

A Level

Mathematics

Session:	1994 June
Туре:	Mark scheme
Code:	9205

© UCLES

MS9 (UK)

University of Cambridge Local Examinations Syndicate

GCE Examinations June 1994

MARKING SCHEME for MATHEMATICS

This marking scheme is a working document prepared for use by Examiners. All Examiners are required to attend a Coordination meeting to ensure that the Marking Scheme is consistently interpreted and applied in the marking of candidates' scripts.

UCLES will not enter into any discussion or correspondence about any Marking Scheme. It is acknowledged that there may be different views about some matters of emphasis or detail of a Marking Scheme. It is also recognised that, without the benefit of attendance at a Coordination meeting, there may be different interpretations of the application of a Marking Scheme.

© UCLES 1994

1

1	EITHER:	State or imply $2(-\frac{1}{2})^3 + a(-\frac{1}{2})^2 + 16(-\frac{1}{2}) + 6 = 0$ Obtain given answer $a = 9$	M1 A1	
	OR:	Evaluate $2(-\frac{1}{2})^3 + 9(-\frac{1}{2})^2 + 16(-\frac{1}{2}) + 6$	M1	
		Show correctly that this comes to zero	A1	2
	Carry out	division by $(2x + 1)$ far enough to obtain 3-term quotient, or equivalent (e.g. factorise by		
		ction)	M1	
		rrect quotient $x^2 + 4x + 6$ and no remainder $x + 2)^2 + k$, or differentiate, equate to zero and solve for x, or solve $x^2 + 4x + 6 = 0$, or sketch	A1	
		aped quadratic graph, or consider $b^2 - 4ac$	M1	
		ate given result correctly	A1	4
	[Not muc expla	In need be said for the last A1, but something is needed; e.g. they could just state without further mation that $(x + 2)^2 + 2$ is always positive. Algebraic (or other) details need to be correct for the to be given.]		
	for s	es who appear to omit the first part and start on the second part will forfeit the first 2 marks howing $a = 9$ unless they state explicitly that they've shown it by the fact that $(2x + 1)$ divided ly; if they say this they can get B2 as a special case.]		
	[The ques quad nume	tion can be done back-to-front, with the first part appearing as a result of working to find the ratic factor, though perhaps not many will try this. Stating $(2x + 1)(px^2 + qx + r)$ and finding erical values for p and r: M1; using coefficient of x to find q: M1, $q = 4$: A1; deducing $a = 9$: The last two marks for the question are then as normal.]		
2	EITHER:	State any series of positive integer powers of x beginning $1 + \frac{1}{2}x$	B1	
		Show correct method for either binomial coefficient $\frac{\frac{1}{4}(\frac{1}{4}-1)}{2}$ and/or $\frac{\frac{1}{4}(\frac{1}{4}-1)(\frac{1}{4}-2)}{3!}$	241	
			M1	
		Obtain $-\frac{3}{8}x^2$ correctly	A1 A1	
		Obtain $+\frac{7}{16}x^3$ correctly	AI	
		[There could be numerical errors in the unsimplified coefficients with the M1 being earned; e.g. $\frac{1}{4} - 1$ mentally calculated as $-\frac{1}{4}$. The details of the $(2x)^2$ and $(2x)^3$ don't matter for the M mark, except that it should be the correct integer powers of x involved.]		
	OR:	Differentiate and substitute $x = 0$ at least once	M1	
		Obtain first two terms $1 + \frac{1}{2}x$	A1	
		Obtain $-\frac{3}{8}x^2$ correctly	A1	
		Obtain $+\frac{7}{16}x^3$ correctly	A1	4
		acancelled fractions OK for A1, A1, or exact decimals.]		
3	EITHER:	State or imply $x \log 2 = y \log 3$ (any base, or none at this stage)	M1	
		Obtain simplified equation in one unknown, e.g. $x \log 2 = (1 - x) \log 3$ Carry out correct processes to solve a linear equation	A1 M1	
			Al	
		Obtain given answer $x = \frac{\ln 3}{\ln 6}$	AI	
	OR:	Substitute e.g. $y = 1 - x$ and use rules of indices to get $2^x = \frac{3}{3^x}$	M 1	
		Simplify to $(2 \times 3)^x = 3$	A1	
		Obtain $x \ln 6 = \ln 3$ or $x = \log_6 3$	M 1	
		Obtain given answer $x = \frac{\ln 3}{\ln 6}$	A1	4
	[No credi	t for numerical verification of given answer by calculator. For exact verification, they might find		
	y fro	m x + y = 1, getting M1 A1 for y = $\frac{\ln 2}{\ln 6}$, and then M1 A1 for checking this (via x ln 2 = y ln 3		
	presi	In o imably) in the other equation. Other possibilities seem to involve an M1 A1 for log/index rules as use of the regular methods, then M1 A1 for checking the given x rather than finding it.]		
	there	$2^x - 3^y = 0$ followed immediately by $x \ln 2 - y \ln 3 = 0$ without any explanation is M0 (and fore A0) for use of log rules; however they can then recover and get the next M1 A1 if the solution mpleted.]		
4		nply arc length = $2r$	B1	
		sector area via value of θ found from $s = r\theta$, or via $\pi r^2 \times \frac{2r}{2\pi r}$	M1	
	Obtain an	swer r^2 $2\pi r$	A1	3
	Outain an	SW01 /	4 8 8	

University of Cambridge Local Examinations Syndicate International Examinations

1

5	Use $7^2 = 2^2 + b^2 - 4b \cos 30^\circ$ and exact $\cos 30^\circ$ to Make recognisable attempt at quadratic formula	o show given result correctly a or completing the square, or carry out any complete	B 1	
	'otherwise' method for b	$\sqrt{192}$ (or equivalent result given by other methods) and	M1	
	state the single correct answer for b (though		A1	3
	[It's no good picking out the correct one in the ne fully simplified) must both be demonstrated (xt part; the uniqueness and the exactness (not necessarily but not justified) in this part to get the A1]		
	Use sine rule with B , 30°, 7 and previous answer to Obtain given result	for b , or any other complete method	M1 A1	2
	[Allow the final A1 if the given answer is reached	d, even if some decimal working is involved in this part.		
	Special case: b not evaluated earlier, but $\frac{b}{\sin x}$	$\overline{B} = \frac{7}{\sin 30^\circ}$ stated: allow the M1.]		
6	[No penalty for minor rounding errors; e.g. answe are OK.]	rs for angles (rounding to) within $\pm 0.1^{\circ}$ of correct values		
	State or imply $R = \sqrt{34}$ (which is 5.83)		B 1	
	State or imply $\alpha = \arctan \frac{5}{3}$, or equivalent, (which	is 59·0°)	B 1	2
	EITHER: Evaluate $\arccos\left(\frac{2}{\text{their }R}\right)$		M 1	
	Obtain value 10.9 and/or -129.0 or any		A 1	
	Use correct general formula $360n \pm son$		M1	
	Obtain answer $360n + 10.9$ and $360n - 10.0$	-	A1	
	OR: Use correct tan $\frac{1}{2}\theta$ substitutions and ob Find any one correct value for θ , e.g. 1		M1 A1	
	Use correct general process, i.e. 2(arcta		M1	
	Obtain answer $360n + 10.9$ and $360n - 10.9$		A1	
	OR: Carry out some mad squaring method (e.g. $34s^2 + 20s - 5 = 0$)	and reduce to a soluble equation in one trig function	M1	
	Find any one correct value for θ , e.g. 1	0.9	A1	
	Use relevant correct process for a gener Obtain answer $360n + 10.9$ and $360n - 10.9$		M1 A1	4
		eptable; if this is seen, ignore any subsequent wrong g answer 360 ± 10.9 does not of itself imply the correct vo marks.]		
	[No penalty for degree/radian muddles; values con accuracy ±0.01.]	responding to 69.9 and 59.0 are 1.22 and 1.03; acceptable		
7	State $\dot{x} = 1 + e^t$ and/or $\dot{y} = 1 - e^{-t}$		B1	
	State $\frac{dy}{dx} = \frac{1 - e^{-t}}{1 + e^{t}}$		B1√	
	$dx = 1 + e^t$ Equate gradient (or \dot{y}) to zero		M1	
	Obtain $t = 0$, or correct explicit unsimplified expression	ession. e.g. $t = -\ln 1$	A1	
	State coordinates (1, 1) fully simplified		A1√	5
8	Use factor formula in expression of the form $\frac{y_2}{x_2}$	$\frac{y_1}{x_1}$	M 1	
	Show given result correctly		A 1	2
	[No explanation really required for the A1; they c formula statement.]	an just write down the answer following a correct factor		
	State $(\phi - \theta)$ is small and use $\sin x \approx x$ Identify $\frac{1}{2}(\phi + \theta)$ as being (approximately) θ		B1 B1	2
		ero angles, or try to say that $\frac{0}{0} = 1$. The second B1 is for it.]		

1

9	Ca	te $B = -1$ and/or $C = 1$ rry out any complete method for finding A tain $A = -1$ correctly	B1 M1	<u> </u>
		ptaining the false identity $1 \equiv Ax^2(x-1) + Bx(x-1) + Cx^3$ is M0.]	A1	3
	Sta	the terms $-\ln x$ and $+\ln(x-1)$ "		
	Sta	the term $+x^{-1}$	B1√	
	[Fo	llow through on non-zero values of A, B, C only. Special case: if no values for A, B, C were found, the last two B marks can be earned if $A \ln x + C \ln(x - 1)$ and $-Bx^{-1}$ are stated.]	B 1∕`	2
10	(i)	State answer 15 504		
	(ii)	EITHER: State expression involving $\binom{10}{2} \times \binom{10}{3}$	B 1	1
		Obtain answer 10 800 correctly $(2) \times (3)$	M1	
		OR: State expression involving both $\binom{10}{4} \times \binom{10}{1}$ and $\binom{10}{5}$, and subtract from the previous answer	A1	
		Obtain answer 10 800 correctly	M 1	
11	(i)	Expand LHS completely, or divide RHS by $(k + 1)^2$ (in 1 or 2 steps)	A1	2
		Demonstrate the identity correctly $(k + 1)$ (in 1 or 2 steps)	M1	
			A1	2
		[The marks for (i) may be earned in (ii), but only if exactly equivalent work is fully carried out in the course of doing the induction.]		
	(ii)	Check $1^3 = 1^2(2 \times 1^2 - 1)$		
	()	Consider $k^2(2k^2 - 1) + (2k + 1)^3$ or equivalent	B 1	
		Obtain $2k^4 + 8k^3 + 11k^2 + 6k + 1$ from the above expression, and complete	M 1	
		[M] requires $S_{1} + T_{2}$ attempt; not allowed to count or which etc. T_{2}	A1	3
		[M1 requires $S_k + T_{k+1}$ attempt; not allowed to count as valid attempts at T_{k+1} are e.g. $(k+1)$, $(k+1)^3$, $(2k-1)^3$.]		
2	(a)	State equation $\frac{a(1-r^8)}{1-r} = \frac{1}{2} \times \frac{a}{1-r}$ or $\frac{a(1-r^8)}{1-r} = \frac{ar^8}{1-r}$	B1	
		Eliminate a to obtain equation in r only		
		Cotain answer (rounding to) 0.917 correctly	M1 A1	3
		Use $ar^{10} = 10$ with numerical r to find a		3
		Obtain answer $a = 40$ (no penalty for using decimal working)	M1 A1	2
		[N.B. Using S_{17} instead of T_{17} is not to be counted as MR.]	AI	2
	(b)	Equate (reasonable attempt at) sum to n terms of an AP with $d = 10$ to 10 to 10 co		
		Obtain $a = \frac{10000}{n} - 5(n-1)$ or equivalent	M 1	
		n = 10000	A1	
		Deduce given result $\frac{10000}{n} + 5(n-1)$ for <i>n</i> th term	A1	3
				3
		State $\frac{10000}{n} + 5(n-1) < 500$ and multiply through by n	M1	
		simplify confectly to given form	A 1	
		use (recognisable attempt at) quadratic formula, or e.g. trial and error	M1	
		state allswer 73	A 1	4
	I	If no working shown for value of <i>n</i> : correct answer 73 stated gets M1 A1; integer answer 74 or decimal answer 73.96 stated gets M1 A0; any other answer gets M0]		

University of Cambridge Local Examinations Syndicate International Examinations

9205

1

13	(a)	(i) State $f(x) = \ln(1 + x)$ or imply this e.g. by 1st quadrant graph starting at O, concave down Sketch correct graph, i.e. quads 1 and 3, through O, (implied) vertical asymptote on left	B1 B1	:
		[The second B1 implies the first B1 in this case.]		
		(ii) Identify $g^{-1}(x)$ as e^x Identify $h^{-1}(x)$ as $x - 1$	B1	
		(iii) Identify $g^{-1}h^{-1}(x)$ as x^{-1}	B 1	-
		(iv) Sketch an appropriate exponential shape for the graph	B1√	
		Show curve correctly located, e.g. through $(1, 1)$ or $(0, e^{-1})$	B1√ B1	
		[The only expressions we follow through on are ones they could 'reasonably' have found for (iii); i.e. $e^{\pm 1\pm x}$ or $\pm 1\pm e^{\pm x}$]	DI	1
	(b)	Sketch the (relevant part of the) parabola	M 1	
		Use correct graph to explain the one-one property	A1	
		Use quadratic formula to solve $x^2 - 4x - y = 0$ for x, or equivalent	M 1	
		Use known point, e.g. $x = 0$, $y = 0$, to select correct sign Obtain answer $q^{-1}(x) = 2 - \sqrt{(4 + x)}$ or equivalent	M1	
		[First M1 to be given generously, but the next A1 will be hard to earn. They must say (somehow) that	A 1	5
		each y-value corresponds to just one x-value and their sketch must support this assertion.]		
	[No	penalties for misuse of vector notation, so long as the meaning is clear.]		
	(i)	Carry out all calculations with coordinates needed for \overrightarrow{PM}	M1	
		Obtain the given equation correctly	A 1	2
		[Don't worry if the details they show are a bit sketchy, so long as it's clear they know that it's \overrightarrow{PM} that's the direction vector.]		
	(ii)	Carry out all calculations with coordinates needed for \overrightarrow{QN}	M 1	
		State answer $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -3 \\ -1 \\ h \end{pmatrix}$ or equivalent	A1	2
		[If no working is shown, the M1 would be implied by an answer with e.g. one sign error.]		
(iii)	Equate at least two components from the equations found	2.61	
`	. ,	Show that $t = s = \frac{1}{2}$ works for all three components	M1 A1	
		Derive given position for X, i.e. $(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}h)$ from t or s	A1	3
		[If they use the same letter for the parameter in both lines, they'll get the 'right' answer; however, max M1 out of 3 in this case. Note that this part can be done otherwise, e.g. by verification or by noting that X is the mid-point of each of <i>PM</i> , <i>QN</i> . However, any method must deal with all three components if full marks are to be earned.]		
(iv)	Show correct processes for the calculation of any scalar product	M 1	
		Equate the scalar product of the two relevant vectors to zero	M 1	
		Obtain $h = \sqrt{2}$ correctly	A 1	
		Carry out the correct processes to evaluate $\cos^{-1}\left(\frac{\mathbf{a}\cdot\mathbf{b}}{ \mathbf{a} \mathbf{b} }\right)$ for the two relevant vectors	M 1	
		Obtain answer 70.5° or 109.5°	A1	5
		[It appears to me not obvious, at the start of (iv), that VB is inclined at 45°; they need to say e.g. that OX produced goes to the mid-point of VB or that OX is parallel to DV to justify this, I think. Hence using this 'fact' to find $h = \sqrt{2}$ gets MO MO A0; however, the last 2 marks remain available. Thinking that OX is the x-axis leads to such obvious impossibilities so quickly that I think we can (and should) do nothing about it.]		

University of Cambridge Local Examinations Syndicate International Examinations

9205

1

	Indiana Scheme June 1994		
15 Atte	mpt product rule to differentiate $\cos(x + \alpha) \cos^2 x$ and equate to zero	M1	- <u></u>
000	$ain - sin(x + \alpha) cos^2 x - 2 cos(x + \alpha) cos x sin x = 0$ tify the solution $cos x = 0$	A1	
Div	de through simplified equation by $f(x) = 0$	A1 A1	
Obt	de through simplified equation by $\cos(x + \alpha) \cos x$ in $\tan(x + \alpha) + 2 \tan x = 0$ correctly (correct on a set of a se	M1	
[]f t]	$\sin \tan(x + \alpha) + 2 \tan x = 0$ correctly (ignore any other 'possibilities' that they turn up)		5
Įn u	bey expand $\cos(x + \alpha)$ first, they might still get the first 3 marks, but the last 2 will almost certainly of reach. The equation for the first A 1 is $-3\cos^2 x \sin x \cos^2 x$	y be out	·
	1^{-1}	x = 0.	
(1)	$\nabla \nabla \nabla G M (A + D) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0$	- M1	
	Obtain $(2\sqrt{2})t^2 - 3t - \sqrt{2} = 0$ or equally simplified exact equivalent Use quadratic formula or equivalent	A1	
	Obtain exact $\sqrt{2}$ and $-\frac{1}{4}\sqrt{2}$ or exact equivalents	M 1	
	In the subsequent working one the set of $\frac{1}{2}$	A1	4
(iii)	[Ignore subsequent working once the exact values are seen.]		
(11)	Use Pythagoras or equivalent to calculate $\sin x$ and/or $\cos x$ Use $\cos(4 + B)$ or $\cos 24$ formula with the second distribution of the second distres.	M 1	
	Use $\cos(A + B)$ or $\cos 2A$ formula with relevant numerical values to calculate y Show given answer $-\frac{1}{9}$ correctly	M1	
	If they use approximate mathe is f_{0} is a finite set of the s		3
	If they use approximate methods (i.e. calculator evaluation of α , etc) please give max M1 out o the complete calculation of y.	f 3 for	
	The second distance of y		
6 Ohtei	$n\frac{2}{3}x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$ for the integral		
U Obiai	$1_{\overline{3}}x^2 + 4x^2$ for the integral	B1	
Subtra	mits 1 and 4 to find the area under the curve	M1	
Obtai	answer $\frac{1}{3}$ or equivalent	M1	
		A1	4
State e	equation of the form $y = \sqrt{x} + \frac{2}{\sqrt{x}} + k$	_	•
State of	Orrect equation (i.e. $k = -3$)	B 1	
	4	B 1	2
State of	r imply required volume is $\pi \int_{1}^{4} y^2 dx$ using their transformed y		
Show	correct processes for squaring a trinomial y	B 1√	
Obtain	given integrand correctly	M 1	
Integra	te at least 3 of the given terms correctly	A1	
Obtain	$\frac{1}{2}x^2 - 4x^{\frac{3}{2}} + 13x - 24x^{\frac{1}{2}} + 4\ln x$ or equivalent	M 1	
Obtain	$(4\ln 4 - \frac{11}{2})$ or exact equivalent	A 1	
[Some	Working is necessary to domanative all a single and the	A1	6
th	working is necessary to demonstrate the trinomial has been properly squared out; if none is shey'll lose M1 A1. Note that we allow the omission of a form the	own	
po	ey'll lose M1 A1. Note that we allow the omission of π from the final answer; for the numerical wers must be evaluated and terms collected up.]	l bit,	
	e double-angle formula relating $\cos 2x$ and $\sin^2 x$		
Ot	tain or verify given answer correctly	M1	
(ii) IIe	e parts going the correct man (2
(14) 03	e parts, going the correct way (condone sign errors at this stage, and allow anything for the inte of $\sin^2 x$, except $\sin^2 x$ itself!)	gral	-
Ob	tain x_1 , except sin x_1 (see 1) tain $x(\frac{1}{2}x - \frac{1}{4}\sin 2x) - (\frac{1}{4}x^2 + \frac{1}{8}\cos 2x)$, or equivalent	M1	
Sh	by given answer correctly	A1	
	ferentiate, and substitute throughout for u and du	A1	3
	$\int du$ and du	M 1	
Ob	$ain - \int \frac{1}{2} \sin^2 x dx$ (any limits or none at this stage)		
Ob	ain answer $\frac{1}{8}\pi$ correctly	A 1	
(iv) Car	ry out all the correct substitution steps again	A 1	3
Use	double-angle formula and obtain given result (condense to to the second se	M 1	
		A1	
Obt	ain answer $\frac{1}{32}\pi$, with no errors seen anywhere	M 1	
······		A 1	4

1

GCE ADVANCED LEVEL EXAMINATIONS REVISED MARKING SCHEME JUNE 1994

(i)	EITHER:	Use chain rule to differentiate $\sqrt{(1 + y^3)}$ (at least 2 factors required)	M1	-
		Obtain $\frac{1}{2}(1+y^3)^{-\frac{1}{2}} \times 3y^2 \times \frac{dy}{dx}$	A1	
		Show given result correctly	A1	
	OR:	Attempt differentiation of both sides of $(y')^2 = 1 + y^3$ (2 factors on at least one side required)	M 1	
		$Obtain 2y'y'' = 3y^2y'$	A1	
		Show given result correctly	A1	3
(ii)	State y''' =	= 3 <i>y</i> y'	B 1	
		ct rule to differentiate RHS of this w.r.t x	M 1	
	Obtain ans	wer $y^{(4)} = 3(y')^2 + \frac{9}{2}y^3$, or any equivalent in terms of y only or y and y'	A1	3
	[Anyone 3y'√	differentiating y''' in the form $3y\sqrt{1+y^3}$, for instance, might leave $y^{(4)}$ as $(1+y^3) + \frac{9y^3y'}{2\sqrt{1+y^3}}$.]		
(iii)		= 0 and evaluate y', y'', y''', y' ⁽⁴⁾ at $x = 0$	M 1	
. ,		urin's series	M 1	
	Show the	given answer correctly (allow 'flukes' where errors in their derivatives give the correct		
	Macl	aurin coefficients)	A1	3
Show	w or imply	use of at least two expressions for values of the integrand	M 1	
Use	correct trap	bezium rule formula with $h = 0.1$ and 5 function values	M1 (dep)	
Obta	in answer	(rounding to) 0.397	A1	3

leritage

Local Examinations Syndicate

9205 02

GCE ADVANCED LEVEL EXAMINATIONS MARKING SCHEME JUNE

 1α Figure With T, 1.5, 0.5g, seen or implied M1 Two correct eqns eg Tcos θ =5, Tsin θ =1.5, tan θ =0.3 **B1B**1 Two attempted eqns, 3 forces, correct mech principles M1 T=5.22N, *θ*=16.7∘ **B1B1** 6 ß Two correct eqns eg 2=5sin ϕ , T'=5cos ϕ , $T'\cos\phi*2\sin\phi'=5, T'\sin\phi=2\cos\phi'$ Two attempted eqns, 3 forces, correct mech principles B1B1 Mi T'=4.58N, Ø=23.6° B1B1 5 Y Attempt to use change in mgh M1 $0.5g(0.3)(\cos\theta - \cos\phi)$ or $(0.5g)(0.0360)(\cos 69.9); 0.062J$ A1A1 3 2α y=30t-gt 2/2 or 30t-5t2 x=20t; **B1B1** tan¢=x/y; =4/(6-t) AG M1A1 4 ß Set $\tan \phi = 4/3$ and solve for t; t=3; M1A1 Sub for t in x, y and use $OA^{2=x^{2}+y^{2}}$ or x/sin ϕ or y/cos ϕ M1 ((x,y)=60,45)) 0A=75m AG A1 $v_{A}=20 \text{ ms}^{-3}$ horizontally or equiv **B1** 5 t=4.5: $\dot{y} = (-)15$ or $\dot{y}^2 = 225$ or $v^2 = 62.5$ 21 B1 $KE=0.2(x^2+y^2)/2$; = 62.5J M1A1 3 y=135/4 or 33.75 OR D (depth below top) = 45/4 or 11.25 Yz B1 KE= 0.1(202+302)-0.2gy or 0.1v_A2+0.2gD; 62.5J M1A1 (3) δ tany=x/y or y/x or equiv used (= (-)3/4); (-)36.90 M1A1 2

1

Local Examinations Syndicate

9205 02

30	$0.1v\frac{dv}{dx} = -\frac{1}{5x^2}$ or $v\frac{dv}{dx} = -\frac{2}{x^2}$ ("+": M1)	MIAI	
	Attempt to separate and integrate both sides	M1	
	$\frac{1}{2}\sqrt{z} = \frac{2}{x} \text{ or equiv or } (-2/x \text{ from } +2/x^2)$	A1	
	"+C" and validly show C=0 v = $\frac{2}{\pi}$ AG	A1	5
ß	$\frac{1}{2}(0.1)2^2 - \frac{1}{2}(0.1)\left(\frac{2}{3}\right)^2; \frac{32}{180}, \frac{3}{45}, 0.178 \text{ aef}$	M1A1	2
	2 2 (3) 180 45		
	Archives &		
r	$\frac{dx}{dx} = \frac{2}{dx}$	54	
81	$dt = \sqrt{\pi}$	B1	
	Attempt to separate and integrate both sides	M1	
	$\frac{2}{3} \times \frac{3}{2} = 2t (+C) \text{ or } equiv$	A1	
	$\begin{bmatrix} \mathbf{J}_{1}^{*} = \begin{bmatrix} \mathbf{J}_{0}^{*} \text{ or } "+C" \text{ and sub } (x=1, t=0), (x=9 t=t) \end{bmatrix}$	M1	
	time = 26/3 = 8.67 aef	A1	5
v Ma	rk dv/dt=-v4/8, $v^{-3}/3=t/8$ (+C') as γ_{4}		
Y ₂ Ma	x = y = y = y = y = y = y = y = y = y =		
8 "ND"	with valid reason eg v never zero or never neg, or P goes to		
	infinity, or unique t for x=1	B2	2

Local Examinations Syndicate

Four equations for P, X, β, λ and find λ ;

9205 02

M1A1

M1A1

8

λ=5Ν

GCE ADVANCED LEVEL EXAMINATIONS MARKING SCHEME

 4α I=(±)(0.2)(3+9), I=(±)(0.3)(2+v), (signs must be consistent) (0.2)9 - (0.3)v = -(0.2)3 + (0.3)2 (or =0) Any two B1B1 I=(±)2.4 Ns; v=6 ms-1 B1B1 [If 0/4 allow M1 for attempt at two of the above - ignore sign errors] 4 $\beta \text{ KE lost} = \frac{1}{2}(0.2)9^2 + \frac{1}{2}(0.3)\sqrt{2} - \frac{1}{2}(0.2)3^2 - \frac{1}{2}(0.3)2^2$ Μ1 $\left(=\frac{27}{2}-\frac{3}{2} \text{ or } \frac{36}{5}+\frac{24}{5}\right) = 12 \text{ J}$ A1 2 Time for P to reach wall = 6/3 or 2 R1 Distance of Q from wall (ie P) = $6+2\times2$; = 10m AG M1A1 3 Time t to collision given by 3t=10+2t; t=10 δ_4 MIA1 Distance $(=3\times10) = 30m$ B1 3 δ_{z} (10+x)/3=x/2 or s/3=(s-10)/2; s=30m M1A1A1 (3) Final answer based on (0.2)3 + (0.3)2; = 1.2 Nsε M1A1 2 5α $T\cos\alpha = mg$ (T=25/4) M1A1 Tsin $\alpha = mr \omega^2$ or mv^2/r M1 $r = 1+5\sin\alpha$ or 4; $T\sin\alpha=m(1+\sin\alpha)\omega^2$ **B1A1** $(\omega^2 = 15/8)$ ω=1.37rad s-1 A1 ß $X = \lambda(10-6)/6$ or $2\lambda/3$ or equiv M1A1 1+5sin β = 5 or sin β = 4/5 or β =53.1 B1 $P\cos\beta = 0.5g$ B1 $Psin \beta + X = 0.5(accn); = (0.5)5x2^2$

. -

Local Examinations Syndicate

9205 02

60	4/24 or 20/24 x some attempt at another prob; Validly obtaining 10/69 AG (decimals not used)	M1 A1	2
(i)	"23x22" seen or implied in denominator correct unsimplified answer eg $\frac{3}{23} \frac{2}{22}$, $\frac{6}{506}$ or $\frac{3}{253}$ or 0.0119	M1 A1A1	3
(ii)	Attempt at summing probability of correct combined events Correct unsimplified expression seen or implied eg $P(A)+P(A'C) = \frac{4}{24} + \frac{20}{24} \frac{4}{29} = P(C)+P(C'A)$ or $P(A)+P(C)-P(AC) = \frac{4}{24} + \frac{4}{24} - \frac{4}{24} \frac{3}{29}$ or $P(AC')+P(A'C)+P(AC) = \frac{4}{24} \frac{20}{23} + \frac{20}{24} \frac{4}{29} + \frac{4}{24} \frac{3}{29}$ or $1-P(A'C') = 1 - \frac{20}{24} \frac{19}{29}$	M1 A1	
	$\frac{172}{552}$ or $\frac{86}{276}$ or $\frac{43}{138}$ or 0.312	A1	3
(iii)	Correct method for final answer	M1	
	Correct unsimplified expression eg $\frac{4}{24}$ $\frac{11}{23}$	A1	
	$\frac{44}{552}$ or $\frac{22}{276}$ or $\frac{11}{138}$ or 0.0797	A1	3
(iv)	Attempt P(iii)/P(either); = P(iii) / $\frac{12}{24}$; $\frac{22}{138}$ or $\frac{11}{69}$ or 0.159	MIAIAI	3

Local Examinations Syndicate

9205 02

	· 5		
7∝ Two (Vali	Attempt F(3)=0 or F(4)=1 or F(4)-F(3)=1 correct equations $9a-24a+b=0 & 16a-32a+b=1$; (b=15a=1+16a idly showing a=-1 AG; b=-15; Validly showing F(3.5)= $\frac{3}{4}$ AG	M1 a) A1 B1A11	31
(i) Atte (Do	empt differentiate F(x) to obtain f(x); f(x)=8-2x not insist on "3≤x≤4" or on "f(x)= 0 otherwise")	M1A1	
(ii)	Attempt integrate $xf(x)$ with limits 3,4; integral = $4x = \frac{2}{3}x^3$;	M1 B1	
	(64- <u>128</u> -36+18) Validly obtaining <u>10</u> AG	A1	
iii)	$3\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right); \frac{27}{64} \text{ or } 0.422$	BiBi	
iv)	N $\left(\frac{10}{3}, \frac{1}{1800}\right)$ or in words (only two correct B1)	B2	

- ----

Local Examinations Syndicate

9205 02

8(i) _P	- Poisson mean 5 seen or implied Correct Poisson prob (any m) used for some r≥2	B1 M1
	Final answer based on Σ_{or}^{k} , for k=3 or 4 or 5	M1
	Correct expression seen or implied; 0.440	A1A1
(p (=0.0067, p ₄ =0.0337, p ₂ =0.0842, p ₃ =0.1404, p ₄ =0.1755)	
(i) as	above with "Poisson mean 5" replaced by "binomial, n=1000) ==0 005#
		', μ=0.000
ν ^μ α	=0.0067, p ₄ =0.0334, p ₂ =0.0839, p ₃ =0.1403, p ₄ =0.1757)	
(i) _N N	(5 or 995 , 4.98) seen or implied	Bi
	(5-4.5) or proving CC unander Did coats a sec	
	$Q\left(\frac{5-4.5}{4.98}\right)$ or equiv CC used; $Q(0.224) = 0.411$	MIAI (3
	include	
(ii) Use	of Bin(6, 0.75) seen or implied	B1
Fina	l answer based on correct sum of correct bin probs	M1
COM	ect expression seen or implied; 0.962	A1A1 4
	$(p_0=0.0002, p_1=0.0044, p_2=0.0330, (p_1=0.0002, p_1=0.0004, p_2=0.0330, p_1=0.0002)$	
	p ₃ =0.1318, p ₄ =0.2966, p ₅ =0.3560, p ₆ =0.17	780)
(iii) (a)	(0.97p(iii)=) 0.933	B1 1
(b)	$0.03(p_4+p_5+p_6);$ (0.03(0.8306)=) 0.025	M1A1 2
(b)	0.03(p ₄ +p ₅ +p ₆); (0.03(0.8306)=) 0.025	MIAI 2
(b) (c)	$0.03(p_4+p_5+p_6);$ (0.03(0.8306)=) 0.025 p(a)+p(b); 0.958	M1A1 2 M1A1 2

Local Examinations Syndicate

9205 02

.9 (i)	S~N(500, 10 ²) L~N(1000, 15 ²) Use of $Q\left(\pm\frac{w-500}{10}\right)$ seen or implied	M1 .	
Final	answer based on $1-Q(\frac{1}{2})-Q(1)$ or equiv; = 0.533	A1A1	2
(ii)	Use of $\Omega\left(\pm\frac{w-1000}{\sqrt{200}}\right)$ seen or implied	M1	
Final	answer based on $1-Q(0.707)-Q(1.414)$ or equiv; = 0.681	A1A1	3
(iii)	Variance 425; z= 25/√425 or 1.213, Final answer based on Q(); 0.113	B1B1 M1A1	4
(iv)	Variance 156.25; z= 1, Final answer based on Q(); 0.159	B1B1 M1A1	4
NOTE A: A1	though z given to 3 dp above, only require 3 sf for marks		

Local Examinations Syndicate

9205 02

$10 \alpha s^{2} = \frac{1}{99} \{0.5377 - \frac{1}{100} (1.21)^{2}\} = \frac{1}{99} \{0.5231\} = 0.00528 = (0.0727)^{2}$	M14	A1 2
• • • • • • • • • • • • • • • • • • •		
β_{1} $z = (\pm) \frac{\overline{x} - 1.005}{\sqrt{(s^{2}/100)}};$ with $s^{2}=0.00528; = 0.977$	M14	A1A1
Compare z with 1.65 or $Q(z)$ (=0.164) with 0.05 Conclusion stated, based on correct z, "Accept mean= 1.005"	Mi	
or explicit correct NH	A1	5
β ₂ Consider K√{s²/100}, (K= any standard normal cv) (c=) 1.65√{0.00528/100} (= 0.0120)	M1 A1	
Compare 1.005 + 0.0120 with x or equiv comparison Conclusion as above	M1A: A1	1 (5)
NOTE A: Allow 100 instead of 99: s ² =0.00523 =(0.0723) ² , z=0.982, Q(z)=0.163, c=0.0119		
(i) _p (0.65)(0.35)×(100 or 1/100) seen 0.65±K √((0.65)(0.35)/100) ; with K=1.65 0.65±0.078 or (0.572, 0.728)	B1 M1A1 A1	4
<pre>(i)</pre>	B1 M1A1 A1	(4)
(ii) _N z=(±)2.52 or 2.41 (with CC); Compare z with 1.65 or Q(z) (=0.00587 or 0.00798) with 0.05	B1 M1	
Conclusion stated, based on correct z, "Accept propn <65%" or explicit correct AH	A1	3
(ii) c Consider (c=) K(0.65)(0.35)x(100 or 1/100) (K=1.65, c=0.078)	B1	
Compare 0.65-0.53 with c (correct method) or equiv comparison Conclusion as above	M1 A1	(3)
(ii) _D Compare 0.53 with lower end of CI from (i) Conclusion as above	M1 A2	(3)

Local Examinations Syndicate

9205 02

11 C Proceedia and		
11 α Reasonable attempt at differentiation of product	M1	
(7)3-7(75) +(2SC)(C) aef		
Validly obtaining	A1	
r decreases because $dr/d\theta < 0$ or equiv	A1	_
	Bi	4
β Sketch showing single arc in first quadrant		
	M1	
	M1	
Shape correct with vertical tangent at 0 clear	A1	7
	H1	3
مع ر / ۲		
$\gamma \qquad A= \frac{1}{2} \int_{-2}^{10} \frac{2}{4\pi} (A+\pi^2) = A = A$		
2 a a a a a a a a a a a a a a a a a a a	B1	
$J = \pi/2$	D1	
Validly showing $A = \frac{1}{2} \frac{1}{2} \frac{1}{4+7} \frac{1}{2} \frac{1}{4+7} $		
$Y \qquad A = \frac{1}{2} \int_{-\pi/2}^{\pi/2} a^2 (4+s^2) c d\theta \qquad \text{inc limits}$ Validly showing $A = \frac{1}{2} a^2 \int_{-1}^{1} (4+z^2) dz AG$	B1	
-7		
$\frac{1}{2}a^{2}\left[4z+\frac{1}{3}z^{3}\right]_{-1}^{1}; = 13a^{2}/3 \text{ or } 4.33a^{2}$		
$2^{a} + \frac{42}{3} + \frac{2}{3}$; =13a ² /3 or 4.33a ²	54 D.	. .
	B1B1	L 4
δ Substitute cos θ =x/r and sin θ =y/r, and eliminate θ		
Correct equation in torac of	M1	
Correct equation in terms of x,y only or x,y,r eg r ² =a ² (4+y ² /r ²)(x/r)	117	
	A 4	
$(x^{2}+y^{2})^{5/2}=a^{2}x(4x^{2}+5y^{2})$	A1	
	A1	3
12(a) α When x=0, y=-3b or (0,-3b) stated		•
When y=0, x=-3a or (-3a,0) stated	B1	
Action (-3a,0) stated	B1 B1	
Asymptotes x=-a; y=-b stated		-
	B1B1	4
B Hyperbola with horizontal and vertical asymps shown, not 0x or 0y Each correct branch (don't ipsist on labely		
Each correct branch (don't insist on labels on axes)	M1	
and another of labels on axes)	B1B1	3
(b) (i) Sketch with correct gaps, roughly symm in x-axis		-
and a start correct gaps, roughly symm in x-axis	B1	
Lorrect loop in x<0.		
Correct branch in x>0,	B1	
The second se	B1	3
(ii) Sketch correct for whether		
(11) Sketch correct for x<0; for x>0	B1B1	~
	0101	2
(iii) Parts y>0 unchanged & parts y<0 reflected in x-axis Sketch correct with current		
Sketch correct with cusps	M1	
		-
	A)	.
	A1	2

Local Examinations Syndicate

9205 02

GCE ADVANCED LEVEL EXAMINATIONS MARKING SCHEME

Multiply out and equate real and imag parts 13(a) M1 Both a-b=3 and -1-ab=-4 or equiv A1 Eliminate a or b and obtain a quadratic in b or a M1 $a^2-3a-3=0$ or $b^2+3b-3=0$ or equiv A1 Solve for a or b using formula M1 a=(3±1/21)/2 OR b= (±1/21-3)/2 A1 $a=(3+\sqrt{21})/2;$ b= $(\sqrt{21}-3)/2$ A1 7 (b)(i) x or $\operatorname{Re}(z) = -1$; y or $\operatorname{Im}(z) = -\sqrt{3}$ (surd required) **B1B1** Correct method for x & y (or x+iy), both negative M1 3 x 2=1 & y2=3; Pick neg roots for x & y; -1 & -√3 (i), B1M1A1 (3) (ii) 🔒 $w/z^2 = 5/4$ or 1.25; **B**1 $\arg(w/z^2) = \arg(w) - 2\arg(z)$ or equiv correct method Μ1 $(= (3\pi/4) + 2(2\pi/3)) = 25\pi/12; \text{ arg}=\pi/12$ A1A1 4 (ii)₂ w/z =5{(-3+1)+i(-3-1)}/(8-2) **B1** Exact methods for w/z 2 and mod; 5/4; $\pi/12$ M1B1B1(4) 14(a) CF: Acos3t+Bsin3t or equiv 81 Put x=at (or poly in t) and equate all necessary coeffs PI: M1 t/3 A1 GS: own CF (2 arb consts) + own PI M1 Substitute initial values and solve for A,B M1 (A=0, 3B+1/3=1) A=0 & B=2/9 A1 $(x=) \frac{1}{3}t + \frac{2}{9}sin3t$ A1 7 $\frac{dz}{dx} = 2 + \frac{dy}{dx}$ or equiv (b) α **B1** Eliminate y and dy/dx; $\left(\frac{dz}{dx} = 2 + \frac{z+2}{z-1}\right)$ M1 Validly obtaining $\frac{dz}{dx} = \frac{3z}{z-1} AG$ A1 3 ß Separate and attempt integration; $3x = z - \ln z$ (+C) aef M1A1 Substitute for z; $x = y - \ln(2x+y) + C$ aef M1A1 Δ

Local Examinations Syndicate

9205 02

$15(a) \propto (dv/dx = 5x4+50)$ Validly obtained		
15(a)α (dy/dx =5x4+50) Validly obtaining least value of dy/dx = 50 Valid reason eg slope always positive, no turning points etc	B1	
s cope always positive, no turning points etc	B1	2
Clisica anno 1		
β Using appropriate f (eg f(x)=x5+50x-105) in NR formula	M1	
$x' = x - \frac{x^{5+50x-105}}{5x^{4+50}}$ or equiv		
— • • •	A1	
Final answer 9.9900 (at least 4 dp given)	A1	
Iteration continued until stable to ≥4 dp or root bracketed in x ±0.00005		
Validly showing 9.9900 to Ada	M1	
(f(9,98995) = -1,99, f(9,99005) = 2,99)	A1	5
(y(9.98995)=99998, y(9.99005)=100003)		
(b) (i) Angle between normal vectors considered		
The second of the second of the second	M1	
	M1	
$\left(\gamma(12+12+22)\gamma(12+32+32) = \gamma_{6}\gamma_{19} = 0.375\right) \qquad 68.0^{\circ}$	A1	3
(ii), Proja onto p = (1.1.0)		
(ii), Projn onto $\underline{n} = (1, 4, 0) \cdot \underline{n} / \underline{n}$; = 5/76 or 2.04 aef $p^2 = (Projn onto plane)^2 = 1^2+4^2 - (Projn onto \underline{n})^2$	M1A1	
representation of the second o	M1	
(p=) √(77/6) or 3.58 aef	A1	4
(ii) - Correct use and out a		
(ii) 2 Correct use and evalu of scalar product and mods to get $\cos\phi$	M1	
$\left\{\frac{1+4}{\sqrt{(1^{2}+1^{2}+2^{2})}\sqrt{(1^{2}+4^{2})}}\right\}$		
$\cos \phi = 5/\sqrt{102}$ or 0.495 aef or $\phi = 60.3^{\circ}$ $p = \sqrt{(1^2+4^2)} \sin \phi; \qquad \sqrt{(77/6)}$ or 3.58 aef	A1	
$p = \gamma(1^{2}+4^{2})\sin\phi; \gamma(77/6) \text{ or } 3.58 \text{ aef}$	M1A1	(4)