## MVAT 2000 – statistical report

This report contains summary tables and some statistical analyses of candidate performance on the Cambridge University Medical and Veterinary Admissions Test (MVAT) taken in November 2000.

The test was in three sections – sections A and B consisted of objectively marked short-answer or multiple-choice questions. In section C candidates had a choice of 2 from 12 essays, provided the essays were in different subject areas. There were four subject areas (Biology, Chemistry, Physics, Mathematics), each containing three essay questions.

|                       | N    | Minimum | Maximum | Mean | Std. Deviation |
|-----------------------|------|---------|---------|------|----------------|
| Section A (out of 21) | 1506 | 0       | 21      | 10.6 | 3.6            |
| Section B (out of 39) | 1506 | 1       | 38      | 25.1 | 6.4            |

Table 1: Summary statistics for sections A and B

Table 2: Summary statistics for each question in section C

|         | Ν   | Minimum | Maximum | Mean | Std. Deviation | Mean A* | S.D. A | Mean B | S.D. B |
|---------|-----|---------|---------|------|----------------|---------|--------|--------|--------|
| CHE_Q1  | 290 | 1       | 9       | 4.9  | 1.4            | 10.9    | 3.7    | 25.4   | 6.5    |
| CHE_Q2  | 322 | 1       | 9       | 5.3  | 1.3            | 10.5    | 3.4    | 24.6   | 6.5    |
| CHE_Q3  | 537 | 1       | 10      | 5.0  | 1.2            | 10.4    | 3.5    | 25.5   | 5.8    |
| BIO_Q4  | 704 | 1       | 8       | 5.2  | 1.1            | 10.3    | 3.4    | 25.8   | 5.3    |
| BIO_Q5  | 187 | 1       | 9       | 4.7  | 2.0            | 10.4    | 3.7    | 23.8   | 8.0    |
| BIO_Q6  | 316 | 1       | 9       | 5.2  | 1.2            | 10.2    | 3.7    | 24.6   | 6.7    |
| PHY_Q7  | 146 | 1       | 8       | 4.7  | 1.4            | 11.7    | 3.7    | 25.3   | 6.7    |
| PHY_Q8  | 212 | 2       | 8       | 5.3  | 1.1            | 11.0    | 3.7    | 26.7   | 6.1    |
| PHY_Q9  | 71  | 1       | 7       | 4.8  | 1.0            | 10.7    | 3.3    | 26.2   | 5.2    |
| MTH_Q10 | 174 | 2       | 8       | 5.5  | 1.2            | 10.8    | 3.7    | 21.5   | 7.4    |
| MTH_Q11 | 15  | 3       | 7       | 5.5  | 1.4            | 13.5    | 4.6    | 24.3   | 8.1    |
| MTH_Q12 | 24  | 3       | 7       | 4.7  | 1.0            | 11.5    | 3.9    | 24.5   | 7.8    |

N.B. Each candidate did two section C questions

\*These last four columns give the mean and standard deviation of scores on sections A and B for the candidates choosing each section C question. This gives a rough indication of differences in difficulty between the section C questions. For example, average scores were lower on Physics question 7 than on Biology question 6, yet the Physics Q7 candidates had scored higher on average in sections A and B than the Biology Q6 candidates.

In the following tables the summary statistics for section C should be interpreted with caution since the score 'Section C total' is the sum of the scores on the two questions attempted by each candidate in section C. There were 12 different essay questions to choose from, and a subjective element to the marking. Candidates' total scores are not therefore as directly comparable as the scores on sections A and B where all the questions were compulsory and the mark scheme was completely objective.

Table 3: Summary statistics by course and sex (crossed)

| Section A  |        | Valid N | Mean  | S.D. |
|------------|--------|---------|-------|------|
| medicine   | male   | 448     | 11.66 | 3.65 |
|            | female | 571     | 10.24 | 3.57 |
| veterinary | male   | 105     | 11.19 | 3.40 |
|            | female | 365     | 9.58  | 3.21 |

| Section B  |        | Valid N | Mean  | S.D. |
|------------|--------|---------|-------|------|
| medicine   | male   | 448     | 26.87 | 6.01 |
|            | female | 571     | 24.32 | 6.39 |
| veterinary | male   | 105     | 26.50 | 5.96 |
|            | female | 365     | 23.75 | 6.51 |
|            |        |         |       |      |
| Section C  |        | Valid N | Mean  | S.D. |
| medicine   | male   | 449     | 10.29 | 2.13 |
|            | female | 574     | 10.27 | 2.06 |

105

10.01 2.04

veterinary

male

female3649.802.00The tables show the same pattern, with males performing better than females, and medical candidates performing better<br/>than veterinary candidates. However, these differences are smaller in section C than in sections A and B. The marks<br/>are noticeably less well spread out in section C than in sections A and B – the section C standard deviation is around<br/>60% of that of section A, which had a similar mark total.

Table 4: Summary statistics by school type

|                          | Section A |       | E     | 3     | С     |       |       |
|--------------------------|-----------|-------|-------|-------|-------|-------|-------|
|                          | Valid N   | Mean  | S. D. | Mean  | S. D. | Mean  | S. D. |
| UK Comprehensive         | 267       | 10.16 | 3.40  | 25.05 | 5.05  | 9.96  | 1.88  |
| UK FE / 6th form college | 144       | 9.54  | 3.24  | 25.03 | 5.25  | 10.32 | 1.82  |
| UK Grammar               | 116       | 11.09 | 3.26  | 26.55 | 5.05  | 10.13 | 1.76  |
| UK Independent           | 518       | 11.28 | 3.47  | 27.42 | 4.95  | 10.53 | 2.02  |
| UK other maintained      | 126       | 9.97  | 3.26  | 25.73 | 5.96  | 10.15 | 1.97  |
| N/A (mature student)     | 172       | 9.22  | 3.75  | 19.55 | 7.17  | 9.88  | 2.16  |
| School in EU country     | 11        | 10.00 | 2.41  | 14.91 | 5.09  | 9.27  | 1.79  |
| Non-EU overseas school   | 152       | 11.45 | 3.98  | 22.59 | 8.81  | 9.44  | 2.69  |
| Total                    | 1507      | 10.57 | 3.58  | 25.09 | 6.42  | 10.15 | 2.07  |

The performance of the overseas schools is far worse on section B than on section A. Among the UK schools, there is a similar pattern of performance on all three sections (although it is perhaps noticeable that the FE /  $6^{th}$  form do relatively better on section C and relatively poorly on section A. There are fewer differences between the different school types on section C. The performance of the mature students is worse than the UK school students in all three sections.

Table 5: Summary statistics by selection decision

|          |               | Section | А     |       | В     |       | С     |       |
|----------|---------------|---------|-------|-------|-------|-------|-------|-------|
|          |               | Valid N | Mean  | S. D. | Mean  | S. D. | Mean  | S. D. |
| Decision | Offer         | 367     | 12.38 | 3.70  | 29.34 | 4.46  | 11.11 | 1.96  |
|          | Pool - offer  | 49      | 11.88 | 3.30  | 28.24 | 3.87  | 10.90 | 1.86  |
|          | Pool - reject | 160     | 11.88 | 3.39  | 27.57 | 4.51  | 10.43 | 1.65  |
|          | Reject        | 921     | 9.56  | 3.16  | 22.85 | 6.36  | 9.70  | 2.02  |
|          | Total         | 1497    | 10.58 | 3.57  | 25.12 | 6.39  | 10.16 | 2.06  |

In all three sections, the mean scores of those given an offer and those pooled were closer to each other than to the mean scores of those rejected. In section B the differences were most noticeable, in accordance with the greater spread of scores on that section.

The boxplot below shows the distribution of the aggregate of all three sections for those selected and those rejected. The 'box' contains the middle 50% of the distribution, so the plot shows that the overall test performance has either contributed heavily to (or correlated well with) the decisions of the colleges on whether to admit candidates. Of course, it should be noted that there are some candidates with very high MVAT scores who were rejected, and vice versa.



Table 6: Summary statistics by school type & outcome

|                          |        | Section | A     | A     | I     | 3     | (     | С     |
|--------------------------|--------|---------|-------|-------|-------|-------|-------|-------|
|                          |        | Valid N | Mean  | S. D. | Mean  | S. D. | Mean  | S. D. |
| UK Comprehensive         | Reject | 199     | 9.55  | 3.18  | 23.98 | 4.78  | 9.71  | 1.80  |
|                          | Accept | 67      | 12.04 | 3.36  | 28.40 | 4.17  | 10.70 | 1.93  |
| UK FE / 6th form college | Reject | 104     | 9.03  | 3.03  | 23.80 | 5.28  | 10.03 | 1.74  |
|                          | Accept | 40      | 10.88 | 3.44  | 28.25 | 3.56  | 11.08 | 1.83  |
| UK Grammar               | Reject | 83      | 10.58 | 3.09  | 25.60 | 5.01  | 9.83  | 1.58  |
|                          | Accept | 33      | 12.39 | 3.37  | 28.94 | 4.36  | 10.88 | 1.98  |
| UK Independent           | Reject | 332     | 10.46 | 3.17  | 25.86 | 4.89  | 10.06 | 1.91  |
|                          | Accept | 184     | 12.82 | 3.47  | 30.32 | 3.53  | 11.40 | 1.91  |
| UK other maintained      | Reject | 96      | 9.45  | 2.93  | 24.57 | 5.72  | 9.96  | 1.84  |
|                          | Accept | 29      | 11.72 | 3.77  | 30.21 | 3.76  | 11.00 | 1.89  |
| N/A (mature student)     | Reject | 130     | 8.74  | 3.44  | 17.70 | 6.49  | 9.74  | 2.14  |
|                          | Accept | 38      | 10.63 | 4.39  | 25.08 | 6.14  | 10.21 | 2.08  |
| School in EU country     | Reject | 11      | 10.00 | 2.41  | 14.91 | 5.09  | 9.27  | 1.79  |
| Non-EU overseas school   | Reject | 126     | 10.83 | 3.74  | 21.21 | 8.53  | 9.07  | 2.60  |
|                          | Accept | 24      | 14.79 | 3.15  | 30.13 | 5.57  | 11.54 | 1.86  |
| Total                    |        | 1497    | 10.58 | 3.57  | 25.12 | 6.39  | 10.16 | 2.06  |

All the EU candidates were rejected. The UK FE /  $6^{th}$  form colleges seem to have lower scores for those accepted than other UK schools in section A. The non-EU overseas candidates who were accepted had a very high mean on sections A and C.

|         |                     | A_TOTAL | B_TOTAL | C_TOTAL | Outcome |
|---------|---------------------|---------|---------|---------|---------|
| A_TOTAL | Pearson Correlation | 1.000   | .467    | .197    | .304    |
|         | Ν                   | 1497    | 1496    | 1495    | 1497    |
| B_TOTAL | Pearson Correlation | .467    | 1.000   | .355    | .396    |
|         | Ν                   | 1496    | 1497    | 1494    | 1497    |
| C_TOTAL | Pearson Correlation | .197    | .355    | 1.000   | .278    |
|         | Ν                   | 1495    | 1494    | 1497    | 1497    |
| Outcome | Pearson Correlation | .304    | .396    | .278    | 1.000   |
|         | Ν                   | 1497    | 1497    | 1497    | 1570    |

Table 7: Correlations between the three MVAT sections and the outcome (accept / reject)

Section B correlated best with the outcome. All correlations were significant. Sections A and C correlated better with the outcome (accept or reject) than they did with each other. This suggests that all three sections were contributing something different to the selection decision.

## Selection decision by demographics

The following tables show the 2-way classification of selection decision with gender (male/female), nationality (UK / overseas) and, for the UK candidates only, school sector (independent / the rest). The overseas candidates were identified as those who either had come from an EU or overseas school type, or who were directly identified as EU or overseas in the data set (the two columns did not give exactly the same information, because some of the mature students were from overseas).

These tables basically address the question of whether candidates identified by these groupings were selected in the proportion that they applied – as indicated by the 'expected count' in each cell.

Table 8: Cross-tabulation of gender and outcome

|        |         |                | Outcome |        |
|--------|---------|----------------|---------|--------|
|        |         |                | Reject  | Accept |
| Gender | Males   | Count          | 417     | 163    |
|        |         | Expected Count | 422.1   | 157.9  |
|        | Females | Count          | 714     | 260    |
|        |         | Expected Count | 708.9   | 265.1  |

The expected frequencies were very similar to the observed – the chi-square test was not close to significance (p=0.55). This shows that males and females were accepted in the proportion that they applied.

 Table 9: Cross-tabulation of nationality and outcome

|          |          |                | Outcome |        |
|----------|----------|----------------|---------|--------|
|          |          |                | Reject  | Accept |
| Overseas | UK       | Count          | 915     | 387    |
|          |          | Expected Count | 948.7   | 353.3  |
|          | Overseas | Count          | 229     | 39     |
|          |          | Expected Count | 195.3   | 72.7   |

More UK candidates and fewer overseas candidates were accepted than expected from the relative proportions applying. The chi-square test was highly significant (p=0.00).

| Table 10: | Cross-tabulation | of School s | ector and o | outcome (UK | candidates only) |
|-----------|------------------|-------------|-------------|-------------|------------------|
|-----------|------------------|-------------|-------------|-------------|------------------|

|        |                 |                | Outcome |        |
|--------|-----------------|----------------|---------|--------|
|        |                 |                | Reject  | Accept |
| Sector | Not independent | Count          | 603     | 206    |
|        | _               | Expected Count | 568.5   | 240.5  |
|        | Independent     | Count          | 312     | 181    |
|        |                 | Expected Count | 346.5   | 146.5  |

More candidates from the independent sector and fewer from the other sectors were accepted than expected from the relative proportions applying. The chi-square test was highly significant (p=0).

## Fitting a model to selection decision

The above tables only compare the proportions accepted to the proportions applying. A more relevant analysis is to allow for the effect of performance on the MVAT – i.e. to attempt to answer the question 'Are males / females with equivalent MVAT scores equally likely to be accepted'? This question can be addressed by fitting a logistic regression model.

The dependent variable is the binary outcome (accept or reject). The independent continuous variables are the scores on the three sections of the MVAT (remembering that the section C score is a somewhat suspect composite). The independent categorical variables are the demographics (gender, nationality, school sector).

Model 1: Nationality and gender (all candidates)

The model fitted was

log odds (accept) =  $\alpha + \beta_1$  (sec A) +  $\beta_2$  (sec B) +  $\beta_3$  (sec C) +  $\beta_4$  (male) +  $\beta_5$  (UK) + error

Table 11: Results of fitting model 1

|        |          | В       | S.E. | Wald    | df | Sig. | Exp(B) |
|--------|----------|---------|------|---------|----|------|--------|
| Step 1 | A_TOTAL  | .130    | .022 | 35.468  | 1  | .000 | 1.138  |
|        | B_TOTAL  | .167    | .016 | 105.674 | 1  | .000 | 1.182  |
|        | C_TOTAL  | .240    | .038 | 40.358  | 1  | .000 | 1.271  |
|        | MALE(1)  | 551     | .144 | 14.609  | 1  | .000 | .577   |
|        | UK(1)    | 1.092   | .235 | 21.516  | 1  | .000 | 2.980  |
|        | Constant | -10.161 | .655 | 240.873 | 1  | .000 | .000   |

The B parameters show the size and direction of the effect of each variable. All parameters are significantly different from zero. The three MVAT sections have positive parameters, as would be hoped. Section C has the largest parameter, but this is because the marks were less spread out on section C and each mark was therefore 'worth' more.

The parameters for gender and overseas are interesting. Males of equivalent MVAT score are less likely to be accepted than females. The size of this effect can be seen from the final column, which gives the exponent of the B parameter. This is the effect on the odds of success. Males have odds that are 0.58 of those of females with the same MVAT score.

The effect of nationality is even more significant – UK candidates are nearly 3 times as likely to be accepted as overseas candidates with equivalent MVAT scores.

Model 2: School sector and gender (UK candidates only)

The model fitted was

log odds (accept) =  $\alpha + \beta_1$  (sec A) +  $\beta_2$  (sec B) +  $\beta_3$  (sec C) +  $\beta_4$  (male) +  $\beta_5$  (UK non-indep) + error

Table 12: Results of fitting model 2

|        |              | В      | S.E. | Wald    | df | Sig. | Exp(B) |
|--------|--------------|--------|------|---------|----|------|--------|
| Step 1 | A_TOTAL      | .126   | .023 | 30.234  | 1  | .000 | 1.135  |
|        | B_TOTAL      | .176   | .018 | 98.433  | 1  | .000 | 1.192  |
|        | C_TOTAL      | .231   | .040 | 33.214  | 1  | .000 | 1.260  |
|        | MALE(1)      | 617    | .152 | 16.429  | 1  | .000 | .539   |
|        | NON-INDEP(1) | .000   | .145 | .000    | 1  | .998 | 1.000  |
|        | Constant     | -9.146 | .659 | 192.365 | 1  | .000 | .000   |

The results for the three sections of the test and gender are very similar to model 1 – showing that males of equivalent school background and MVAT score are less likely to be accepted than females. However, the parameter for school sector is exactly zero – showing no effect at all on likelihood of acceptance.

## N.B.

Care should be taken not to over-interpret these results, for example to say that the admissions process is biased against males. There are other factors not included in this statistical model which one might expect to influence the admissions decision, such as performance at interview, GCSE results, predicted A-Level grades, and school report. However, it does provide some more concrete evidence than a simple comparison of proportions applying and proportions accepted.