOW full marks for 26.0 or 26% with no working out
					 ALLOW from two significant figures up to calculator value ALLOW 25.97 / 26% NO ECF for this part from incorrect numbers in first expression

C	Question		Expected Answers	Marks	Additional Guidance
1	е	ii	1.56 × 10 ⁴ OR 15600 OR 15601 ✓	1	ALLOW calculator value of 15600.62402 and any rounded value to a minimum of three significant figures
		iii	1.5 × 10 ⁴ OR 15000 ✓	1	ALLOW 1.50 × 10^4 etc.
		iv	96.2 ✓	1	 ALLOW ECF from (iii) ÷ (ii) ALLOW calculator value 96.1538461 and any rounded value to a minimum of two significant figures ALLOW 96.14768284 if 15601 is used ALLOW any value between 88 to 89 if answer to (iii) was calculated by dividing by 26
		V	 Any two from: Low atom economy gives a poor sustainability OR low atom economy means lots of waste ✓ A use for the aqueous calcium hydroxide needs to be developed to increase atom economy ✓ Alternative process needs to be developed with high atom economy ✓ 	2	ANNOTATE WITH TICKS AND CROSSES IGNORE comments about percentage yield ALLOW ECF from (i) e.g. high atom economy will have good sustainability ALLOW find a use for the waste to increase atom economy
			Total	23	

G	Question		Expected Answers	Marks	Additional Guidance
2	а	i	Branched chain alkane of formula C_5H_{12} to C_9H_{20} e.g. 2-methylpentane, 3-methyloctane \checkmark	1	Must have position number but ALLOW methylbutane DO NOT ALLOW 1-methylpentane or 2-ethylpentane etc DO NOT ALLOW incorrect nomenclature e.g. 2-methypentane etc
	b	i	Vibrate (more) ✓	1	ALLOW bend / stretch / oscillate IGNORE rotate NOT break / molecules vibrate
		ii	Incomplete combustion ✓	1	ALLOW not enough oxygen
		iii	NO for photochemical smog OR low level ozone ✓ CO is toxic ✓	2	 ALLOW NO can (eventually) cause acid rain OR can result in respiratory irritation OR can (eventually) depletes high level ozone OR depletes ozone layer IGNORE greenhouse gas ALLOW poisonous OR kills OR lethal ALLOW CO reduces the capacity of blood to carry oxygen Oxygen combines with haemoglobin is insufficient IGNORE CO is harmful / suffocates / greenhouse gas
	C	i	Makes nitrogen AND carbon dioxide \checkmark 2CO + 2NO \rightarrow N ₂ + 2CO ₂ \checkmark	2	ALLOW any correct multiples IGNORE state symbols

C	Question		Expected Answers	Marks	Additional Guidance
2	C	ii	One activation energy correctly labelled on enthalpy profile diagram ✓	7	ANNOTATE WITH TICKS AND CROSSES With the line/arrow no more than 1 mm from top of curve or reactant line – arrow can be double headed for activation energy ALLOW vertical line with no arrows DO NOT ALLOW arrow just pointing downwards
			Idea that activation energy is lowered \checkmark		Marks can be awarded via, reaction profile, in words or from Boltzmann
			Catalyst has a different reaction pathway OR different reaction mechanism OR two curves drawn on profile \checkmark Correct diagram of reaction profile for exothermic reaction with product below reactants with y axis as enthalpy or energy and ΔH label – arrow should go down. Ignore a small gap between at either end of ΔH line \checkmark		enthalpy reactants L_c ΔH products progress of reaction
			Drawing of Boltzmann distribution – axes labelled number of molecules and energy \checkmark		Boltzmann distribution – must start at origin and must not end up at 0 on <i>y</i> -axis i.e. must not touch <i>x</i> -axis
			More molecules with energy above activation energy with a catalyst ✓ More effective collisions OR more successful collisions ✓		number of molecules Kinetic energy

Question		on	Expected Answers	Marks	Additional Guidance
2	d		Any two benefits from:	3	ANNOTATE WITH TICKS AND CROSSES
			Save crude oil OR no risk of large scale pollution from exploitation of crude oil \checkmark		ALLOW decrease the need for fossil fuels
			Biodiesel is renewable OR diesel is non-renewable ✓		ALLOW plants are a renewable resource / crude oil non-renewable resource / biodiesel is more sustainable / diesel is not sustainable
			Use of biodiesel is (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ✓		ALLOW lower carbon footprint IGNORE can be used by diesel powered cars with or without any conversion
			and one disadvantage		
			Land not used to grow food crops OR (rain)forests have to be cut down to provide land OR food prices may rise because less is grown \checkmark		IGNORE comments about availability / fertilisers / pesticides
			Ŭ		Destroys habitats is not sufficient
			Total	17	

Question		ion	Expected Answers	Marks	Additional Guidance
3	а		Answers clockwise from top left	4	ALLOW skeletal formula
			CH₃CH₂CH₂COOH ✓		ALLOW butanoic acid
			CH ₃ CH ₂ CHCH ₂ ✓		ALLOW but-1-ene
					ALLOW butyl otherests
			CH ₃ CH ₂ CH ₂ CHO ✓		ALLOW butanal
					If name and structure given both must be correct
					If C_3H_7 used instead of $CH_3CH_2CH_2$ penalise once and then apply ECF
					If wrong carbon skeleton used then penalise once then apply ECF
					If a hydrogen is missing then penalise once

G	Question		Expected Answers	Marks	Additional Guidance
3	b	i	Nucleophilic substitution ✓ Heterolytic ✓	5	ANNOTATE WITH TICKS AND CROSSES
			Dipole shown on C–I bond, C^{δ^+} and $I^{\delta^-} \checkmark$		DO NOT ALLOW fish hooks
			Curly arrow from OH [−] to carbon atom of C–I bond ✓		No need to show lone pair on OH ⁻ or I ⁻ Curly arrow must come from the negative sign or lone pair on the oxygen of the hydroxide ion
			Curly arrow from C–I bond to the iodine atom \checkmark		H H
					$\begin{array}{ccc} c_{3}H_{7} - c_{3}F_{1}F_{1} & \longrightarrow & c_{3}H_{7} - c_{-}H_{0} + I_{-}\\ H_{0}H_{0} & H_{0} \end{array}$
					ALLOW S _N 1 mechanism
					dipole shown on C–I bond, $C^{\delta +}$ and $I^{\delta -}$ \checkmark
					curly arrow from C–I bond to the iodine atom \checkmark
					curly arrow from OH [−] to correct carbonium ion \checkmark
		ii	Use reflux OR heat for more than 20 minutes ✓	2	ALLOW heat stronger OR heat for longer OR heat at a higher temperature OR more heat
			C–C <i>l</i> stronger bond (than C–I bond) OR C–C <i>l</i> shorter bond (than C–I bond) OR C–C <i>l</i> bond is harder to break OR needs more energy to break C–C <i>l</i> bond OR ora \checkmark		Answer must refer to the C–C <i>l</i> bond or C–I bonds
			Total	11	

Question		ion	Expected Answers	Marks	Additional Guidance	
4	а	i	Any two from: Any value between 1000–1300 ✓ Any value between 2850–3100 ✓ Any value between 3200–3550 ✓	2		
		ii	Orange to green or blue \checkmark	1		
		iii		2	IGNORE any state symbols	
			$\begin{array}{l} CH_{3}CH_{2}OH + [O] \rightarrow CH_{3}CHO + H_{2}O \\ \textbf{OR} \\ CH_{3}CH_{2}OH + 2[O] \rightarrow CH_{3}COOH + H_{2}O \\ Correct organic product \checkmark \\ Balanced equation \checkmark \end{array}$		ALLOW CH ₃ COH in equation but not for the structure ALLOW equations with molecular formulae but not the product mark	
	b	i	Absorption around 2850–3100 (cm ⁻¹) so contains C—H bonds ✓ No other important absorptions present / no other characteristic absorptions ✓	2	Answer must have a reference to infrared spectrum i.e. use of cm ⁻¹ or data from the infrared spectrum 'Has no other peaks so no functional groups present' is not sufficient BUT There are no peaks due to functional groups is sufficient ALLOW peaks instead of absorption ALLOW no absorption due to C=O and O–H / no absorption due to carbonyl and hydroxyl	
		li	Peak furthest to right hand side is 58 / molecular ion peak is 58 / peak at highest mass ✓	1	ALLOW peak at <i>m</i> / <i>z</i> 58 marked on the mass spectrum / M peak is 58 / peak at 58 linked to the molecular mass DO NOT ALLOW highest peak but ALLOW 58 is the highest peak	

Question		ion	Expected Answers	Marks	Additional Guidance
4	b	111	H H H H H H H H H H H H H H H H H H H	1	If three structures are drawn then do not award mark ALLOW skeletal formulae / structural formulae IGNORE incorrect names
		iv	$CH_3^+ \checkmark$ $C_2H_5^+ \checkmark$ $C_3H_7^+ / CH_3CH_2CH_2^+ / (CH_3)_2CH^+ \checkmark$	3	Essentially marks are allocated as positive ions ✓ Formula of two fragments correct (ignore charge) ✓ BUT formulae of all three fragments correct (ignore charge) ✓✓
		v	CH ₃ CH ₂ CH ₂ CH ₃ because there is a peak at $m/z = 29$ ✓	1	ALLOW name, displayed or skeletal structure ALLOW butane because there is a C_2H_5 fragment ALLOW butane because it gives all three fragments listed in (iv)
			Total	13	

C	Question		Expected Answers	Marks	Additional Guidance
5	≀uest a	ion	Expected Answers Sideways overlap of two p orbitals on each carbon atom ✓ forms π-orbital or π-bond above and below plane of molecule ✓	Marks 2	Additional Guidance Answers can be awarded from a labelled diagram see additional page with typical diagrams you might see
					2p orbitals Drawings with a double bond drawn can score a maximum of one mark Drawing above with no labels scores one mark

Mark Scheme

Each of the following diagrams is worth one mark. The words p-orbitals must be present to score the

Question		ion	Expected Answers	Marks	Additional Guidance
5	b	i	Double bond does not rotate / restricted rotation of the double bond ✓ Each carbon atom of double bond is bonded to (two) different groups ✓	2	ALLOW π bond does not rotate ALLOW each carbon atom of double bond is bonded to (two) different atoms / each end of the π-bond is
					bonded to different groups of atoms *
		ii	C and E ✓	1	

Question		on	Expected Answers	Marks	Additional Guidance
5	C		CH ₃ CH ₂ OH / ethanol ✓	1	IGNORE alcohol
	d			9	ANNOTATE WITH TICKS AND CROSSES QWC mark and 8 other marking points
			$\begin{array}{rcl} C_4H_8 &+ &HBr \rightarrow & C_4H_9Br \checkmark \\ C_2H_4 &+ &HBr &\rightarrow & C_2H_5Br \checkmark \end{array}$		The equation must be the overall equation not a series of steps as in a mechanism
			B makes CH ₃ CH ₂ CH ₂ CH ₂ Br ✓ CH ₃ CHBrCH ₂ CH ₃ ✓		ALLOW skeletal or displayed formulae ALLOW B makes 1-bromobutane and 2-bromo butane ✓ if marks for the structures not awarded
			QWC – number of products is linked to structure of alkene e.g. because D is symmetrical OR B is not symmetrical \checkmark		
			Movement of electron pair from double bond to attack hydrogen of H–Br and breaking of H–Br bond \checkmark Correct dipole shown on H–Br \checkmark		$\begin{array}{c} H \\ H \\ H \\ H \end{array} \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$
			Curly arrow from Br^- to the carbonium ion \checkmark		
					ALLOW curly arrow from lone pair or minus sign of bromide ion
					ALLOW marks for the mechanism even if the wrong alkene is used e.g. for alkene B If two mechanisms are drawn mark the one for alkene D

Question		ion	Expected Answers	Marks	Additional Guidance
5	e	i	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Must have at least two repeat units and the free bonds at the end All carbon–carbon bonds in the polymer chain must be shown ALLOW bond to ethyl group to any part of ethyl group IGNORE any brackets drawn
		ii	Poly(but-1-ene) ✓	1	ALLOW polybut-1-ene n.b. the bracket is part of the answer DO NOT ALLOW polybutene
	f	i	 (Lots of) OH group present ✓ Can form hydrogen bonds with water ✓ 	2	ALLOW hydroxyl group present / hydroxy group Alcohol group is not sufficient
		ii	 Any two from: Incineration to produce energy OR combustion to produce energy ✓ Sorting and recycling OR sorting and remoulding ✓ Cracked (to give monomers) OR as an organic feedstock ✓ 	2	Used as a fuel is not sufficient IGNORE use photodegradable or biodegradable polymers
			Total	21	

C	Question		Expected Answers	Marks	Additional Guidance
6	а		Low pressure because more (gas) molecules on right hand side of equation OR low pressure because ΔV = positive \checkmark Low temperature because the (forward) reaction is exothermic \checkmark	2	ALLOW low pressure because more (gas) moles on right hand side of equation
	b		Increased pressure speeds up reaction / ora ✓ 900 °C increases the rate OR increased temperature speeds up reaction / ora ✓ Idea that high enough temperature without compromising yield OR idea that high enough pressure without compromising yield ✓	3	ANNOTATE WITH TICKS AND CROSSES ALLOW 'pushes gases through system'
	С	i	$5.68 \times 10^7 / 5.7 \times 10^7 \checkmark$	1	ALLOW two or more significant figures Calculator answer is 5.6812500×10^7
		ii	Used to heat the incoming gases ✓	1	ALLOW used to heat rest of factory OR sold to the national grid Provide energy to create conditions is not sufficient because one condition is pressure
			Total	7	
Ques	tion	Expected Answers	Marks	Additional Guidance	
------	------	---	-------	--	
7			8	ANNOTATE WITH TICKS AND CROSSES	
				QWC –Structure linked to information at least	
		Infrared		once	
		QWC – 1720 cm ^{−1} indicates carbonyl group ✓			
				ALLOW 1720 indicates presence of aldehydes,	
		QWC – broad 2900 cm ⁻¹ indicates O–H bond in carboxylic		ketones, esters, carboxylic acid, amides	
		acid ✓		ALLOW 2900 indicates carboxylic acid	
		QWC – 1080 cm ⁻¹ indicates C–O bond ✓			
				ALLOW 1080 indicates alcohol, esters, carboxylic	
				acids	
		Percentage composition			
		Mole ratio C : H : O = 2.23 : 2.22 : 4.44 ✓			
		Empirical formula is CHO ₂ ✓		ALLOW 26.7/12.0. 2.22/1.0 and 71.1/16.0	
				ALLOW COOH	
				ALLOW two marks for correct empirical formula with	
				no working out	
		(mass of one mole is 90 g) so $M_{\rm r}$ is 90 \checkmark			
				ALLOW 0.0945/0.00105 = 90	
		QWC – molecular formula is $C_2H_2O_4$ with working out from			
		Mr✓			
		COOH		СООН	
		Structure is COOH ✓		0	
			•		
		Total	8		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

Chemistry A

Advanced GCE F324

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

Allow Kekulé structures throughout

Ques	tion	Expected Answers	Marks	Additional Guidance
1 a		Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
b	I	compound A ↓ NO ₂ if NO ₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) ✓ compound B ↓ NH ₂ ↓ compound C ↓ NH ₂	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW H ₃ C ^{NO2} (CH ₃ drawn in any orientation ALLOW any 4-amino-1,3-dimethylbenzene drawn in any orientation ECF amine of incorrect compound A (e.g. position of NO ₂ or lack of methyl sticks/groups) ALLOW diazonium chloride salt of 1,3-dimethylbenzene ECF diazonium salt/compound of incorrect compound B IGNORE CI ⁻ ion allow N=N ⁺ N=N ⁺

F324

Mark Scheme

F324

Question	Expected Answers	Marks	Additional Guidance
ii	$\underline{mark 1} HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- + NO_2^+ \checkmark$		Equation to show formation of NO_2^+ ion \checkmark ALLOW $HNO_3 + H_2SO_4 \rightarrow H_2O + HSO_4^- + NO_2^+$ $HNO_3 + H_2SO_4 \rightarrow HSO_4^- + H_2NO_3^+ \rightarrow H_2O + NO_2^+$
If NO ₂ is in correct position	$\frac{mark 4}{to reform π ring AND} correct products ✓$	5	ALLOW mark 2 curly arrow must be from 1,3-dimethylbenzene to NO_2^+ and ECF for marks 3 and 4
do not penalise even if compound A in b(i) is not in correct position	$ \rightarrow (+) + H^+ $		DO NOT ALLOW intermediate π -ring must be more than $\frac{1}{2}$ + + + + + + + + + + + + + + + + + + +
	mark 2curly arrow from π ring to ${}^{+}NO_{2}\checkmark$ mark 3Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO_2 is not adjacent to a methylmark 5- H^+ + HSO_4^- \rightarrow H2SO4 \checkmark Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO2 is not adjacent to a methyl		ALLOW CH₃s shown
			ALLOW H_3O^+ + $HSO_4^- \rightarrow H_2O$ + H_2SO_4
iii	2 ✓	1	No other correct response
	Total	13	

F324

F324

Mark Scheme

Qu	Question		Expected Answers	Marks	Additional Guidance
	b	i	C ₇ H ₅ O ₂	1	ALLOW any order of elements
					$ALLOW C_{14}\Pi_{10}O_4 \rightarrow C_7\Pi_5O_2 \text{ of } C_{14}\Pi_{10}O_4 = C_7\Pi_5O_2$
		=	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$ H0CH ₂ CH ₂ -OH $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$ Penalise incorrect bond linkage in 2b(ii) only. Do not penalise elsewhere on the paper	2	ALLOW COOH/CO ₂ H ALLOW $HO_{C} \downarrow \downarrow$
	C	i		2	ALLOW any of the following for 1 mark $HO \longrightarrow O^{O^{-}} Na^{+} O^{-} Na^{+} O^{-} Na^{+} O^{-} Na^{+} O^{-} Na^{+} O^{-} O^{-} O^{-} Na^{+} O^{-} $
		ii	 (PGA is) (<u>bio)degradable</u> OR <u>photodegradable</u> OR <u>hydrolysed</u> (but hydrocarbon based polymers are non-biodegradable) ✓ One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly – if one spelt correctly and another incorrectly spelt – ALLOW mark 	1	 ALLOW broken down by <u>bacteria</u> (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional information is incorrect e.g. biodegradable and can be recycled
			Total	9	

Mark Scheme

Ques	estion		Expected Answers		Marks	Additional Guidance
Ques	a	on	Expected Alternative Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with 2,4-DNP(H) and 'orange precipitate' ✓	d Answers approaches Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with carbonate/ hydrogencarbonate/ Na/Mg and 'fizzes/ bubbles/ effervesces/ gas evolved ✓	Marks 4	Additional Guidance ALLOW ammoniacal AgNO ₃ / Ag ⁺ (NH ₃) ₂ / Ag ⁺ (NH ₃) ALLOW acidified dichromate OR Fehlings as an alternative to Tollens – observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points
			must be the ketone ✓ 2,4-DNP(H) AND orange precipitate ✓ is either aldehyde OR ketone ALLOW carbonyl OR C=O✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	must be the (carboxylic) acid ✓ 2,4-DNP(H) and no orange precipitate ✓ is the (carboxylic) acid ✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓		 ALLOW PCI₅ as a test for the acid – observation would be 'white fumes (of HCI)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded
	b		Peak in range 2500–3300 shows O–H ✓ [need wavenumber (or rang	(cm ⁻¹) or (around) 3000 ge) <u>and</u> O–H bond]	1	DO NOT ALLOW single peak quoted within range 2500–3300 other than 3000 (cm ⁻¹) for OH DO NOT ALLOW range 3200–3550 (cm ⁻¹) IGNORE any reference to C-O or C=O

Qu	esti	on	Expected Answers	Marks	Additional Guidance
	C		Alternative approaches depending on whether or not the aldehyde is correct		ALLOW 3-methylbutanal , any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation
			Doublet indicates adjacent C is bonded to only 1H OR (relative) peak area indicates $2 \times CH_3$ (in the same environment) \checkmark Doublet indicates adjacen C is bonded to only $1H \checkmark$ 	ıt t	ALLOW doublet/peak at 0.9ppm due to R–CH ALLOW the splitting shows adjacent to CH/environment that contains 1 H/proton ALLOW 6 Hs/ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. $H_3C - \begin{pmatrix} H \\ C \\ H_3 \end{pmatrix} \begin{pmatrix} 0 \\ C \\ H_3 \end{pmatrix}$ would score two marks if the doublet and the peak areas were correctly explained
	4	:	OR peak areas or peak areas		
	a	'	$H_{3}C - CH_{2} - C - CH_{2} - CH_{3}$ ketone 3	1	ALLOW displayed/skeletar formulae
		ii	There are 4 (different C) environments \checkmark		ALLOW 2 Cs are in same environment/equivalent
			(therefore) it is ketone 2 / $H_3C - CH - C - CH_3$	3	ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one
			CH ₃ \checkmark (C responsible for peak at $\delta = 210$ ppm) is C=O/carbonyl carbon \checkmark		ALLOW CCC
			Tot	al 12	

Qu	Question		Expected Answers	Marks	Additional Guidance
4	а	i	The time (from the injection of the sample) for the component to leave the column \checkmark	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		ii	They have similar retention times ✓	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe R_f values in part a(i) ALLOW same retention times
		iii	Butylbutanoate ✓	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
	b	i	hydrocarbon chain must be correct for one mark H H H H H H H H H H	2	ALLOW any correct unambiguous structure/ $CH_3(CH_2)_4CHCHCHCHCOOCH_2CH_3$ / $CH_3(CH_2)_4CHCHCHCHCOOC_2H_5$ $CH_3(CH_2)_4(CH)_4COOCH_2CH_3$ DO NOT ALLOW $C_5H_{11}CHCHCHCHCOOCH_2CH_3$ etc ALLOW CO ₂ for ester ALLOW 1 mark for correct 2,4-decadiene structure e.g. ALLOW 1 mark for correct ethyl oate structure e.g. or $-CO_2C_2H_5$ or $-COOC_2H_5$

F324

Qı	Question		Expected Answers N		Additional Guidance	
		ii	$R \xrightarrow{0} H_2C \xrightarrow{0} C \xrightarrow{R} H_2C \xrightarrow{0} C \xrightarrow{R} H_2C \xrightarrow{R} H_2$	1	ALLOW $H_2C = 0 = C$ $H_2C = C$ H	
if eith pheny acid o pheny not pi auton lose t	er //leth or 2- /etha repa matic wo r	anoi anol red – ally narks	 react phenylethanal with H₂SO₄/K₂Cr₂O₇✓ to get phenylethanoic acid/C₆H₅CH₂COOH ✓ mark 2 can be scored if dichromate is used without being acidified react phenylethanal with NaBH₄ ✓ to get 2-phenylethanol/C₆H₅CH₂CH₂OH ✓ mark 3 must be correct to score mark 4 react phenylethanoic acid with 2-phenylethanol. If both already correctly named ALLOW acid and alcohol✓ H₂SO₄ if linked to the reaction of an alcohol and acid✓ reflux in either (1) or (5) or catalyst used in (5) ✓ QWC must spell catalyst or reflux correctly 	7	 ALLOW H⁺ & Cr₂O₇²⁻ or H₂SO₄/Na ₂Cr₂O₇ - any other oxidising agent or other named acid – please consult with TL ALLOW LiAlH₄ as alternative to NaBH₄ phenylethanoic acid & phenylethanol must be unambiguously identified by either name or formula DO NOT ALLOW or oxidised to form(a carboxylic) acid or reduced to form alcohol for marks 2 and 4 ALLOW conc H₂SO₄ DO NOT ALLOW dilute or H₂SO₄(aq) DO NOT ALLOW just acid catalyst DO NOT ALLOW HCI, HNO₃ Please annotate, use ticks to show where marks are awarded 	
			Total	13		

F324

Qu	Question		Expected Answers	Marks	Additional Guidance
5	а	i		1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	 Mark 1 – production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult Mark 2 – one of the isomers is more (pharmacologically) active or one of the isomers might have adverse/harmful/nasty side effects ✓ Marks 3 and 4 – problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool 	4	IGNORE any reference to dosage ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	b	i	H_2C CH_2 + NH_3 $HO-CH_2-CH_2-NH_2$	1	ALLOW HO NH ₂ ALLOW epoxy ethane as C_2H_4O , $(CH_2)_2O$, CH_2OCH_2 ALLOW product as $HO(CH_2)_2NH_2$ DO NOT ALLOW product as C_2H_7NO
		ii	HO−CH ₂ −CH ₂ −NH−CH ₂ −CH ₂ −OH ✓	1	ALLOW (CH ₂) ₂ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

F324

Question	Expected Answers	Marks	Additional Guidance
C i	HO— CH_2 — CH_2 — $NH_3^+ CI^-$ Must show CI^- ion \checkmark	1	ALLOW HOCH ₂ CH ₂ NH ₃ Cl if formula is correct and both charges not shown ALLOW (CH ₂) ₂ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
ii	HOCH ₂ CH ₂ NH ₃ ⁺ HS ⁻ Must show HS ⁻ ion \checkmark	1	ALLOW if formula is correct and both charges not shown ALLOW $(CH_2)_2$ / any correct unambiguous structure ALLOW $(HO-CH_2-CH_2-NH_3^+)_2 S^{2-}$
d i	Both NH₂ and COOH are joined to the same C ✓	1	ALLOW H_2N C CO_2H or $RCH(NH_2)CO_2H$ R The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
ii	$HO-CH_2-CH_2-NH_2 + 2[O] \longrightarrow HO-C-CH_2-NH_2 + H_2O_{\checkmark}$	1	ALLOW (CH ₂) ₂ DO NOT ALLOW molecular formula
e i	Question 5e is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages 15 or 16 have been used	indidates	s can use instead of requesting additional paper.

F324

Mark Scheme

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

GCE

Chemistry A

Advanced GCE **F325** Equilibria, Energetics and Elements

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

Qu	Question		Expected Answers	Marks	Additional Guidance
1	а		F B G E D FIVE correct ✓√√ FOUR correct ✓√ THREE correct ✓	3	ALLOW 1450 736 G 76 -642
	b		Correct calculation -642 - (+76 + (2 × 150) + 736 + 1450 + (2 × -349)) ✓ -642 - 1864 = - 2506 ✓ (kJ mol ⁻¹)	2	ALLOW for 1 mark: -2705 (2 × 150 and 2 × 349 not used for CI) -2356 (2 × 150 not used for CI) -2855 (2 × 349 not used for CI) +2506 (wrong sign) DO NOT ALLOW any other answers
	С		Magnesium ion OR Mg ²⁺ has greater charge (than sodium ion OR Na ⁺) OR Mg ²⁺ has greater charge density ✓ Magnesium ion OR Mg ²⁺ is smaller ✓ Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion OR Greater attraction between oppositely charged ions ✓	3	ANNOTATIONS MUST BE USED ALLOW magnesium/Mg is 2+ but sodium/Na is 1+ DO NOT ALLOW Mg atom is 2+ but Na atom is 1+ ALLOW 'charge density' here only ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg ²⁺ has a smaller atomic radius ALLOW anion OR negative ion for CI ⁻ DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion) ALLOW reverse argument throughout in terms of Na ⁺
			Total	8	

F325

Qu	esti	on Expected Answers	Marks	Additional Guidance
2	а	$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b	<i>graph:</i> Straight/diagonal line through origin OR 0,0 AND 1st order with respect to BrO ₃ ⁻ ✓	1	 ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0) ALLOW 'As BrO₃⁻ doubles, rate doubles' AND 1st order ALLOW rate is proportional to concentration AND 1st order
		<i>initial rates data:</i> When [Br ⁻] is doubled, rate × 2 \checkmark 1st order with respect to Br ⁻ \checkmark When [H ⁺] × 2, rate × 4 (2 ²) \checkmark 2nd order with respect to H ⁺ \checkmark <i>Rate equation</i> rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] ² \checkmark	4	Mark order and explanation independently Mark order first, then explanation ALLOW ECF from candidate's orders above

Question		on	Expected Answers	Marks	Additional Guidance
			Calculation of rate constant (3 marks)	3	ANNOTATIONS MUST BE USED
			$k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$		Calculation can be from any of the experimental runs – they all give the same value of k ALLOW mol ⁻³ dm ⁹ s ⁻¹ ALLOW 1.6510579 × 10 ⁻² and correct rounding to 1.7 × 10 ⁻² Correct numerical answer subsumes previous marking
			= 1.7×10^{-2} OR 1.65×10^{-2} \checkmark dm ⁹ mol ⁻³ s ⁻¹ \checkmark	\leq	point DO NOT ALLOW fraction: $\frac{238}{14415}$
					ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen.
					Example 1: 1st order with respect to H^+ rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺]
					$\frac{1}{[BrO_3^-][Br^-][H^+]} = OR \frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$
					= 5.1×10^{-3} OR 5.12×10^{-3} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $5.11827957 \times 10^{-3}$ and correct rounding to 5.1×10^{-3}
					Example 2: Zero order with respect to BrO_3^- rate = k [Br ⁻] [H ⁺] ²
					$R = \frac{1000}{[Br^{-}][H^{+}]^{2}}$ OR = 1.19 × 10 ⁻⁵
					$\overline{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3 × 10 ⁻⁴ OR 8.26 × 10 ⁻⁴ \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark
			Total	10	

Qu	Question		luestion		Expected Answers	Marks	Additional Guidance
3	a		measured pH > 1 OR [H ⁺] < 0.1 (mol dm ⁻³) \checkmark	4	ALLOW C_2H_5 throughout question ALLOW $[H^+] < [CH_3CH_2COOH]$ OR $[H^+] < [HA]$ ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7		
			[H ⁺] = 10 ^{-pH} ✓		ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH		
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]} \mathbf{OR} \frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]} \checkmark$		ALLOW [H ⁺][A ⁻] OR [H ⁺] ² [HA] [HA]		
			Calculate K_a from $\frac{[H^+]^2}{0.100} \checkmark$		IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also (i.e. $K_a = \frac{[H^+]^2}{100}$ is automatically awarded the last 2 marks)		
					$(1.6. N_a - \frac{1}{0.100})$ is automatically awarded the last 2 marks)		
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10^{-14} and correct rounding to 3.5 × 10^{-14}		
			$[H] = 10 \times 10^{-14} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		i.e. ALLOW 0.28840315 and correct rounding to 0.29,		
			$\frac{1.0 \times 10}{3.47 \times 10^{-14}} = 0.23 \text{ (mor diff) }^{3}$		ALLOW alternative approach using pOH:		
					pOH = $14 - 13.46 = 0.54 \checkmark$ [OH ⁻] = $10^{-0.54} = 0.29$ (mol dm ⁻³) \checkmark		
					Correct answer gets BOTH marks		
					· · · · · · · · · · · · · · · · · · ·		

Question		Expected Answers	Marks	Additional Guidance
C		Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR $CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O \checkmark$ Some propanoic acid remains OR	7	ANNOTATIONS MUST BE USED ALLOW C_2H_5 throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid)
		propanoic acid AND propanoate (ions) / sodium propanoate present ✓		ALLOW: weak acid AND its conjugate base/salt present Throughout, do not penalise comments that imply that pH is constant in presence of buffer
		equilibrium: $CH_3CH_2COOH \Rightarrow H^+ + CH_3CH_2COO^- \checkmark$		DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH_3CH_2COOH ; ALLOW A ⁻ for $CH_3CH_2COO^-$ Equilibrium responses must refer back to a written equilibrium.
		Added alkali CH_3CH_2COOH reacts with added alkali $OR CH_3CH_2COOH + OH^- \rightarrow$ OR added alkali reacts with H ⁺ $OR H^+ + OH^- \rightarrow \checkmark$ $\rightarrow CH_2CH_2COO^- OR$ Equilibrium \rightarrow right \checkmark		ALLOW weak acid reacts with added alkali
		Added acid $CH_3CH_2COO^-$ reacts with added acid OR [H ⁺] increases \checkmark $\rightarrow CH_3CH_2COOH$ OR Equilibrium \rightarrow left \checkmark		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
			5	

Question	Expected Answers	Marks	Additional Guidance
d	$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HNO ₃ + CH ₃ CH ₂ COOH \Rightarrow CH ₃ CH ₂ COO ⁻ + H ₂ NO ₃ ⁺ × base 2 acid 1 base 1 acid 2 \checkmark
e i	2CH ₃ CH ₂ COOH + Mg → (CH ₃ CH ₂ COO) ₂ Mg + H ₂ \checkmark	1	IGNORE state symbols ALLOW ionic equation: $2H^+ + Mg \rightarrow Mg^{2+} + H_2$ IGNORE any random charges in formula of $(CH_3CH_2COO)_2Mg$ as long as the charges are correct (charges are treated as working) i.e. $(CH_3COO^-)_2Mg$ OR $(CH_3COO)_2^-Mg$ should not be penalised However, Mg^{2+} instead of Mg on the left side of equation is obviously wrong
ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ OR $2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ OR $H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
	Total	17	

Qu	Question		Expected Answers	Marks	Additional Guidance
4	a	i	Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe ²⁺ /Fe ³⁺ ✓ Ag in solution of Ag ⁺ ✓	3	 DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) ECF if species have been quoted (see Additional Guidance below) (iii) ECF for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e ⁻ For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V ✓	1	ALLOW ECF as in (i)
	b	i	Cl ₂ OR O ₂ AND H ⁺ ✓	1	ALLOW chlorineALLOW O_2 AND $4H^*$ ALLOW O_2 AND acidDO NOT ALLOW O_2 aloneDO NOT ALLOW equation or equilibrium
		ii		1	ALLOW 2I [−] OR iodide DO NOT ALLOW equation or equilibrium

Question	Expected Answers	Marks	Additional Guidance
С	A fuel cell converts energy from reaction of a fuel	5	ANNOTATIONS MUST BE USED
	with oxygen into a voltage/electrical energy ✓		ALLOW combustion for reaction of fuel with oxygen/reactants
			ALLOW a fuel cell requires constant supply of fuel
			OR operates continuously as long as a fuel (and oxygen) are added
	$2H_2 + O_2 \rightarrow 2H_2O \checkmark$		ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
			IGNORE state symbols
	Two from:		
	• under pressure OR at low temperature OR as a		
	liquid		
	adsorbed on solid		ALLOW 'material' OR metal for solid
	absorbed within solid		ALLOW as a metal hydride
	\checkmark		
	Energy is needed to make the hydrogen		
	OR energy is needed to make fuel cell ✓		
	Total	13	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а	i	$(K_{c} =) \frac{[NH_{3}]^{2}}{[N_{2}] [H_{2}]^{3}} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ^{−2} ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect <i>K</i> _c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0} \text{ OR } 1.2 \text{ (mol dm}^{-3}\text{)}$ AND $[H_2] = \frac{12}{6.0} \text{ OR } 2.0 \text{ (mol dm}^{-3}\text{) } \checkmark$		1st mark is for realising that concentrations need to be calculated.
			$[NH_{3}] = \sqrt{(K_{c} \times [N_{2}] \times [H_{2}]^{3})}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^{3})} \checkmark$		Correct numerical answer with no working would score all previous calculation marks
			= 0.876 OR 0.88 (mol dm ⁻³) ✓		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH ₃ = 0.876 × 6 = 5.26 OR 5.3 (mol) ✓		ALLOW calculator value down to 5.3, correctly rounded

Question	Expected Answers	Marks	Additional Guidance
Question	EXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT	Marks	Additional Guidance ALLOW ECF from incorrect concentrations (3 marks) For example, If concentrations not calculated at start, then $[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)} \checkmark$ = 31.5 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 31.5 × 6 = 189.6 (mol) \checkmark IF candidate has K_c expression upside down, then all 4 marks are available in (b) by ECF Correct [N ₂] AND [H ₂] \checkmark $[NH_3] = \sqrt{\frac{[N_2] [H_2]^3}{K_c}} = = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}} \checkmark$ = 11.0 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 11.0 × 6 = 66.0 (mol) \checkmark IF candidate has used K_c value of 8.00×10^{-2} AND values for N ₂ AND H ₂ with powers wrong, mark by ECF from calculated as below (3 max in (b)) Correct [N ₂] AND [H ₂] \checkmark [NH ₃] expression × ECF: Calculated [NH ₃] \checkmark

Quest	ion	Expected Answers	Marks	Additional Guidance
C	i	Equilibrium shifts to right OR Equilibrium towards ammonia ✓	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards'
		Right hand side has fewer number of (gaseous) moles \checkmark		ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
	ii	K_c does not change \checkmark Increased pressure increases concentration terms on bottom of K_c expression more than the top OR system is now no longer in equilibrium \checkmark top of K_c expression increases and bottom decreases until K_c is reached \checkmark	3	ANNOTATIONS MUST BE USED Any response in terms of K_c changing scores ZERO for Part (ii) ALLOW K_c is temperature dependent only OR K_c does not change with pressure ALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to K_c
d	i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4 + H_2O \longrightarrow CH_3OH + H_2$ $CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4 + H_2O \longrightarrow 2H_2 + HCHO$ $CH_4 + 2H_2O \longrightarrow 3H_2 + HCOOH$
	ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Question		on	Expected Answers	Marks	Additional Guidance
	е	i	Unless otherwise stated, marks are for correctly		ANNOTATIONS MUST BE USED
			calculated values.		See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)
			working shows now values have been derived.		see Appendix Thereated guidance for marking de(i) and de(ii)
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$		
			$= (2 \times 192) - (191 + 3 \times 131) \checkmark$		NO LINUTO required at this starts
			= -200 (J K ⁻¹ mol ⁻¹) OR -0.200 (kJ K ⁻¹ mol ⁻¹) \checkmark		IGNORE units
			Use of 298 K (could be within ΔG expression below) \checkmark		
			$\Delta G = \Delta H - T \Delta S$		
			OR		
			$\Delta G = -92 - (298 \times -0.200)$		
			OR		
			$\Delta G = -92000 - (298 \times -200) \checkmark$		
				_	
			= $-32.4 \text{ kJ mol}^{-1} \text{ OR} - 32400 \text{ J mol}^{-1} \text{ /}$	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown)
			(Units must be snown)		Award an 5 marks above for correct answer with no working
					IF 25 °C has been used instead of 298 K, correctly calculated
					ΔG values are = -87 kJ mol ⁻¹ OR -87000 J mol ⁻¹
					4 marks are still available up to this point and maximum
			For foosibility $AG < 0$ OP AG is possible if		
			For reasibility, $\Delta G < 0^{\circ}$ OR ΔG is negative *	1	
		ii	As the temperature increases,	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage)
			OR $T \land S$ becomes more negative than $\land H$		ALLOW – $T\Delta S$ becomes more positive
			OR $T\Delta S$ becomes more significant \checkmark		ALLOW $-T\Delta S$ decreases
			Eventually AH TAS becomes positive /		ALLOW A C becomes positive $OP \land C > 0$
			Eventually $\Delta n = T\Delta S$ becomes positive v		ALLOW AG becomes positive OR AG > 0

Question		on	Expected Answers	Marks	Additional Guidance
		I	Activation energy is too high OR reaction too slow ✓	1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
			Total	22	

Question		on	Expected Answers	Marks	Additional Guidance
6	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^{-} \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$ $4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$	3	ALLOW multiples WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only NO ECF for overall equation
					i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution \checkmark	1	ALLOW ligand exchange
		ii	$[Cr(H_2O)_6]^{3+} + 6NH_3 \longrightarrow [Cr(NH_3)_6]^{3+} + 6H_2O$	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓ Lone pairs on two O atoms ✓	2	First mark is for the idea of two coordinate bonds ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C) Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
e	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
	A: N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: (NH ₄) ₂ Cr ₂ O ₇
	lons: NH ₄ ⁺ \checkmark Cr ₂ O ₇ ²⁻ \checkmark		IF candidate has obtained NH ₄ CrO ₄ for A, ALLOW NH ₄ ⁺ DO NOT ALLOW CrO ₄ ⁻
	B : $Cr_2O_3 \checkmark$		
	Correctly calculates molar mass of C = $1.17 \times 24.0 = 28.08 \text{ (g mol}^{-1}) \checkmark$		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
	C : N ₂ ✓		
	Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
	Total	22	

Question		on	Expected Answers	Marks	Additional Guidance
7	а	i	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark
					e.g. $\frac{1}{2}$ H ₂ O ₂ \longrightarrow $\frac{1}{2}$ O ₂ + H ⁺ + e ⁻
					$5H_2O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$
	b		Marks are for correctly calculated values.		ANNOTATIONS MUST BE USED
			Working shows how values have been derived.		
			$n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{0.0200 \times 23.45} = 4.69 \times 10^{-4} \text{ (mol)} \checkmark$		
			1000		DO NOT ALLOW 4.7 × 10
					ALLOW 1.173 x 10^{-3} OR 1.17 x 10^{-3} (i.e. 3 significant figures upwards)
			$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-1} = 1.1725 \times 10^{-1} \text{ (mol)}$		ALLOW by ECF: 5/2 × ans above
			$n(H_2O_2)$ in 250 cm ³ solution		
			$= 10 \times 1.1725 \times 10^{-3} = 1.1725 \times 10^{-2} \text{ (mol)} \checkmark$		ALLOW by ECF 10 × ans above
					ALLOW concentration $H_2O_2 = 0.0469$ mol dm ⁻³
			concentration in g dm ⁻³ of original H_2O_2		ALLOW by ECF 40 × $h(1_2O_2) \times 34$ ALLOW 0.0469 x 10 x 34 = 15.9 g dm ⁻³ \checkmark
			$= 40 \times 1.1725 \times 10^{-2} \times 34 = 15.9 \text{ (g dm}^{-3}) \checkmark$	4	
					ALLOW two significant figures, 16 (g dm ^{-3}) up to calculator value of
					15.946 g dm ⁻³
			$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 0.028 dm° OR 0.02814 dm° ALLOW 28 cm^3 OR 28 14 cm^3
					ALLOW 20 CITE OR 20.14 CITE
			volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	DO NOT ALLOW 0.03 dm^3
					ALLOW by ECF : $24.0 \times$ calculated moles of O ₂ (2 significant figures up
					to calculator value)
			Total	8	
F325

Appendix 1

Extra guidance for marking atypical responses to **5e(i)** and **5e(ii)**

Question		Expected Answer	Mark	Additional Guidance
Ques 5 e	tion	Expected Answer TOTAL ENTROPY APPROACH: ALL MARKS AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ $= -200 (J \text{ K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 (\text{kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within expression below) \checkmark $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ $\Delta S_{\text{surroundings}} = -\frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = \Delta S_{\text{system}} - \frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = -0.200 - \frac{-92}{298}$ OR $\Delta S_{\text{total}} = -200 - \frac{-92000}{298} \checkmark$ $= 0.109 \text{ kJ (K}^{-1} \text{ mol}^{-1}) \text{ OR } 109 \text{ J (K}^{-1} \text{ mol}^{-1}) \checkmark$ Eeasible when $\Delta S_{\text{total}} \ge 0 \checkmark$	Магк 5	Additional Guidance ANNOTATIONS MUST BE USED NO UNITS required at this stage IGNORE units ALLOW 0.109 kJ OR 109 J IF 25°C has been used instead of 298 K, correctly calculated ΔS_{total} values are = 3.48 kJ K ⁻¹ mol ⁻¹ OR 3,480 J K ⁻¹ mol ⁻¹

F325

Qu	Question		Expected Answer	Mark	Additional Guidance
Qu/ 5	esti	on i	Expected Answer MAX/MIN TEMPERATURE APPROACH: 5 MARKS MAX AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ $= -200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within ΔG expression below) \checkmark $\Delta G = \Delta H - T\Delta S$ OR When $\Delta G = 0$, $0 = \Delta H - T\Delta S$; OR $T = \frac{\Delta H}{\Delta S} = \frac{-92}{-0.200}$ OR $T = \frac{\Delta H}{\Delta S} = \frac{-92000}{-200} \checkmark$ $= 460 \text{ K} \checkmark$ $= 187 \text{ °C} \text{ (use of 298) } \checkmark$	Mark	Additional Guidance ANNOTATIONS MUST BE USED This candidate has not answered the question but many marks are still available. NO UNITS required at this stage IGNORE units
			The condition $\Delta G = 0$ because temperature at which $\Delta G = 0$ is the maximum temperature for feasibility AND justification for the being the maximum \checkmark		By this approach, the calculated temperature is the switchover between feasibility and non-feasibility but it cannot be assumed that this is the maximum temperature

Mark Scheme

June 2010

Question		on	Expected Answer	Mark	Additional Guidance
5	e	ii	As the temperature increases, $\Delta H/T$ becomes less negative OR $\Delta H/T$ becomes more negative than ΔS (system) OR $\Delta H/T$ becomes less significant OR ΔS (surroundings) becomes less significant OR ΔS (system) > $\Delta H/T$ OR ΔS (system) > ΔS (surroundings) \checkmark Eventually ΔS (total) becomes negative \checkmark	2	ALLOW $\Delta H/T > \Delta S_{system}$ (i.e. assume no sign at this stage) ALLOW $-\Delta H/T$ becomes more positive ALLOW $-\Delta H/T$ increases

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

