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Abstract: 
Equating methods are designed to adjust between alternate versions of assessments 
targeting the same content at the same level, with the aim that scores from the different 
versions can be used interchangeably. The statistical processes used in equating have, 
however, been extended to statistically “link” assessments that differ, such as assessments 
of the same qualification type that assess different subjects. Despite careful debate on 
statistical linking in the literature, it can be tempting to apply equating methods and 
conclude that they have provided a definitive answer on whether a qualification is harder 
or easier than others.

This article offers a novel demonstration of some limits of statistical equating by exploring 
how accurately various equating methods were able to equate between identical 
assessments. To do this, we made use of pairs of live assessments that are “cover sheet” 
versions of each other, that is, identical assessments with different assessment codes. The 
results showed that equating errors with real-world impact (e.g., an increase of 5–10 per 
cent in the proportion of students achieving a grade A) occurred even where equating 
conditions were apparently favourable. No single method consistently produced more 
accurate results than the others.

The results emphasise the importance of considering multiple sources of information to 
make final grade boundary decisions. More broadly, the results are a reminder that if 
applied uncritically, equating methods can lead to incorrect conclusions about the relative 
difficulty of assessments.
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Which assessment is harder? Some 
limits of statistical linking

Tom Benton and Joanna Williamson (Research Division)

Introduction

Equating methods are statistical processes whose purpose is to put scores from 
different assessments onto the same scale. A key application of equating is to 
determine equivalent scores when candidates for the same qualification can take 
alternate versions of certain assessment components. For example, candidates 
who are in different time zones or who take the same qualification at a different 
time of year may sit different versions of a written examination component, and 
it is necessary to know which scores represent the same level of achievement 
on the different assessment versions so that no candidate is disadvantaged. 
Definitions of equating stress that equating is for adjusting between alternate 
versions of assessments targeting the same content at the same level, with the 
aim that scores from the different versions can be used “interchangeably” (Kolen & 
Brennan, 2014, p. 2). 

The statistical processes used in equating have also, however, been extended 
to compare pairs of assessments that do not meet these strict criteria. There 
is often great interest in the comparability of assessment scores from related 
assessments targeting the same construct at different levels, from parallel 
qualifications targeting the same subject at the same level, and from assessments 
of the same qualification type that assess different subjects. The use of equating 
methods and close variants to statistically “link” assessments for such comparisons 
has a different conceptual basis to equating in the clear sense that statistical 
adjustments cannot make the scores from a Physics exam and a History exam 
“interchangeable”. There are however high-stakes situations in which such scores 
are in fact interpreted interchangeably (e.g., school league tables, or a university 
place conditional on achieving three A Levels at grades AAB), providing ample 
motivation for asking whether certain assessments are “too hard” or “too easy” 
in comparison with others. Despite careful debate over the basis for statistical 
linking and the precise conclusions that can and cannot be drawn (e.g., Mislevy, 
1992, pp. 21-26; Newton, 2010), including in the literature on inter-subject 
comparability (e.g., Bramley, 2011; Coe, 2008; Newton, 2012), it can be tempting 
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to apply equating methods and conclude that they have provided a definitive 
answer regarding whether a qualification is harder or easier than others. 

The purpose of this article is to explore how accurately various equating methods 
are able to equate between identical assessments. It offers a novel demonstration 
of some limits of statistical equating by making use of pairs of live assessments 
that are “cover sheet” versions of each other, that is, identical assessments with 
different assessment codes. Such pairs occur most commonly where the same 
assessment is a component of corresponding qualifications of different types 
(e.g., an IGCSE and O Level in the same subject) or a component of related 
qualifications of the same type (e.g., IGCSE Combined Science and IGCSE Co-
ordinated Sciences). The fact that the assignment of students to particular cover 
sheet versions is a non-random process means that this context may provide a 
more realistic evaluation of various equating techniques than others. In particular, 
the equating methods will have to address issues of differences in the abilities 
and subject choices of candidates taking different qualifications that occur in real 
practical situations. At the same time, the evaluation of the equating methods’ 
accuracy is made straightforward by the fact that the true equating relationship 
is known: since the two assessments in a cover sheet pair are identical, the scores 
from the two assessments are already on the same scale, and the true equating 
relationship is the one that maps each score to itself (in mathematical terms, the 
identity function). 

How to link assessments

The outcome of equating two assessments is a statistical transformation or 
equating function that allows scores from one assessment to be interpreted on 
the same scale as scores from the second assessment. Two things are needed to 
generate the statistical transformation or equating function: firstly, locating or 
collecting some data that links candidate performance on the two assessments, 
and secondly, making a decision about which definition of “same standard” the 
equating function should preserve. 

In some equating designs, information linking candidate performance on the 
two assessments is obtained directly, by having a single group of representative 
candidates take both assessments. Alternatively, candidates may be randomly 
assigned to sit one or other of the two assessments, and for sufficiently large 
groups, the groups can be assumed equivalent. In these designs, differences in 
performance can be interpreted as representing differences in the difficulty of the 
two assessments, rather than differences in the candidates sitting them. 

In high-stakes live assessments such as IGCSEs, O Levels and A Levels, security 
concerns prevent the pre-testing of assessments, and it is not possible to assign 
candidates randomly to different live papers. Where the groups sitting each 
assessment cannot be assumed equivalent, it is – clearly – more challenging 
to judge comparable standards in the two assessments, as this has to be 
disentangled from differences in the ability of the two groups. Equating designs 
for non-equivalent groups require some link between the assessments of interest. 
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Where available, this link can be achieved via a subset of common items that 
feature on both assessments (as seen, for example, in tiered GCSE Mathematics). 
The fact that these items are taken by both candidate groups allows them to 
function as a reference point or “anchor” for understanding the group differences 
(hence Non-Equivalent Groups with Anchor Test or NEAT equating design). For 
many pairs of assessments, however, there is no subset of items forming an internal 
anchor test, and an external link or anchor must be found. For GCSEs and A Levels 
in England, prior attainment, at Key Stage 2 and GCSE respectively, is typically 
used in place of an anchor (see Bramley & Vidal Rodeiro, 2014). In other scenarios, 
particularly where prior attainment is unavailable, an external link might be 
identified from common components, that is, assessments taken by candidates 
from both groups alongside the assessments being equated. 

Previous work by Benton (2017) developed a method for going beyond co-
components and taking into account all the information linking candidates. 
The core idea is a summary measure known as the ISAWG (Instant Summary 
of Achievement Without Grades), a measure of ability that summarises each 
candidate’s performance across multiple assessments on a single scale, whichever 
assessments they have taken. The ISAWG value for each candidate can be defined 
informally as “the single number that most accurately reflects the standardised 
marks they have achieved on whichever assessments they have taken” (Benton, 
2017, p. 6). When used to equate between assessments, the ISAWG measure 
therefore incorporates information about candidates’ performance on all co-
components (if any exist), but also assessments that are not co-components1.

An important theoretical objection to equating assessments via co-components 
or ISAWG measures is the defensibility of comparing assessments in one subject 
using data from assessments designed to measure candidates’ abilities in 
different subjects or qualifications. Besides assessing different content, factors 
that can undermine comparisons include differences in teaching and levels of 
student motivation, and whether an assessment is compulsory or the result of 
student choice. Data on candidates’ achievement in different assessments can 
be used in such a way that the most relevant information is prioritised over 
less relevant information (e.g., by restriction to related subjects, or to similar 
qualification types, or prioritisation of co-components according to correlation 
with assessment scores and candidate numbers), but the concern is a valid one, 
and has been extensively debated. The theoretical basis for pursuing a measure 
such as ISAWG is Spearman’s (1904) theory of general ability or “g”, which would 
suggest that “although different tests may measure slightly different skills, all of 
them should relate to each candidate’s ‘fundamental function’ (or ‘g’)” (Benton, 

1   The technical procedure for calculating ISAWG is equivalent to carrying out 
Principal Components Analysis on a data set including all of the assessments 
offered by Cambridge International and OCR in a single session – with missing 
values included, since no candidate takes all available assessments – and taking 
the first principal component for each candidate. Although other research has 
also investigated how to incorporate information from covariates into equating 
(e.g., Andersson et al., 2013; Wiberg & Branberg, 2015), the ISAWG is uniquely well 
suited for equating using very large sets of covariates (in this case, assessments) 
with highly variable missing data patterns (see Benton, 2017, p. 8). 
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2017, p. 6). This, in turn, should provide a reasonable basis for estimating the 
candidate’s likely achievement on other assessments. In the context of setting 
grade boundaries or cut scores for standard maintaining, previous work has 
shown that co-component and ISAWG equating methods are promising (Benton, 
2017). Importantly, in the context of setting grade boundaries, equating outcomes 
can be and are considered alongside multiple other sources of evidence, including 
expert judgements about question papers and candidate scripts, and sometimes 
alternative types of statistical evidence. 

Once data linking the assessments to be equated has been identified, there are 
multiple ways to define an equating relationship. One widely used approach is 
equipercentile equating, in which scores from Test X and Test Y are considered 
equivalent if they represent the same percentile rank for the specified population. 
Equipercentile equating allows for non-linear relationships between Test X and 
Test Y: for example, the equating function may indicate that Test X is easier than 
Test Y at the very top and bottom of the score range, but not in the middle of the 
range. Equipercentile equating requires more data than some other methods, but 
is less restrictive in its assumptions and requirements and hence is suitable for the 
type of assessments considered in this article, where lack of data is not a problem.

Equating percentile ranks for the complete and non-equivalent groups taking 
Test X and Test Y would of course not account for any differences in group ability, 
and there are two main approaches to dealing with this. In frequency estimation 
(FE) equipercentile equating, the candidate groups for Test X and Test Y are 
first weighted so that they are equivalent in terms of their anchor test score 
distributions (i.e., to create equivalent groups, so far as we are able, for which 
we have both Test X and Test Y scores). Using the weighted data, the score 
distributions for Test X and Test Y are created. These are then used to equate 
percentile ranks. As an alternative to FE, the chained method equates percentiles 
first from Test X to the anchor test within the Test X candidates, then equates 
percentiles from the anchor test to Test Y within the Test Y candidates. 

Method

Several equating methods were investigated by exploring how accurately they 
equated between pairs of identical assessments with different cover sheets. Each 
method produced an estimated equating function linking the scores between the 
two assessments in each pair (Test X and Test Y). These equating functions were 
evaluated by comparison to the true equating function, which, for all pairs, was 
the identity function. For each Test X score, the difference between the estimated 
equated score and actual equivalent score (equal to the Test X score) was 
calculated. The differences between the estimated equated scores and actual 
equivalent scores were then summarised in terms of the cumulative percentage 
of candidates achieving each score or above. This information indicated the 
differences in pass rates that would result from cut scores at any chosen point, 
allowing the equating errors to be interpreted in terms of their impact rather than 
just magnitude. 
Five equating techniques were investigated: four versions of equipercentile 



Research Matters • Issue 34 30©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

equating with an anchor test or measure, and, as a contrasting but widely used 
approach, Rasch equating2. To support fair comparison between the equating 
methods, each method was restricted to considering the same set of possible 
co-components. For each cover sheet pair, the set of usable co-components was 
defined to be the 20 largest components (by joint N also taking Tests X and Y) 
taken by at least 100 and at least 5 per cent of candidates taking Test X, and also 
at least 100 and at least 5 per cent of the candidates taking Test Y.

The details of the five methods were as follows:

1. Single co-component (FE)

Components were equated by choosing a single co-component to use as an 
anchor test, in frequency estimation (weighted) equipercentile equating. The 
co-component chosen from the set of (up to) 20 usable co-components was that 
with the highest minimum correlation with Test X and Test Y. Single co-component 
equating was investigated due to its simplicity as well as good performance in 
prior equating studies (Benton, 2017). 

2. Single co-component (chained)

Components were equated using a single co-component as an anchor, in 
chained equipercentile equating. As in Method 1, the co-component selected 
was that which had the highest minimum correlation with Test X and Test Y. 
It was considered important to test chained as well as frequency estimation 
methods, since frequency estimation is recommended only when groups are 
“reasonably similar” (Kolen & Brennan, 2014, p. 146), and there is evidence that 
chained methods may be more successful when the abilities of Test X and Test Y 
candidates in fact differ meaningfully (Benton, 2017). 

3. ISAWG (FE)

Components were equated using candidates’ ISAWG measure in place of an 
anchor test score in frequency estimation equipercentile equating. The ISAWG 
measure was recoded into integers 0-19 before equating was carried out (since 
nearly all equating methods expect integer anchor test scores). 

4. ISAWG (chained)

Components were again equated using the separately calibrated ISAWG measure 
in place of an anchor test, but within chained equipercentile equating.
In contrast to the standard ISAWG measure (Benton, 2017), the ISAWG measures 
used in Methods 3 and 4 were separately calibrated for each cover sheet pair. 
The calculation of ISAWG values was restricted to using scores from that pair’s set 
of (up to) 20 usable co-components as well as the two components themselves. 
Note that the two components in the pair being equated were not themselves 
treated as cover sheet versions of each other. That is, the ISAWG calculation 
considered these two components as entirely separate assessments, while, if they 

2 In contrast to the four equipercentile equating procedures, which are observed-
score equating methods, the Rasch equating method is a form of item-response 
theory (IRT) true-score equating in which scores from Test X and Test Y are 
considered equivalent when they correspond to the same level of underlying 
ability construct (see Kolen & Brennan, 2014, pp. 175, 213).
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were among the relevant co-components, all other cover sheet pair equivalences 
remained “known” to the ISAWG calculation. 

5. Rasch equating

For each cover sheet pair, Test X, Test Y and the corresponding (up to) 20 usable 
co-components were first analysed as a (up to) 22 “item” test using a polytomous 
extension of the Rasch model (an Extended Nominal Response Model fitted in R, 
using the package Dexter (Maris et al., 2021)). This allowed raw scores from Test X 
and Test Y to be related to a single unidimensional ability scale. Scores on Test X 
and Test Y were then linked so that for each Test X score, the equated Test Y score 
was the Test Y score corresponding to the same point on the ability scale.

Data set and description of equating context

Equating was carried out on pairs of IGCSE and O Level components taken by 
Cambridge International candidates in summer 2018. Each pair consisted of 
identical assessments with different cover sheets, taken by non-overlapping 
groups of candidates. Analysis was restricted to pairs with at least one co-
component suitable for equating, defined to be an assessment component 
taken by at least 100 and at least 5 per cent of the Test X candidates, and 
by at least 100 and at least 5 per cent of the Test Y candidates. Analysis was 
further restricted to pairs in which each assessment was taken by at least 3000 
candidates who also took at least one co-component, and where the total 
available marks were at least 50, to avoid the results reflecting the difficulties of 
equating with too few candidates or too few marks. Individual qualifications were 
included only once. Where multiple cover sheet pairs from the same qualification 
met the conditions for inclusion, the pair with the higher number of available 
marks was retained, and if multiple pairs still remained, the pair of components 
with the smallest difference in raw mark means was retained. 

Eight pairs of assessments met the above conditions, covering subjects from 
English as a Second Language (ESL) to Mathematics (Table 1). All the assessments 
were externally assessed written examinations. The first pair of ESL components 
(ESL 1) assessed both reading and writing, while the second pair (ESL 2) assessed 
writing only. Both the Maths 1 and Maths 2 component pairs consisted of two-
hour written tests, but belonged to different mathematics qualifications. All pairs 
had at least five usable co-components. Where candidates are non-randomly 
assigned to assessment versions, the candidate groups taking each version may 
differ substantially – particularly if taught in different school systems – and the 
differences in mean assessment scores shown in Table 1 reflect this. For some pairs 
the mean marks achieved in Test X and Test Y were extremely close, for others 
there was a moderate difference, and for two pairs the difference was very large. 
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Table 1: Description of component pairs investigated.

Component pair Max. 
mark Test X N Test Y N

Number of 
usable 

co-components 
(capped at 20)

Difference between 
Test X and Test Y 

mean scores 
(as per cent of 

maximum mark)
Business 80 5375 10 788 7 0.87

Computing 75 7627 4222 9 2.35

Economics 90 5898 9469 7 4.14

ESL 1 (Reading and Writing) 90 5906 9031 20 0.97

ESL 2 (Writing only) 60 3103 24 889 5 12.93

History 60 3088 12 033 18 6.57

Maths 1 80 4726 6263 7 5.28

Maths 2 104 3518 8104 10 20.55

As noted in the description of equating methods, the co-component selected for 
single co-component equating (Methods 1 & 2) was that (from the set of usable 
co-components) which had the highest minimum correlation with Test X and Test 
Y scores. Table 2 shows that these minimum correlations were generally high. The 
pairs for which the single best co-component had the lowest correlations with 
scores were History (0.52 with Test X) and ESL 2 (0.62 with Test Y). For History, the 
single chosen co-component was also only taken by a relatively small minority of 
those taking Tests X and Y. For Business, Computing, Economics and the two Maths 
pairs, correlations between the single best co-component and component scores 
were all 0.8 or higher. Correlations between component scores and the separately 
calibrated ISAWG measures used in Methods 3 and 4 were also high. The lowest 
correlation occurred for ESL 2 (0.72), and for Business, Computing, Economics and 
the two Maths pairs, correlations between the ISAWG measures and component 
scores were again particularly high (around 0.9). Part of the reason for these high 
correlations is, of course, that the components themselves (that is, Tests X and 
Y) contribute to the calculation. The use of multiple co-components also avoids 
potential loss of data by restricting to a single co-component.

Table 2: Correlation of component scores with single co-component anchor measures 
and ISAWG. Number of students with available score on the single co-component are 
also shown.

Component 
pair

Method 1 & 2  
co-component with Test X

Method 1 & 2  
co-component with Test Y

Correlation of ISAWG 
with Test X, Test Y

Correlation N Correlation N Test X Test Y

Business 0.80 5373 0.82 10 774 0.91 0.92

Computing 0.80 7619 0.81 4221 0.88 0.91

Economics 0.80 5885 0.80 9457 0.93 0.93

ESL 1 0.73 5880 0.73 9004 0.83 0.82

ESL 2 0.62 3100 0.69 24 871 0.88 0.72

History 0.52 337 0.62 1500 0.82 0.83

Maths 1 0.91 4726 0.89 6262 0.94 0.92

Maths 2 0.88 3518 0.88 8089 0.90 0.96
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A first indication of the differences between Test X and Test Y candidate groups 
was given by the differences in component scores reported in Table 1. To allow a 
closer look at any between-group differences, Figure 1 compares the 
standardised difference between Test X and Test Y candidates’ component 
scores3 (on the x axis) with the standardised difference in their ISAWG measures4 
(on the y axis). Figure 1 demonstrates, firstly, that there was a high level of 
agreement between the two measures in terms of which candidate group was 
higher performing. Both the direction and size of the ability difference indicated 
by the standardised score difference was generally reflected by the standardised 
ISAWG difference. The largest discrepancy was for ESL 2, where component scores 
indicated a standardised difference of -1 between candidate groups, whereas the 
ISAWG measure indicated a difference of -0.67 standard deviations. Secondly, 
Figure 1 highlights that for some of the cover sheet pairs, the difference between 
Test X and Test Y candidate groups was rather large, confirming that this real-
world equating context included a high level of challenge. As a rule of thumb, 
Kolen and Brennan (2014, p. 301) note that equating can be “especially 
troublesome” where group differences are larger than 0.5 standard deviations. 
Figure 1 shows that the difference between candidate groups in History was 
around this threshold, while for ESL and Maths 2 the standardised score 
differences were around double this threshold. 

Figure 1: Comparison of standardised component differences.

3 The standardised score difference was calculated by subtracting the mean 
Test Y score from the mean Test X score and dividing by the pooled standard 
deviation of Test X and Test Y scores.

4 The standardised ISAWG difference was calculated by subtracting the mean 
ISAWG of Test Y candidates from the mean ISAWG of Test X candidates and 
dividing by the pooled standard deviation of Test X and Test Y candidates’ 
ISAWG measures, using the ISAWG values separately calibrated for that specific 
Test X Test Y component pair.
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Findings

How accurate was equating?
Figure 2 shows the equating outcomes for each cover sheet pair and equating 
method. For each score on Test X of the pair (shown on the x axis, as a percentage 
of the test’s maximum mark), the graphs show the difference between the 
estimated equivalent Test Y score and actual equivalent Test Y score (equal to the 
Test X score itself). This provides a visual summary of how closely each estimated 
equating function resembled the correct (identity) function. It allows the accuracy 
of the different methods to be compared through the score range: in the 
Computing pair, for instance, the graph shows that the Rasch equating method 
over-estimated the equivalent Test Y scores much more than other equating 
methods for Test X scores between 5 per cent and 25 per cent. For higher Test X 
scores, on the other hand, the Rasch equated scores had similar accuracy to those 
estimated from the other methods. 

The patterns of equating error shown in Figure 2 (that is, the deviations from the 
correct equating function – the identity function – as plotted on the y axis) varied 
by pair. For Business, equating errors were small and highly consistent between 
the different methods. Equating errors were also consistently small in Economics, 
although Figure 2 shows some separation between the two single co-component 
methods (which produced very similar results), and the ISAWG and Rasch methods. 
Equating errors were still consistently within a small range for Maths 2, although 
here there was more variation between the equating methods. The correlations 
between Business, Economics and Maths 2 scores and their anchor measures 
(both co-component scores and ISAWG) were all high, which would tend to 
support equating accuracy. The large difference in Test X and Test Y candidate 
abilities for Maths 2 was an apparent challenge to overcome, but this pair was 
nevertheless equated very accurately. 

For Computing and Maths 1, pairs which had high score-anchor correlations and 
fairly small group differences, equating errors were small except for deviations 
in specific methods towards the lower end of the score range. In Computing, the 
larger errors occurred with the Rasch equating method, and in Maths 1, the larger 
errors occurred in both the Rasch and ISAWG methods. 

Equating errors were slightly larger for the ESL 1, History, and particularly ESL 
2 component pairs, consistent with the fact that these three pairs showed the 
lowest score-anchor correlations (Table 2). In the case of History and ESL 2 there 
were also fairly large ability differences between the Test X and Test Y candidate 
groups, further increasing the level of equating challenge.
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Figure 2: Equating errors, by method, against Test X score.

To summarise the size of equating errors, Table 3 reports the weighted mean 
absolute error of equating for each pair of equated components under each 
method. Weighting by the number of (Test X) candidates at each score gives 
priority to those parts of the score range with higher numbers of candidates. 
For each component pair, the lowest overall equating error (using this definition) 
is highlighted, which highlights that the equating method achieving the 
highest accuracy varied between pairs. Comparing the results for the different 
component pairs within each method, however, shows that each method 
produced its highest levels of equating error for the ESL 2 pair. Prior to running 
the analysis, we expected chained equating to outperform the FE method in 
cases where there was a large difference in group means – namely ESL 2, History 
and Maths 2 (see Figure 1). However, for History this was not the case, with the 
FE method providing more accurate results for both the ISAWG and single co-
component approaches.
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The final row of Table 3 shows the mean error of each method across the eight 
data sets. On this measure the Rasch approach was slightly more accurate than 
the alternatives, although the difference between them was very small.

Table 3: Weighted mean absolute errors of equating (as per cent of component max 
mark). For each pair, the lowest overall equating error is highlighted. 

Component 
pair

Single comp 
(FE)

Single comp 
(chained) ISAWG (FE) ISAWG 

(chained) Rasch

Business 2.99 4.08 2.86 3.24 2.88

Computing 1.06 1.75 1.56 1.94 2.40

ESL 1 1.56 1.68 0.43 0.61 0.53

ESL 2 7.83 5.52 6.91 4.46 5.58

Economics 1.69 1.63 2.30 2.93 2.89

History 1.15 2.49 1.17 1.48 0.95

Maths 1 0.90 0.82 2.02 1.70 1.27

Maths 2 2.72 0.86 1.51 1.12 0.36

All 2.49 2.35 2.34 2.19 2.11

Figure 3 demonstrates how the equating errors shown in Figure 2 would affect 
pass rates, by comparing the cumulative percentage of candidates reaching 
actual and equated scores. For each cover sheet pair, the Figure 3 x axis shows 
the cumulative percentage of Test Y candidates above a given score, for example, 
40 represents the score which 40 per cent of Test Y candidates achieved or 
exceeded. The y axis shows the difference between this percentage and the 
percentage of Test Y candidates who reached or exceeded the corresponding 
equated score. The top left cell of Figure 3 shows that for the pair of Business 
assessments, the “pass rate” at a cut score achieved by 50 per cent of the Test Y 
cohort would have been around 10 percentage points higher using the equated 
cut scores from the single co-component (chained equipercentile) method shown 
in blue. This corresponds to the fact that the single co-component (chained) 
method resulted in equated scores for Business that were lower than actual 
scores throughout most of the score range (see top left cell of Figure 2).
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Figure 3: Differences between cumulative percentages of Test Y candidates reaching 
actual and equated scores.

The cumulative percentage of Test Y candidates achieving equated scores 
was generally within 10 percentage points of the cumulative percentage at 
the original score, except for the ESL 2 component pair, where differences for 
all equating methods exceeded this. Focusing on the cumulative percentages 
of candidates above a certain score highlights that differences in the “pass 
rates” at cut scores can become relatively large even when the absolute sizes of 
equating errors are modest, as seen for the Business components. Conversely, it 
also emphasises how large equating errors towards the extremes of the score 
range can have relatively little impact, since there are often few candidates with 
such scores. To illustrate the impact of equating errors in even more concrete 
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terms, Table 4 reports differences between the cumulative percentages of Test 
Y candidates achieving the actual and equated cut scores for key grades. This 
shows how each method would affect the proportion of candidates reaching 
the key grades, if candidates were re-graded based on equated score grade 
boundaries. Table 4 confirms that the equated grade boundaries were exactly 
equal to the actual grade boundaries for a number of these grades, with 
consequently no difference between equated and actual pass rates (indicated 
in the table by “-”). These grade boundaries correspond to those parts of the 
cumulative distributions shown in Figure 3 where the difference between equated 
and actual cumulative percentages was zero. The largest differences shown in 
Table 4 are for the grade C boundary in ESL 2, but differences of 5–10 percentage 
points are seen in multiple component pairs, and for multiple equating methods. 

Table 4: Differences (in percentage points) between pass rates at equated and actual 
grade boundaries.

Subject Grade Single comp 
(FE)

Single comp 
(chained) ISAWG (FE) ISAWG 

(chained) Rasch

Business
A 5.05 10.25 5.05 7.93 5.05
C 6.21 6.21 4.38 6.21 6.21

Computing
A 3.29 6.87 6.87 6.87 6.87
C 1.28 1.28 1.28 1.28 -2.56

ESL 1
A 3.52 7.17 - - -
C 3.92 3.92 - - -

ESL 2
A -11.64 -6.68 -11.64 -11.64 -9.21
C -27.31 -17.55 -22.27 -13.08 -17.55

Economics
A -4.49 -2.44 4.05 5.92 4.05
C - 2.22 2.22 3.26 3.26

History
A - - 3.52 - -
C - -2.99 - -2.99 2.66

Maths 1
A - - -2.54 -2.54 -
C 0.77 0.77 -1.42 -0.75 -1.42

Maths 2
C 3.24 -3.47 3.24 1.63 -
E 1.17 -3.81 1.17 - -

Why was the performance of statistical equating so poor in one 
instance?
As can be seen from the previous sections, the worst equating performance was 
for ESL 2. As such, it is worth illustrating exactly why statistical equating has not 
worked in this instance. For simplicity, we will focus upon equating using a single 
co-component. 

ESL 2 was a writing composition task that was taken as part of qualifications 
assessing English as a Second Language. Note that the group that took the Test 
X version were all located in one country whereas the group that took Test Y were 
mainly in another (with a minority scattered across several others). The selected 
single co-component was a reading comprehension test (also in common across 
the two assessments). Table 5 shows the performance on the components being 
equated and this main co-component. As can be seen, while the Test Y group 
were 0.6 of a standard deviation ahead in reading, they were more than one 
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entire standard deviation ahead in writing. This mismatch between the two skills 
resulted in the equating error shown in Table 3 and consequent impact on pass 
rates shown in Table 4. 

This same issue is shown visually in Figure 4. The figure shows the relationship 
between anchor test scores and scores on the tests being equated in each group. 
In order to allow the patterns to be seen more easily, the figure is restricted to a 
random sample of 200 candidates in each group (rather than overloading the 
chart with almost 30 000 points). Figure 4 shows that for the same performance 
on the selected anchor test, candidates in the Test Y group tended to perform 
much better in writing. A chart like this could lead to the misleading impression 
that Test Y is easier than Test X when in fact the two tests are identical.

This example serves to illustrate how, in the absence of an anchor test that 
actually measures the same construct as that being equated, no single statistical 
method can be guaranteed to perform well. The relative performances of two 
groups of students in a particular subject (e.g. Reading) may not reflect their 
relative abilities in another (e.g. Writing). As such, any method based upon 
co-components may occasionally give a misleading picture of the differences 
between groups. 

Finally, it is worth noting that, although we have focused upon the use of a single 
co-component, neither Rasch analysis nor the ISAWG performed notably better. 
This demonstrates that accurate equating cannot be achieved simply by making 
use of more of the same kind of data, nor in altering the way in which analysis is 
done. At least in this instance, accuracy could only be improved if we had a better 
external link (ideally measuring writing ability) between the two groups  
of students.

Table 5: Descriptive statistics relating to equating ESL 2 component pair.

Components 
being equated

Total 
marks 

available

Test X group Test Y group Difference 
(in overall 

SDs)Mean Standard 
deviation Mean Standard 

deviation
Anchor test

(Reading)
50 26.4 7.0 30.8 7.4 0.61

Tests being equated

(Writing)
60 35.4 6.4 43.1 7.5 1.11
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Figure 4: The relationship between performance on the anchor test (reading) and on 
the ESL 2 tests (writing) being equated for a sample of 200 students from each group. 
Regression lines are included for each group.

Conclusions
This article reported the results of equating various pairs of identical assessments. 
While some pairs were equated with very high accuracy by particular methods, 
the results showed that equating errors with real-world impact (e.g., an increase 
of 5–10 per cent in the proportion of students achieving a grade A) occurred 
even where equating conditions were apparently favourable: candidate groups 
were large, group differences were not extreme, and a very substantial amount of 
information on candidate performance in co-components was available. No single 
method consistently produced more accurate results than the others: the most 
accurate equating method varied by pair, and in fact all methods performed well 
for at least one component pair. 

The results give further evidence that ISAWG and co-component equating 
methods can offer useful information towards maintaining standards. However, 
they also emphasise that multiple sources of information should still be 
considered, to make final boundary decisions. 

More broadly, the results are a reminder that if applied uncritically, equating 
methods can lead to incorrect conclusions about the relative difficulty of 
assessments. In this equating exercise, Test X was not just written to the same 
specifications as Test Y, but was in fact identical to Test Y. However, equating 
between non-equivalent groups using operational data with non-random 
missingness as an anchor is difficult, even when we have extensive amounts of 
relevant information on candidates’ abilities in other assessments. In the context 
of this study, the estimated equating relationships between pairs of identical 
assessments could have produced the paradoxical conclusions that assessments 
were both “easier” and “harder” in comparison with themselves. 
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