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Introduction 

The aim of this study was to investigate by simulation the reliability of comparative judgment (CJ) 

and adaptive comparative judgment (ACJ) methods as a means of creating a scale for use in 

educational assessment contexts.  Of particular interest was whether adaptivity inflates the 

apparent reliability. 

 

The motivation and rationale for CJ and ACJ, the theoretical background, and several practical 

applications have been described in numerous articles (e.g. Pollitt, 2004, 2012; Bramley, 2007; 

those listed in Table 1) and will not be repeated here.  In CJ studies, experts are asked to place 

two or more1 objects into rank order according to some attribute.  The ‘objects’ can be examination 

scripts, portfolios, individual essays, recordings of oral examinations or musical performances, 

videos etc.  The attribute is usually ‘perceived overall quality’.  Analysis of all the judgments 

creates a scale with each object represented by a number – its ‘measure’.  The greater the 

distance between two objects on the scale, the greater the probability that the one with the higher 

measure would be ranked above the one with the lower measure.  The A for ‘adaptivity’ in ACJ 

means that the choice of which objects are presented to the judges depends on the outcomes of 

judgments made so far – the idea being to use judge time efficiently by not presenting objects to 

compare where the result of the comparison is almost certain.  The analogy is with computerised 

adaptive testing (CAT) where the choice of the next item to present is based on the examinee’s 

success or failure on items presented so far.  This allows for better targeting of tests to examinees 

and for an equivalent level of precision in the estimate of an examinee’s ability to be obtained from 

fewer items than in a fixed length test. 

 

Cambridge Assessment’s position on the use of CJ/ACJ was given in Bramley & Oates (2011), 

who noted the distinction between using CJ/ACJ as a tool in comparability research or standard 

maintaining exercises; and its more radical use as an alternative to marking.  It is in its latter use 

where claims about reliability have been more prominent, so studies where CJ/ACJ was used as 

an alternative to marking were the focus of this investigation. 

 

Although achieving high reliability is by no means the only motivation for using CJ/ACJ, it is 

certainly promoted as an advantage of the method, as the following quotes show: 

 

The judges are asked only to make a valid decision about quality, yet ACJ achieves extremely high levels 

of reliability, often considerably higher than practicable operational marking can achieve. It 

therefore offers a radical alternative to the pursuit of reliability through detailed marking schemes. (Pollitt, 

2012, p281). 

 

After round 6 … the reliability rose sharply, reaching an alpha of 0.96 after 16 rounds.  This is an 

extraordinarily high value for the reliability of a writing test; for comparison Royal-Dawson reported values 

ranging from 0.75 to 0.80 in a study of marking reliability in English national curriculum writing at age 14.  

(Pollitt, ibid. p286-7) 

 

In the primary writing study, there were 499,500 possible comparisons, but only 8161 decisions were 

made, or 0.016 per possible pairing. To create a consistent measurement scale with so little data shows 

the remarkable robustness of ACJ.  (Pollitt, ibid. p288) 

 

It is worth noting that the average standard error of measurement for a portfolio was 0.668, which is just 

less than half the width of one of these “GCSE” grades [1.385 logits].  It is unlikely that many GCSE 

                                                
1
 In online applications of CJ/ACJ, as far as I am aware, it is only pairs of objects that have been compared to date. 
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components – or any that are judged rather than scored quite objectively – could match this level of 

measurement accuracy.  (Kimbell et al. 2009, p80). 

 

 

All the published studies cited in this report (see Table 1) used the same statistic as the indicator of 

reliability of the scale produced by a CJ/ACJ exercise, but did not always use the same name for it.  

In this report it will be called the Scale Separation Reliability (SSR).  It is the same as the ‘index of 

person separation’ described in Andrich (1982) and the ‘test reliability of person separation’ in 

Wright & Masters (1982), but these terms are not as apt for CJ/ACJ since the scaled items are 

usually scripts or portfolios or works of art etc.  It is calculated as follows: 

 

The software estimates a ‘measure’ for each object being compared (henceforth ‘script’), and an 

associated standard error.  First, the ‘true SD’ of the script measures is calculated from: 

 

(True SD)2 = (Observed SD)2 – MSE. 

where MSE is the mean squared standard error across the scripts. 

 

The SSR is defined like reliability coefficients in traditional test theory, as the ratio of true variance 

to observed variance, i.e.: 

 

SSR = (True SD)2 / (Observed SD)2. 

  

Sometimes another separation index G is calculated as the ratio of the ‘true’ spread of the 

measures to their average error, i.e.: 

 

G = (True SD) / RMSE 

where RMSE is the square root of the MSE. Then the SSR can also be calculated as 

 

SSR = G2 / (1+G2). 

 

It is somewhat frustrating to note the difficulty that CJ/ACJ practitioners have had in getting these 

formulas reproduced correctly in their published work2.  In Heldsinger & Humphry (2010, p9) the 

formula is the wrong way up, and in Pollitt (2012, p286) G was defined as (Observed SD) / RMSE 

instead of (True SD) / RMSE, and then SSR as G2 / (1+G)2 instead of  G2 / (1+G2). A later 

corrigendum (Pollitt, 2012b) kept the new definition of G and gave the correct formula for SSR as 

(G2-1) / G2 with this new definition.  Since much CJ/ACJ work has involved or been inspired by 

Pollitt, it is worth bearing in mind that reported values for SSR are likely to be comparable with 

other Rasch literature, but values for G may not be.  For high reliabilities this may not matter, e.g. 

for an SSR of 0.8 the Pollitt G would be 2.24 compared to a value of 2 on the earlier definition. 

 

 

                                                
2
 I know from personal experience that errors in formulas can be introduced by the publisher in the typesetting process. I 

am not criticising these authors, but trying to clear up some confusion in the literature. 
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Table 1.  Design features* and SSR reliability results from some published CJ/ACJ studies. 

 

Study Adaptive? What was judged #scripts #judges #comps %max #rounds Av.  # comps per 
script 

SSR 

Kimbell et al (2009) Yes Design & Tech. portfolios 352 28 3067 4.96%  14 or 20 bimodal 0.95 

Heldsinger & Humphry 
(2010) 

No Y1-Y7 narrative texts 30 20 ~2000?   ~69 0.98 

Pollitt (2012) Yes 
2 English essays (9-11 year 
olds) 

1000 54 8161 1.6% 16 ~16 0.96 

Pollitt (2012) Yes English critical writing 110 4 (495) (8.3%) 9 ~9 0.93 

Whitehouse & Pollitt 
(2012) 

Yes 15-mark Geography essay 564 23 3519 2.2% (12-13) ~12.5 0.97 

Jones & Alcock (2014) Yes Maths question, by peers 168 100,93 1217 8.7% N/A? ~14.5 
0.73 
0.86 

Jones & Alcock (2014) Yes Maths question, by experts 168 11,11 1217 8.7% N/A? ~14.5 
0.93 
0.89 

Jones & Alcock (2014) Yes Maths question, by novices 168 9 1217 8.7% N/A? ~14.5 0.97 

Newhouse (2014) Yes Visual Arts portfolio 75 14 ? ? ? 13 0.95 

Newhouse (2014) Yes Design portfolio 82 9 ? ? ? 13 0.95 

Jones, Swan & Pollitt 
(2015) 

No Maths GCSE scripts 18 12,11 151,150 100% N/A ~16.7 
0.80 
0.93 

Jones, Swan & Pollitt 
(2015) 

No Maths task 18 12,11 173,177 114% N/A ~19.5 
0.85 
0.93 

McMahon & Jones 
(2014) 

No Chemistry task 154 5 1550 13.2%  ~20 0.87 

 

*The values in the table for numbers of scripts, judges, comparisons and rounds have either been taken from the listed articles or calculated based on 

information provided in the article.  The latter calculations may have involved some assumptions. 
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Values for SSR have generally been high or very high in published CJ/ACJ work where the method 

was being used as an alternative to marking.  For example, in the 13 studies listed in Table 1, the 

majority were above 0.9 and only one was below 0.8.  The purpose of the simulation studies 

reported in the next section was to investigate how the SSR statistic compared with the true 

reliability in various conditions.  In particular, it was of interest to find out whether adaptivity 

produced biased estimates of the reliability – i.e. whether the SSR was higher than the true value. 

 

 

Simulations of CJ/ACJ exercises 

 

Study 1 – SD of ‘true quality’ 1.7 logits 

This study used two simulated data sets, one containing the results of all possible paired 

comparisons among 100 scripts N(N-1)/2 = 4950; the other from among 1000 scripts (499500).  

These simulations were intended to be baseline simulations, kept as simple as possible. All 

comparisons were statistically independent, fitting the Rasch formulation of Thurstone’s case V 

paired comparisons model3 (see equation 1 below) and thus treatable as coming from a single 

‘ideal’ judge. 

 

 (   )  
 (     )

   (     )
  (1) 

 

where p(A>B) is the probability of script A being judged to be better than script B, A is the 

measure (scale value) of script A and B is the measure of script B. 

 

It was not entirely straightforward to choose a distribution of ‘true scores’ for the simulated scripts.  

The method of analysis constructs a scale from the judgments with a pre-constrained mean of 

zero, but the SD appears to be free to vary.  This is potentially misleading, because the SD of the 

scale is not separable from the implied average discrimination of the judges.  The analysis 

effectively sets this discrimination at 1 unit.  (In the Rasch model for dichotomous items this is the 

much disputed assumption/requirement that all items discriminate equally – see Humphry & 

Andrich (2008) for further discussion of this issue.)  The scale unit created by the analysis – the 

logit (log-odds unit) – is not a unit of measurement like a metre or degree Kelvin, but rather a pure 

number interpretable as the log of the odds that a script with a given measure would win a paired 

comparison against a script with a measure of zero (i.e. an average script).  To choose a value for 

the ‘true’ SD of a set of script measures thus requires an assumption about what is a reasonable 

value for the probability that a script 1 SD above the mean would ‘beat’ an average script.  Using 

the well-known fact that the cdf4 of the logistic distribution is very similar to that of the normal 

distribution with a multiplier of 1.7, first 100 and then 1000 random numbers were sampled from a 

unit normal distribution and rescaled to set the mean to 0 and the SD to 1.7.  This corresponds to a 

probability of ~0.84 for a script 1 SD above the mean winning a comparison with the average 

script, and puts the 5th and 95th percentiles at ± 3.33 logits.  Choosing a higher or lower value than 

1.7 would therefore correspond either to assuming a higher ‘true’ spread of scripts, or higher 

discrimination for the judges (perhaps experts or trained judges can discriminate better than 

novices).  In fact, these are just different sides of the same coin, because the true values are only 

defined in terms of what the judges can discriminate. 

 

                                                
3
 The model is usually described in the wider psychology and psychometrics literature as the Bradley-Terry-Luce model 

but in the CJ/ACJ assessment context it has been derived from the work of Thurstone and Rasch. 
4
 Cumulative distribution function. 



 

8 
 

A win or loss for each simulated comparison was produced by comparing the modelled probability 

of a win from equation (1) above with a random number from the uniform distribution in the range 

0-1 and assigning a win (score of 1) if the modelled probability was greater than the random 

number and 0 otherwise. 

 

It should be noted that an outcome for every possible paired comparison was simulated once only 

for simplicity.  It is of course possible in a CJ/ACJ study for the same pair to be judged more than 

once – either by different judges or the same judge.  It is not always clear from the published 

studies whether repeated judgments of the same pair of scripts were allowed. 

 

The different analyses were based on the same two underlying datasets.  First of all, observations 

from these datasets were sampled in order to mimic either random allocation of pairs of scripts to 

judges, or adaptive allocation (where the probability of being sampled depends on the outcome of 

earlier comparisons).  In all cases the selection of observations was carefully planned to ensure 

that i) each script was compared the same number of times; and ii) the complete set of judgments 

formed a fully linked design whereby each script was compared directly or indirectly with every 

other script5.  For the ‘random only’ analyses, this could be achieved by systematically sampling 

the required observations.  For analyses involving adaptivity, however, the temporal nature of the 

process needed to be recognised.  This was done by dividing the comparisons into rounds where 

half the scripts were compared with the other half.  To achieve random pairings by this method, the 

standard ‘round-robin’ allocation algorithm6 for tournaments where all players/teams have to play 

all other teams over a series of rounds was used.  To achieve adaptive pairings, a version of the 

‘Swiss’ method (alluded to in Pollitt, 2012) was used.  Scripts were ranked according to total 

number of wins so far (i.e. total from previous rounds7) and then, starting at the top of the list, each 

unpaired script was paired with the first script below it in the list that it had not been compared with 

before.  This algorithm is not optimal because it means scripts at the bottom end of the list may 

end up unpaired.  However, the effect of losing a few comparisons was assumed to be negligible. 

Finally, a third method of allocation was simulated – that of comparing all scripts with the same 

fixed set of scripts.  Whilst this might not be a practical method in the real world because the 

judges would repeatedly encounter the same scripts (the reference set), it still provides a linked 

design and is statistically identical to the Rasch analysis of a N-item dichotomous test (where N is 

the number of scripts in the reference set).  Therefore it could shed light on both the conception of 

reliability, and on interpreting the SSR. 

 

To summarise, the three allocation methods are somewhat analogous to standard tests of 

dichotomous items constructed from an item bank in the following way: 

Random – a test of N items is randomly sampled from a bank for each examinee; 

Adaptive – a test of N items is sampled adaptively from a bank for each examinee; 

Fixed – a test of the same (random) N items from the bank is given to each examinee. 

 

It is important to note at this point that the method of adaptivity used here was less sophisticated 

than the adaptivity used in the published studies in Table 1, because there was no estimation of 

parameters after each round.  Pollitt (2012, p286) implies that the Swiss method is rather crude: 

“…providing very rough sorting by quality.” (emphasis added).  This assessment is supported by 

his Figure 2 (ibid.) which shows the SSR increasing rapidly after Swiss rounds are replaced by 

truly adaptive rounds.  However, without specifically comparing them on a like-for-like basis after 

                                                
5
 This might not be the case if there are ‘disjoint subsets’: sets of scripts whose members are only compared with each 

other and not with scripts in other subsets. 
6
 As described at http://en.wikipedia.org/wiki/Round-robin_tournament  

7
 Even a fully adaptive allocation method requires one random round to get started. 

http://en.wikipedia.org/wiki/Round-robin_tournament


 

9 
 

the same number of rounds it is not possible to conclude from this how much a Swiss adaptive 

method differs from a truly adaptive method in this context. 

 

None of the works cited in Table 1 explains exactly how scripts were paired adaptively.  Possibly 

this is because the software underlying the technology had proprietary elements, possibly because 

there was not space in the journal or it was not deemed sufficiently interesting.  Recently the 

NoMoreMarking team has announced on its website8 that its algorithms for CJ/ACJ are publicly 

available, and that they are based on the progressive adaptive algorithm of Barrada, Olea, 

Ponsoda & Abad (2008).  This algorithm was developed for selecting the next item to present in a 

normal computer adaptive test (CAT).  It gives a higher weight to random allocation at the start of 

the test and a lower weight to the statistical information9.  As the test progresses, the relative 

weights of these two components change at a rate that can be controlled by an ‘acceleration 

parameter’.  

 

It is not quite clear what constraints have been applied in practice to selection of possible pairs – 

my guess is that because this is real-time software which judges can access at any time, a number 

of ad hoc but sensible constraints are used to make sure that all scripts are compared at roughly 

the same rate, no judge sees the same script too often etc.  What is not clear is whether there are 

rules preventing repeats of the comparison between the same two scripts, whether or not it is by a 

different judge.  This is potentially important because in situations with a relatively small pool of 

scripts and a relatively large number of rounds, it is much easier to find pairs if you don’t have to 

worry about whether they have been matched against each other before. 

 

The main point of all this is that while the simulations should provide useful insight about the size of 

the SSR statistic in CJ/ACJ studies, it is not clear how closely they resemble ‘live’ studies, or 

whether there are differences that could potentially affect the interpretation. 

 

In all cases the script measures from the simulated paired comparison data were estimated with 

FACETS software (Linacre, 1987).  The true reliability was taken to be the square of the correlation 

between the generating script measures (i.e. those used in the simulation to generate the data) 

and the estimated measures (i.e. those estimated by FACETS from the data).  This is in 

accordance with the definition of reliability in classical test theory where the square of the 

correlation between true and observed scores is the ratio of true to observed variance, i.e. 

reliability. 

  

                                                
8
 See https://www.nomoremarking.com/  and https://github.com/NoMoreMarking/cj  

9
 For the Rasch model, the information is at a maximum when the current estimate of person ability and item difficulty are 

the same.  By extension to ACJ the information is at a maximum when two scripts with the same current estimate of 
quality are compared. 

https://www.nomoremarking.com/
https://github.com/NoMoreMarking/cj
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Results of simulation study 1 

Table 2 shows the main results of the different studies and Figure 1 plots the estimated reliability 

(SSR) against the true reliability.  It is clear from Figure 1 that adaptivity (or at least, Swiss 

adaptivity) tends to inflate the SSR coefficient above its true value.  The effect is more dramatic for 

lower numbers of comparisons per script, but still detectable with 30 comparisons per script.  Since 

most of the published CJ/ACJ studies have used between 10 and 20 comparisons per script, this 

suggests that some of the high values of SSR reported may be overestimates of the true reliability. 

It is also interesting to note that even random allocation slightly overestimated reliability for 30 or 

fewer comparisons per script, and that the fixed allocation method was where the SSR was closest 

to the true reliability. 

 

Note that in a proper simulation study, each analysis would be repeated a large number of times 

with different randomly generated data and/or different samples from the same data.  This is 

possible in future work but since the aim of this study was not to generate bootstrap estimates of 

the variability of the SSR it seemed reasonable to take the results from each single run at face 

value – i.e. as being generally representative of other runs with those ‘design parameters’. 

 

 
 

Figure 1.  SSR plotted against true reliability for each simulation. The numbers by each point 

indicate the number of comparisons per script. The black line shows where SSR=True reliability. 
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Table 2.  Results of simulation study 1. 

 

       Generating (true) measures Estimated measures 

Source Allocation N scripts 

Comps 

Per Script 

Random 

Rounds 

Adaptive 

Rounds 

N 

estimated10 SD Min Max Reliability SD Min Max SSR 

sim1 Random 100 99 99 0 100 1.70 -3.49 4.81 0.97 1.81 -3.43 4.76 0.97 

sim1b Random 100 10 10 0 85 1.44 -3.49 3.17 0.50 2.92 -7.16 6.09 0.87 

sim1c Random 100 30 30 0 97 1.61 -3.49 4.81 0.89 1.92 -4.36 4.74 0.91 

sim1e Adaptive 100 8 1 7 94 1.52 -3.49 3.17 0.62 5.25 -14.58 7.44 0.93 

sim1h Adaptive 100 10 5 5 90 1.50 -3.49 4.81 0.67 3.51 -7.36 7.17 0.91 

sim1i Adaptive 100 30 20 10 100 1.70 -3.49 4.81 0.90 2.24 -6.37 6.04 0.94 

sim2a Random 1000 999 999 0 1000 1.70 -5.39 5.25 1.00 1.71 -5.38 5.58 1.00 

sim2b Random 1000 10 10 0 871 1.46 -3.96 4.50 0.65 1.98 -5.56 4.64 0.75 

sim2c Random 1000 30 30 0 989 1.66 -4.95 4.54 0.90 1.87 -5.03 5.17 0.91 

sim2d Random 1000 100 100 0 1000 1.70 -5.39 5.25 0.97 1.77 -6.09 5.29 0.97 

sim2e Adaptive 1000 10 5 5 947 1.56 -4.33 4.11 0.60 4.39 -23.35 20.26 0.85 

sim2f Adaptive 1000 30 20 10 1000 1.70 -5.39 5.25 0.92 2.23 -8.62 7.04 0.95 

sim2g Random 1000 16 16 0 960 1.60 -4.45 4.50 0.79 1.99 -5.07 5.35 0.85 

sim2h Adaptive 1000 16 1 15 998 1.69 -5.39 5.25 0.87 3.05 -9.59 8.34 0.95 

sim2i Fixed 116 16* 0 0 98 1.55 -2.45 4.02 0.84 1.77 -3.86 3.78 0.83 

sim2j Fixed 130 30* 0 0 99 1.56 -2.45 4.02 0.90 1.63 -2.92 4.14 0.90 

 

                                                
10

 Measures cannot be estimated for scripts that won or lost all their comparisons (or that only won or lost to such a script).  FACETS extrapolates a value for such scripts but indicates 
that it was an ‘extreme’ measure.  Such scripts have been excluded from Table 2 and Figure 1.  Their inclusion does not affect the interpretation. 
* The 100 scripts outside the reference set were compared 16 or 30 times.  The scripts in the reference set were compared many more times, but excluded from the analysis. 
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Study 2 – SD of ‘true quality’ 0 logits (i.e. random judgments) 

The second set of simulations used the same features as simulation study 1, but replaced every 

paired comparison outcome in the two starting datasets (all possible paired comparisons among 

100 or 1000 scripts) with a random outcome (i.e. 1 or 0 with 0.5 probability for every comparison).  

This is equivalent to assuming every script has the same underlying ‘true quality’, or that the 

judges have no discriminating power whatsoever.  In such a scenario the true reliability is zero, 

because there is no true score variance. 

 

Figure 2 shows the resulting values for the SSR.  To facilitate comparison with simulation study 1, 

the source of the data (see Table 2 above) has ‘s0’ appended, to indicate the equivalent 

comparison but with a true SD of zero.  The results are startling – the cases involving adaptivity 

produced drastically inflated values for SSR, rising as high as 0.89 for the simulation with 1 random 

round and 15 adaptive rounds. 

 

 
 

Figure 2.  SSR values from simulation study 2 (random data). 

 

To check whether these worrying results were somehow an artefact of using the Swiss method for 

adaptivity rather than true adaptivity (where parameters are estimated after each round) I 

contacted Chris Wheadon and Ian Jones at NoMoreMarking, who used a simulation workshop they 

were running at Antwerp University to explore the issue with their own algorithms.  Their results11 

essentially agreed with those above. 

                                                
11

 See ‘The opposite of adaptivity’ on the NoMoreMarking website blog: https://www.nomoremarking.com/blog  

https://www.nomoremarking.com/blog
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The implication is that the SSR statistic is worthless as an indicator of the quality / consistency / 

reliability of a scale constructed from an ACJ study that has involved a significant number of 

adaptive rounds.  With random or fixed rounds, the SSR values were all below 0.25, which would 

generally be taken as an indicator of failure to create a meaningful scale.  To put it another way, a 

low value of SSR almost certainly indicates low reliability, but a high value of SSR does not 

necessarily indicate high reliability. 

 

This is not to say that the ACJ studies listed in Table 1 (or indeed other studies not listed) were 

themselves worthless, just that not much should be made of claims about very high reliability in 

ACJ studies on the basis of high values of the SSR statistic.  In fact, many of those studies also 

showed moderate to high correlations with variables external to the analysis, which were rightly 

interpreted as evidence of concurrent validity. 

 

 

Discussion 

 

The effect of adaptivity on reliability 

The adaptivity in ACJ is not quite analogous to the adaptivity in normal computerised adaptive 

testing (CAT) because in CAT, the items are administered from a pre-calibrated item bank.  That 

is, the item difficulties are known beforehand and treated as fixed – it is only the ability of the 

person taking them that is being estimated.  With ACJ as it has been applied so far, nothing is 

known about the scripts before judging starts.  Therefore all parameters are being estimated ‘on 

the fly’ on the basis of the judgment data coming in. 

 

The IRT literature (e.g. Tsutakawa & Johnson, 1990; Mislevy, Wingersky & Sheehan, 1994) shows 

that considerable attention has been given to the problem of how uncertainty in the item 

calibrations from pre-testing can affect ability estimates in live testing, the typical finding being that 

uncertainty in the item calibrations (resulting from small calibration samples) leads to bias and 

underestimation of uncertainty in ability estimates. 

 

In the CAT literature too the issue has been discussed (e.g. Parshall, 2002).  Here the problem has 

been framed in terms of whether or in what circumstances it is acceptable to field-test new items in 

the course of administering a CAT, where the issues are i) the sparseness of the dataset (most 

examinees have ‘missing data’ for most items); and ii) the non-randomness of the missing data 

(items are presented to examinees based on their performance).  Ito & Sykes (1994, p1), using the 

Rasch model, found that existing item bank difficulties were “not well replicated when difficult items 

were calibrated using responses from able examinees and easy items were calibrated using 

responses from less able examinees”. 

 

These considerations show why adaptivity is causing a problem for ACJ as currently implemented 

– if adaptivity is ‘switched on’ at an early stage then the uncertainty in the estimates is large, being 

based, in the worst case, on a single random comparison.  This would be equivalent to estimating 

ability based on an item that been calibrated in a pre-test sample containing one person.  When 

there are no ‘true’ differences among the scripts a random half of them lose in the first round. In the 

second round half of these losers will be paired against the other half (and likewise for the winners) 

and again a random half of them will lose, and a random half of the winners will win, and thus the 

estimates of script quality become spread out. However, because of the adaptivity, the scripts that 

have lost twice will not have the chance to show that they are just as likely to beat scripts that have 
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won twice as they are to beat any others because they will not be paired against scripts that have 

won twice in the next round.  In the context of CAT, Styles & Andrich (1993, p915) note that when 

there are no off-target comparisons (encounters of a high ability person with an easy item and vice 

versa) the effect “is to sharpen the scale, that is to stretch the item difficulties because responses 

that are very unexpected tend to regress the estimates.”  The way this is phrased does not make it 

clear whether they considered this effect to be a good or a bad thing, but in the context of ACJ, 

where there is so little data per script, it seems clear that it creates spurious separation among the 

scripts. 

 

Is there a way to retain adaptivity in CJ studies? 

The above considerations suggest that adaptivity in CJ studies may only be a viable option if one 

of the scripts in each paired comparison already has an estimate with low uncertainty.  This could 

be achieved if an ACJ study involving N scripts began by selecting a reference subset of scripts of 

size R, and making all R(R-1)/2 comparisons among them.  Then the remaining N-R scripts could 

be compared adaptively against scripts in the reference set, starting with an average one and then 

presenting better or worse scripts from the reference set according to whether the new script was 

judged better or worse than the average one.  This is basically equivalent to attempting to form a 

well-calibrated item bank from a subset of scripts, and then administering an adaptive test based 

on it. 

 

For example, with 100 scripts a reference set of 30 would require 435 comparisons for each to be 

compared with every other script once.  Then if the remaining 70 scripts were compared adaptively 

with scripts from that set of 30 (anchoring each reference script at its pre-calibrated value) we 

might find that 15 adaptive comparisons gave a reasonable estimate of the quality of the remaining 

70 scripts.  This would involve a further 1050 comparisons, giving 1485 in total, or 30% of the total 

number of possible comparisons.  Simply comparing each of the 70 scripts with each of the 

reference set of 30 would require 2100 comparisons, or 42.4% of the total. 

 

Clearly further work is needed to explore how many comparisons would be needed to calibrate the 

scripts in the reference set properly.  The above example assumes 29 comparisons, which seems 

very optimistic given the guidance in the CAT literature for 1,000 persons to calibrate an item with 

the 3-parameter model (Wainer, 2000).  However, it is recognised that the Rasch model does not 

generally require such large samples (e.g. Lord, 1983), and it does not seem unreasonable to hope 

that expert judges comparing relatively substantial pieces of work might be able to produce more 

discrimination than dichotomous test items. 

 

What is reliability in CJ/ACJ studies? 

Reliability theory is well established in Classical Test Theory (CTT), Generalisability Theory (GT) 

and Item Response Theory (IRT) (see for example Haertel, 2006; Brennan, 2011; Mellenburgh, 

1996).  The general idea is that reliability is about what would happen if an assessment process 

were repeated, varying one or more aspects of it. In the CJ/ACJ context, the SSR clearly cannot 

give any information about what would happen if the exercise was repeated with different work 

from the same examinees (e.g. if the test was made longer or shorter, or contained different 

questions). It is therefore not comparable to Cronbach’s Alpha. 

 

However, another way a CJ/ACJ study could be repeated would be to present exactly the same 

comparisons to a different set of judges, and then correlate the script measures estimated in each 

case.  As far as I am aware, this has never been tried.  Along similar lines, a study could be 

repeated with a different set of judges using the same set of scripts and allocation method (but not 
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necessarily repeating the exact comparisons). Although the SSR statistic for each set of judges 

would be biased upwards if there had been adaptive allocation, the correlation of estimated 

measures between each set of judges would be an unbiased estimate of reliability regardless of 

whether adaptivity had been involved.  This approach was taken by Jones & Alcock (2014) and 

Jones, Swann & Pollitt (2015) and yielded estimates of reliability ranging from 0.72 to 0.87.  Given 

that both studies involved judgments of responses to maths tasks it can be seen that the reliability 

was not as high as the inter-marker reliability that would be obtained from conventional marking of 

this type of task, which is usually above 0.95 (e.g. Bramley & Dhawan, 2012, p276 & p283).  

However, if similar values could be obtained for other types of task (e.g. judgments of portfolios; 

essays; works of art or musical performances) this would be evidence that CJ/ACJ could yield 

similar levels of reliability to conventional marking.   

 

A different interpretation of repeating a CJ/ACJ study would be obtain a set of estimated measures 

for the same set of scripts by getting the same judges to compare them with a different set of 

scripts from the same population.  For example, if each of the N scripts had been compared on 

average with P scripts (with the P being a subset of the N) in the original study, the replication 

could compare each of the N with R=P further scripts (with the R not being among the original N) in 

a fixed allocation design.  The correlation between the estimated measures of the N scripts in each 

setting would also be an indication of reliability. 

 

In summary, when there is no adaptivity the SSR statistic estimates the true reliability (defined as 

the squared correlation between ‘true’ (generating) quality and estimated quality when the data fits 

the model). In these non-adaptive CJ contexts, the size of the SSR statistic will mainly depend on 

the number of scripts each script is compared with, and the ‘true’ spread of measures 

(=discrimination power of the judges) in the sample of scripts.  If there is adaptivity, then it is 

necessary to repeat the comparison process in some way to get an unbiased estimate of the true 

reliability. 

 

 

Conclusion 

The motivation for using adaptivity in CJ studies – namely to avoid wasting time and resource 

getting judges to make comparisons whose outcome is a foregone conclusion – is entirely 

understandable.  But both theoretical considerations from the IRT and CAT literature and the 

results of the simulation study in this report show that adaptivity produces spurious scale 

separation reliability, as indicated by values of the SSR coefficient that are substantially biased 

upwards from their true value.  The higher the proportion of adaptive rounds, the greater the bias.  

SSR values above 0.70 and even as high as 0.89 can be obtained from random judgments (or 

equivalently, scripts that all have the same true quality) when adaptivity is ‘switched on’ after the 

first random pairing. 

 

The conclusion is therefore that the SSR statistic is at best misleading and at worst worthless as 

an indicator of scale reliability whenever a CJ study has involved a significant amount of adaptivity.  

Other indicators of reliability, such as correlations with measures obtained from comparisons 

among a different group of judges, or correlations with relevant external variables, should be used 

instead.  ACJ studies that have used high values of the SSR coefficient alone to justify claims that 

ACJ produces a more reliable scale than conventional marking need to be re-evaluated. 
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