

A Level

Chemistry A

Session: 2010 June

Type: Mark scheme Code: H034-H434

Units: F321; F322; F324; F325

GCE

Chemistry A

Advanced Subsidiary GCE F321

Atoms, Bonds and Groups

Mark Scheme for June 2010

Archives & Heritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

- The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.
- An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the science is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.
- 3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the Additional Guidance.
- If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.
- 6 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

 if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (e.g. 'can't do', 'don't know')
 OR
- if there is any sort of mark which is not an attempt at the question (e.g. a dash, a question mark)
- 7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.

/ = alternative and acceptable answers for the same marking point

not = answers which are not worthy of creditreject = answers which are not worthy of credit

ignore = statements which are irrelevant

allow = answers that can be accepted

() = words which are not essential to gain credit

= underlined words must be present in answer to score a mark

ECF = error carried forward AW = alternative wording ora = or reverse argument 8 Annotations: the following annotations are available on SCORIS.

= correct response= incorrect responsebod= benefit of the doubt

nbod = benefit of the doubt **not** given

ECF = error carried forward ^ = information omitted

I = ignore R = reject

9 The Comments box

The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.

Please do not use the comments box for any other reason.

Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

Que	Question		Expected Answers		Additional Guidance		
1	а	i	¹¹⁸ Sn 50p 68n 50e Complete row ✓	1			
		ii	¹²⁰ ₅₀ Sn has (two) more neutrons / 70 neutrons ✓ ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)		
	b	-	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope'		
			compared with 1/12th (the mass) ✓		For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12		
			of (one atom of) carbon-12 ✓	er	ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12		
	C		moles of Sn = $\frac{2080}{118.7}$ = 17.52 \checkmark 17.52 × 6.02 × 10 ²³ = 1.05 × 10 ²⁵ atoms \checkmark		ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118, which makes moles of Sn = 17.63 ALLOW 105×10^{23} atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100×1 ALLOW ECF for any calculated moles of Sn (based on use of any A_r value) $\times 6.02 \times 10^{23}$ if shown to 3 sig figs DO NOT ALLOW mass of Sn $\times 6.02 \times 10^{23}$		

Qu	esti	on	Expected Answers			Additional Guidance
1	d		<u>78.8</u> and	<u>21.2</u>	2	ALLOW SnO ₂ for one mark if no working shown
			118.7	16.0		ALLOW use of 118 for this part
			OR			
			= 0.66(4) and	= 1.3(25) ✓		IGNORE incorrect rounding provided given to two sig figs
						IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A_r of tin (118.7)
			0.66(4) = 1	<u>1.325</u> = 2		or 118) used
			0.66(4)	0.66(4)		
			ans = $SnO_2 \checkmark$			ALLOW Sn ₂ O for 1 mark ECF if both inverted mole calculations are shown
					5251	
						ALLOW Sn ₃ O ₅ with evidence of use of both atomic numbers for one mark
						13.60.C 36
						ALLOW 2 marks if candidate has adopted the following approach
					7	78.8% of mass = 118.7
						100% of mass = 118.7/0.788 = 150.6 (151)
						150.6 – 118.7 = 31.9 (32) Both masses would get one mark
						31.9/16 = 2
				I	otal 9	112000

Qu	esti	on	Expected Answers		Additional Guidance		
2	2 a i		Any two from ✓✓ H ⁺ SO ₄ ²⁻ HSO ₄ ⁻	2 max	DO NOT ALLOW OH ⁻ IGNORE state symbols Charge is essential ALLOW H ₃ O ⁺ for H ⁺ and SO ₄ ⁻² for SO ₄ ²⁻ One answer incorrect = 1 mark max Two answers incorrect = 0 marks		
		ii	Effervescence OR fizzing OR bubbling OR gas produced ✓ K ₂ CO ₃ dissolves OR disappears OR colourless solution is formed ✓ H ₂ SO ₄ + K ₂ CO ₃ → K ₂ SO ₄ + CO ₂ + H ₂ O ✓	3	DO NOT ALLOW 'carbon dioxide produced' without 'gas' DO NOT ALLOW incorrectly named gas produced DO NOT ALLOW 'precipitate forms' = CON ALLOW 'it' for K ₂ CO ₃ DO NOT ALLOW mark for 'dissolves' from state symbols in equation DO NOT ALLOW 'potassium' IGNORE state symbols ALLOW ionic equation		
	b	i	$24.6 \times 0.100 = 0.00246 \text{ mol } \checkmark (2.46 \times 10^{-3} \text{ mol})$	1	DO NOT ALLOW 0.0025 as this would lead to 100% in part (iii) DO NOT ALLOW 0.0024 due to incorrect rounding		
	ii		$0.00246 \times 2 = 0.00492 \text{ mol } \checkmark (4.92 \times 10^{-3} \text{ mol})$		ALLOW ECF for ans (i) × 2		
		iii	Moles of NaOH in 250 cm ³ = $0.00492 \times 250 = 0.0492$ mol \checkmark 25 Mass of NaOH in original sample = $0.0492 \times 40.0 = 1.968$ g \checkmark % purity $1.968 \times 100 = 98.4\%$ \checkmark 2.00	3	ALLOW ECF for ans (ii) × 10 ALLOW 1.97g ALLOW ECF for moles of NaOH × 40 ALLOW 98.5% (from use of 1.97) ALLOW ECF for mass of NaOH × 100 2.00 DO NOT ALLOW ECF for 3rd marking point if answer >100% ALLOW ECF for 3rd marking point if answer = 100% ALLOW molar approach for second and third marks i.e. mol of (expected) NaOH in 2.00 g = 2/40 = 0.05(00) mol (0.0492/0.0500) × 100 = 98.4% 1.6% (the percentage of the impurity present) is likely to be 2 marks, but please check 9.84% has not multiplied up by 10 for first marking point is likely to be 2 marks, but		
			Total	10	please check		
			Total	10			

Qu	esti	on	Expected Answers	Marks	Additional Guidance			
3	а		3d 4p ✓	1	Correct order is essential ALLOW '3D'			
	b i		A region (within an atom) that can hold (up to) two electrons ✓ (with opposite spin)		ALLOW 'can be found' for 'can hold' ALLOW 'area' OR 'volume' OR 'space' for region DO NOT ALLOW 'place' for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'			
		ii	11 ✓	1				
	С		18 ✓	1				
	d	i	2nd, 3rd OR 1817, 2745 ✓ 10th, 11th OR 38458, 42655 ✓	2	Mark as pairs IGNORE references to 12th and 13th Three answers with one correct pair = 1 mark Four answers with one correct pair = 1 mark Five answers with both pairs correct = 1 mark Five answers with only one pair correct = 0 marks Six (or more) answers = 0 marks			
		ii	$Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-} \checkmark \checkmark$	2	ALLOW $Al^{2+}(g) - e^- \rightarrow Al^{3+}(g)$ for 2 marks ALLOW 1 mark for $Al(g) \rightarrow Al^{3+}(g) + 3e^-$ as states are correct ALLOW 1 mark for $Al^{2+}(g) + 2e^- \rightarrow Al^{3+}(g) + 3e^-$ as states are correct ALLOW 1 mark if symbol of Al is incorrect, but equation is otherwise fully correct. ALLOW e for electron (i.e. no charge) IGNORE states on electron			
			Total	8				

Que	Question		Expected Answers		Additional Guidance	
4	4 a i		1 = purple / lilac / violet / pink / mauve ✓ 3 = orange ✓		ALLOW any combination of these but no others for 1 ALLOW yellow as an alternative for 3 DO NOT ALLOW 'precipitate' in either	
		ij	$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2 \checkmark$	1	IGNORE state symbols ALLOW correct multiples, including fractions	
		iii	Addition of Br₂(aq) to I ⁻ (aq) ions ✓	1	ALLOW Addition of bromine to iodide (i.e. aqueous not needed) DO NOT ALLOW Addition of bromine to iodine ALLOW Addition of I ₂ to Br ⁻ , but NOT if accompanied by description of displacement of bromine ALLOW Br ₂ + I ⁻ even if seen in an unbalanced equation	
	b	i	Cl₂ is 0 AND HCl is −1 AND HClO is (+)1 ✓	3	ALLOW 1- ALLOW 1+ Oxidation states may be seen above the equation DO NOT ALLOW CI ⁻ in HCl DO NOT ALLOW CI ⁺ in HClO in text of answer DO NOT ALLOW chlorIDE in place of 'chlorine'	
			Chlorine has been both oxidised and reduced OR Chlorine's oxidation state has increased and decreased ✓	er	IF CORRECT OXIDATION STATES ARE SEEN, ALLOW second and third marking points for: Chlorine is oxidised to form HCIO Chlorine is reduced to form HCI ALLOW CI or CI ₂ for 'chlorine'	
			Chlorine has been oxidised (from 0) to +1 AND chlorine has been reduced (from 0) to −1 ✓ (These two points together subsume the second marking point)		IGNORE reference to electron loss / gain if correct DO NOT ALLOW 3rd mark for reference to electron loss / gain if incorrect ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' if chlorine / chloride is not mentioned	
		ii	Kills bacteria OR 'kills germs' kills micro-organisms OR makes water safe to drink OR sterilises water ✓ OR 'disinfects'	1	ALLOW to make water potable ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water'	
	С	-	Thermal decomposition ✓	1	DO NOT ALLOW just 'decomposition' or 'thermodecomposition'	
		==	$\frac{1.47}{84.3}$ = 0.0174 mol of MgCO ₃ \checkmark 0.0174 × 24.0 = 0.418 dm ³ OR (Calculator value × 24.0) = 0.419 dm ³ \checkmark	2	ALLOW mol of MgCO $_3$ as calculator value of 0.017437722 or correct rounding to 2 sig figs or more DO NOT ALLOW 0.0175 (this has taken M $_r$ of MgCO $_3$ as 84) ALLOW , for 2nd mark calculated moles of MgCO$_3$ × 24(.0) as calculator value or correct rounding to 2 sig figs or more [e.g. 0.017 × 24(.0) = 0.408] DO NOT ALLOW 84.3 or 1.47 × 24(.0) as no mole calculation has been done ALLOW two marks for correct answer with no working shown	

Qı	Question		Expected Answers		Additional Guidance		
4	C	ii	The ease of (thermal) decomposition decreases (down the group) ora ✓	1	ALLOW (thermal) stability increases IGNORE more heat would be needed IGNORE 'takes longer' or 'is slower' IGNORE reference to trend in reactivity IGNORE answers which include 'more / less mol of CO ₂ '		
			Total	15			

Qu	esti	on	Expected Answers	Marks	Additional Guidance		
5	5 a		+ + -+ -+ Li ions		Lattice diagram must have at least two rows of correctly charged ions and a minimum of 2 ions per row		
			Delocalised electrons Diagram showing a regular arrangement of labelled 'Li*' or '+ ions' with some attempt to show electrons		ALLOW as label: + ions, positive ions, cations If '+' is unlabelled in diagram, award label from a correct statement within the text below		
			Scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can	h	DO NOT ALLOW 2+, 3+ etc ions DO NOT ALLOW for label or in text: nuclei OR positive atom OR protons ALLOW e ⁻ OR e as label for electron		
			be in text or in diagram) ✓ The attraction between + ions and e ⁻ is strong OR metallic bonding is strong ✓	er	ALLOW a lot of energy is needed to break the (metallic) bond DO NOT ALLOW incorrect particles or incorrect attraction e.g. 'intermolecular attraction' or 'nuclear attraction'		
	b	i	F F Dot and cross bond + 6 matching electrons on each F atom ✓	1	ALLOW diagram consisting of all dots OR all crosses Circles not essential ALLOW 'FI' for fluorine		
		ii	F₂ has induced dipoles OR temporary dipoles OR van der Waals' forces (between the molecules) ✓ which are weak ✓	2	ALLOW little energy needed to overcome intermolecular bonding for second mark ALLOW 'weak' intermolecular bonding for second mark ALLOW max 1 mark if structure is referred to as giant with first and second marking points correct Award no marks if 'weak' is applied to incorrect bonding. E.g. ionic, covalent, metallic or unspecified bonding		

Ques	stic	on	Expected Answers	Marks	Additional Guidance			
5	5 C i		Li shown with either 2 or 0 electrons and F shown with 8 electrons with 7 crosses and one dot (or <i>vice versa</i>) ✓ correct charges on both ions ✓		For first mark, if 2 electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons ALLOW 'FI' for fluorine Circles not essential DO NOT ALLOW Li ⁺ with 8 electrons Second mark is independent			
		ii	lons cannot move in a solid ✓ lons can move OR are mobile when molten ✓	2	ALLOW ions are fixed in place IGNORE electrons IGNORE 'charge carriers' or 'charged particles' DO NOT ALLOW ions can move when in solution IGNORE charge carriers IGNORE 'delocalised ions' or 'free ions' ALLOW 'lons can only move when molten' for one mark Any mention of electrons moving when molten is a CON			
•	d	i	$2B + 3F_2 \longrightarrow 2BF_3 \checkmark$	1	ALLOW B ₂ ALLOW multiples including fractions			
			Shape: trigonal planar ✓ Bond angle: 120° ✓ Explanation: Pairs of electrons repel (one another equally) ✓ Boron has 3 bonded pairs (and 0 lone pairs) ✓		'Trigonal planar' must be seen and spelt correctly at least ONCE DO NOT ALLOW 'atoms repel' or 'electrons repel' ALLOW 'bonds repel' ALLOW diagram showing B atom with three dot-and-cross pairs of electrons, but no lone pairs for 4th mark Must refer to boron / central atom ALLOW 'bonds' for 'bonded pairs'			

Question	Expected Answers	Marks	Additional Guidance
5 e	F is more electronegative than N OR ^δ F–N ^{δ+} ✓ Dipoles do not cancel OR NF ₃ is pyramidal (in words) / asymmetrical ✓	2	ALLOW F attracts electrons more than N ALLOW N has a partial positive charge and F has a partial negative charge (partial must be seen) DO NOT ALLOW diagrams that contradict statements about polarity ALLOW unsymmetrical, non-symmetrical etc
f	1 3 13 pyramidai (iii words) / asymmetricai v	4	Use annotations with ticks, crosses ECF etc. for this part
	(As you go across the period) The atomic radii decreases ✓	ماء	Assume 'across the period from Li to F' ALLOW (outer shell) electrons get closer (to nucleus)
	The nuclear charge increases OR protons increase ✓	.II	IGNORE 'atomic number increases', but ALLOW 'proton number' increases IGNORE 'nucleus gets bigger' 'Charge increases' is insufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases' Nuclear OR proton(s) OR nucleus spelt correctly ONCE and used in context of
	electrons are added to the same shell OR shielding remains the same ✓	CI	2nd marking point ALLOW shielding is similar ALLOW screening for shielding DO NOT ALLOW 'subshells' DO NOT ALLOW 'distance is similar' This will CON first marking point
	greater (nuclear) attraction on (outer) electrons / (outer) shell(s) ✓		ALLOW 'greater (nuclear) pull for greater nuclear attraction' DO NOT ALLOW 'pulled in more' as this is a restatement of the first marking point
	Total	21	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Chemistry A

Advanced Subsidiary GCE F322

Chains, Energy and Resources

Mark Scheme for June 2010

Archives & Heritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

General advice to Assistant Examiners on the procedures to be used

YOU WILL BE REQUIRED TO UNDERTAKE 10 PRACTICE AND 10 STANDARDISATION SCRIPTS BEFORE STARTING TO MARK LIVE SCRIPTS.

- The schedule of dates for the marking of this paper is very important. It is vital that you meet these requirements. If you experience problems then you must contact your Team Leader (Supervisor) without delay.
- An element of professional judgement is required in the marking of any written paper. Candidates often do not use the exact words which appear in the detailed sheets which follow. If the science is correct and also answers the question then the mark(s) should normally be credited. If you are in doubt about the validity of any answer then consult your Team Leader (Supervisor) by phone, the messaging system within SCORIS or e-mail.
- 3 Correct answers to calculations always gain full credit even if no working is shown. (The 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 4 Some questions may have a 'Level of Response' mark scheme. Any details about these will be in the Additional Guidance.
- If an answer has been crossed out and no alternative answer has been written then mark the answer crossed out.
- 6 In addition to the award of 0 marks, there is a NR (No Response) option on SCORIS.

Award 0 marks

 if there is any attempt that earns no credit (including copying out the question or some crossed out working)

Award NR (No Response)

- if there is nothing written at all in the answer space OR
- if there is any comment which does not in any way relate to the question being asked (e.g. 'can't do', 'don't know')
 OR
- if there is any sort of mark which is not an attempt at the question (e.g. a dash, a question mark)
- 7 Abbreviations, annotations and conventions used in the detailed Mark Scheme.

/ = alternative and acceptable answers for the same marking point

not = answers which are not worthy of credit
reject = answers which are not worthy of credit

ignore = statements which are irrelevant
allow = answers that can be accepted

() = words which are not essential to gain credit

= underlined words must be present in answer to score a mark

ECF = error carried forward AW = alternative wording ora = or reverse argument 8 Annotations: the following annotations are available on SCORIS.

= correct responseincorrect responsebenefit of the doubt

nbod = benefit of the doubt **not** given

ECF = error carried forward

information omitted

I = ignore R = reject

Highlighting is also available to highlight any particular points on the script.

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: **2(c)(ii)**, **3(b)(i)**, **5(d)**, **6(b)** and **7**

9 The Comments box

The comments box will be used by your PE to explain their marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts. You should only type in the comments box yourself when you have an additional object of the type described in Appendix B of the Handbook for Assistant Examiners and Subject Markers.

Please do not use the comments box for any other reason.

Any questions or comments you have for your Team Leader should be communicated by phone, SCORIS messaging system or e-mail.

10 Please send a brief report on the performance of the candidates to your Team Leader (Supervisor) by the end of the marking period. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.

C	Quest	ion	Expected Answers	Marks	Additional Guidance
1	а	i	Series having same functional group and a general formula	1	ALLOW same functional group and members vary by CH ₂ ALLOW organic compounds with the same functional group that differ in length of their hydrocarbon chain
		ii		2	BOTH answers need to be comparisons
			More surface contact OR bigger molecules ✓	es	ALLOW higher relative formula mass OR has more electrons OR longer chain length OR more carbon atoms IGNORE surface area / bigger compounds
			More van der Waals' forces ✓	ag	ALLOW stronger van der Waals' forces / stronger induced dipoles VDW forces is not sufficient More intermolecular forces is not sufficient DO NOT ALLOW breaking bonds within the chain / breaking covalent bonds IGNORE reference to bonds if not linked to covalent bonds
	b	i	Pent-1-yne OR pent-2-yne ✓	1	ALLOW pentyne Look for answer in the table if not on answer line but answer line takes precedence
		ii	C _n H _{2n-2} ✓	1	ALLOW $C_nH_{2(n-1)}$

C	uesti	ion	Expected Answers	Marks	Additional Guidance
1	b	iii	Correct displayed formula ✓	1	H H—C—C≡C—H H
		iv	Correct skeletal formula of cyclic hydrocarbon with formula C ₆ H ₁₀ ✓	es ag	Examples of correct skeletal formulae include
	С		Energy required to break bonds = (+) 2912 ✓ Energy released to make bonds = (–)4148 ✓ Enthalpy of combustion = –1236 ✓	3	ALLOW full marks for correct answer with no working out ALLOW (2 × 415) + (837) + (2.5 × 498) ALLOW (4 × -805) + (2 × -464) OR (4 × 805) + (2 × 464) ALLOW ECF for calculation of enthalpy of combustion ALLOW 2 marks for +1236 with no working out

C	Quest	ion	Expected Answers	Marks	Additional Guidance
1	d	i	(Enthalpy change) when one mole of a compound ✓	3	IGNORE energy required / energy released ALLOW (energy change) when one mole of a substance DO NOT ALLOW enthalpy change for one mole of products
			is made from its elements (in their standard states) ✓		
			(Standard conditions are) 298 K and 100 kPa ✓	res	ALLOW 1 atmosphere pressure / 101 kPa / 10 ⁵ Pa / 1.01 × 10 ⁵ Nm ⁻² / 1000 millibars / 25 °C / any stated temperature in words IGNORE 1 mol dm ⁻³ for solutions
		ii	From energy cycle Enthalpy change to get elements = -(-60) - (2 -286) / (+) 632 ✓	3	ALLOW full marks for -128 with no working out
			Enthalpy change from elements = −987 + (+227) / (−)760 ✓	as	ALLOW ECF from errors in calculation
			Enthalpy change = −128 ✓		ALLOW two marks for answer of -414 / +128 / -1392 / +1392
	-	<u> </u>	26.0 × 400	2	ALLOW one mark for answer of +414
	е	'	26.0 × 100 100.1 ✓	2	First mark for 100.1 OR (64.1 + 36.0) OR (74.1 + 26.0) at bottom of fraction with or without × 100
			26.0% ✓		ALLOW full marks for 26.0 or 26% with no working out
					ALLOW from two significant figures up to calculator value ALLOW 25.97 / 26%
					NO ECF for this part from incorrect numbers in first expression

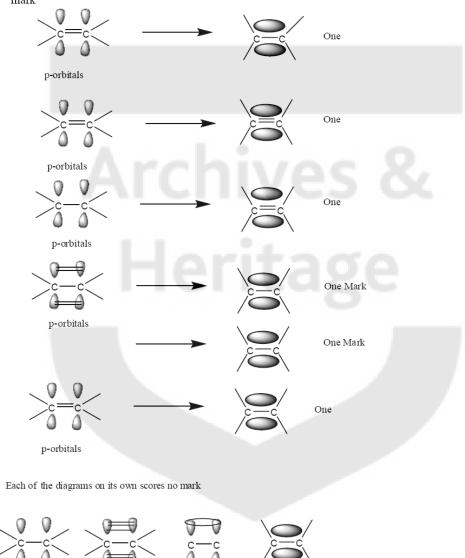
Questic	on	Expected Answers	Marks	Additional Guidance
1 e	ii	1.56 × 10 ⁴ OR 15600 OR 15601 ✓	1	ALLOW calculator value of 15600.62402 and any rounded value to a minimum of three significant figures
	iii	1.5 × 10 ⁴ OR 15000 ✓	1	ALLOW 1.50 × 10 ⁴ etc.
	v	Any two from: Low atom economy gives a poor sustainability OR low atom	1	ALLOW ECF from (iii) ÷ (ii) ALLOW calculator value 96.1538461 and any rounded value to a minimum of two significant figures ALLOW 96.14768284 if 15601 is used ALLOW any value between 88 to 89 if answer to (iii) was calculated by dividing by 26 ANNOTATE WITH TICKS AND CROSSES IGNORE comments about percentage yield
		economy means lots of waste ✓ A use for the aqueous calcium hydroxide needs to be developed to increase atom economy ✓ Alternative process needs to be developed with high atom economy ✓	ag	ALLOW ECF from (i) e.g. high atom economy will have good sustainability ALLOW find a use for the waste to increase atom economy
		Total	23	

C	Quest	ion	Expected Answers	Marks	Additional Guidance
2	а	i	Branched chain alkane of formula C ₅ H ₁₂ to C ₉ H ₂₀ e.g. 2-methylpentane, 3-methyloctane ✓	1	Must have position number but ALLOW methylbutane DO NOT ALLOW 1-methylpentane or 2-ethylpentane etc DO NOT ALLOW incorrect nomenclature e.g. 2-methypentane etc
	b	i	Vibrate (more) ✓	1	ALLOW bend / stretch / oscillate IGNORE rotate NOT break / molecules vibrate
		ii	Incomplete combustion ✓	1	ALLOW not enough oxygen
		iii	NO for photochemical smog OR low level ozone ✓ CO is toxic ✓	ia ₈	ALLOW NO can (eventually) cause acid rain OR can result in respiratory irritation OR can (eventually) depletes high level ozone OR depletes ozone layer IGNORE greenhouse gas ALLOW poisonous OR kills OR lethal ALLOW CO reduces the capacity of blood to carry oxygen Oxygen combines with haemoglobin is insufficient IGNORE CO is harmful / suffocates / greenhouse gas
	С	i	Makes nitrogen AND carbon dioxide ✓ 2CO + 2NO → N ₂ + 2CO ₂ ✓	2	ALLOW any correct multiples IGNORE state symbols

C	Quest	ion	Expected Answers	Marks	Additional Guidance
2	С	ii	One activation energy correctly labelled on enthalpy profile diagram ✓	7	ANNOTATE WITH TICKS AND CROSSES With the line/arrow no more than 1 mm from top of curve or reactant line – arrow can be double headed for activation energy ALLOW vertical line with no arrows DO NOT ALLOW arrow just pointing downwards
			Idea that activation energy is lowered ✓		Marks can be awarded via, reaction profile, in words or from Boltzmann
			Catalyst has a different reaction pathway OR different reaction mechanism OR two curves drawn on profile \checkmark Correct diagram of reaction profile for exothermic reaction with product below reactants with y axis as enthalpy or energy and ΔH label – arrow should go down. Ignore a small gap between at either end of ΔH line \checkmark	es ag	enthalpy E_a $D = \frac{E_a}{E_c}$ $D = \frac{\Delta H}{D}$ $D = \frac{\Delta H}{$
			Drawing of Boltzmann distribution – axes labelled number of molecules and energy ✓		Boltzmann distribution – must start at origin and must not end up at 0 on <i>y</i> -axis i.e. must not touch <i>x</i> -axis
			More molecules with energy above activation energy with a catalyst ✓ More effective collisions OR more successful collisions ✓		number of Ea cat molecules with KE above activation en
					Kinetic energy

Question	Expected Answers	Marks	Additional Guidance
2 d	Any two benefits from:	3	ANNOTATE WITH TICKS AND CROSSES
	Save crude oil OR no risk of large scale pollution from exploitation of crude oil ✓		ALLOW decrease the need for fossil fuels
	Biodiesel is renewable OR diesel is non-renewable ✓		ALLOW plants are a renewable resource / crude oil non-renewable resource / biodiesel is more sustainable / diesel is not sustainable
	Use of biodiesel is (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ✓	es	ALLOW lower carbon footprint IGNORE can be used by diesel powered cars with or without any conversion
	and one disadvantage		
	Land not used to grow food crops OR (rain)forests have to be cut down to provide land OR food prices may rise because less is grown ✓	.d	IGNORE comments about availability / fertilisers / pesticides
			Destroys habitats is not sufficient
	Total	17	

Question	Expected Answers	Marks	Additional Guidance
3 a	Answers clockwise from top left	4	ALLOW skeletal formula
	CH₃CH₂COOH ✓		ALLOW butanoic acid
	CH₃CH2CHCH2 ✓		ALLOW but-1-ene
	CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃ ✓		ALLOW butyl ethanoate
	CH₃CH₂CHO ✓		ALLOW butanal
	Archiv	(0.9	If name and structure given both must be correct
	7 11 01111		If C ₃ H ₇ used instead of CH ₃ CH ₂ CH ₂ penalise once and then apply ECF
	Herit	ag	If wrong carbon skeleton used then penalise once then apply ECF
			If a hydrogen is missing then penalise once


C	uesti	ion	Expected Answers	Marks	Additional Guidance
3	b	i	Nucleophilic substitution ✓	5	ANNOTATE WITH TICKS AND CROSSES
			Heterolytic ✓		
			Dipole shown on C–I bond, C^{δ^+} and I^{δ^-}		DO NOT ALLOW fish hooks
			Curly arrow from OH⁻ to carbon atom of C–I bond ✓		No need to show lone pair on OH ⁻ or I ⁻ Curly arrow must come from the negative sign or lone pair on the oxygen of the hydroxide ion
			Curly arrow from C–I bond to the iodine atom ✓		
			Archiv	es	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			Herit	as	OH_ H
					ALLOW S _N 1 mechanism
					dipole shown on C–I bond, C^{δ^+} and I^{δ^-}
					curly arrow from C–I bond to the iodine atom ✓
					curly arrow from OH⁻ to correct carbonium ion ✓
		ii	Use reflux OR heat for more than 20 minutes ✓	2	ALLOW heat stronger OR heat for longer OR heat at a higher temperature OR more heat
			C–Cl stronger bond (than C–l bond) OR C–Cl shorter bond (than C–l bond) OR C–Cl bond is harder to break OR needs more energy to break C–Cl bond OR ora ✓		Answer must refer to the C–C1 bond or C–I bonds
			Total	11	

	Quest	tion	Expected Answers	Marks	Additional Guidance	
4	а	i	Any two from: Any value between 1000–1300 ✓ Any value between 2850–3100 ✓ Any value between 3200–3550 ✓	2		
		ii	Orange to green or blue ✓	1		
		iii	Orange to green or blue	2	IGNORE any state symbols	
			$CH_3CH_2OH + [O] \rightarrow CH_3CHO + H_2O$ OR		ALLOW CH ₃ COH in equation but not for the structure	
			CH ₃ CH ₂ OH + 2[O] → CH ₃ COOH + H ₂ O Correct organic product ✓ Balanced equation ✓	res	ALLOW equations with molecular formulae but not the product mark	
	b	i	Absorption around 2850–3100 (cm ⁻¹) so contains C—H bonds ✓	2	Answer must have a reference to infrared spectrum i.e. use of cm ⁻¹ or data from the infrared spectrum	
			No other important absorptions present / no other characteristic absorptions ✓	ag	'Has no other peaks so no functional groups present' is not sufficient BUT There are no peaks due to functional groups is sufficient	
					ALLOW peaks instead of absorption ALLOW no absorption due to C=O and O-H / no absorption due to carbonyl and hydroxyl	
		ii	Peak furthest to right hand side is 58 / molecular ion peak is 58 / peak at highest mass ✓	1	ALLOW peak at <i>m</i> / <i>z</i> 58 marked on the mass spectrum / M peak is 58 / peak at 58 linked to the molecular mass DO NOT ALLOW highest peak but ALLOW 58 is the highest peak	

C	Quest	ion	Expected Answers	Marks	Additional Guidance
4	b	iii	H H H H H H H H H H H H H H H H H H H	1	If three structures are drawn then do not award mark ALLOW skeletal formulae / structural formulae IGNORE incorrect names
		iv	$CH_3^+ \checkmark$ $C_2H_5^+ \checkmark$ $C_3H_7^+ / CH_3CH_2CH_2^+ / (CH_3)_2CH^+ \checkmark$	3 7 e §	Essentially marks are allocated as positive ions ✓ Formula of two fragments correct (ignore charge) ✓ BUT formulae of all three fragments correct (ignore charge) ✓✓
		v	CH₃CH₂CH₂CH₃ because there is a peak at m/z = 29 ✓	ag	ALLOW name, displayed or skeletal structure ALLOW butane because there is a C ₂ H ₅ fragment ALLOW butane because it gives all three fragments listed in (iv)
			Total	13	

	Question	Expected Answers	Marks	Additional Guidance
5	а	Sideways overlap of two p orbitals on each carbon atom ✓	2	Answers can be awarded from a labelled diagram see additional page with typical diagrams you might
		forms π -orbital or π -bond above and below plane of		see
		molecule ✓		Sideways
				10 A overlap
		Archi	ves	2p orbitals
				Drawings with a double bond drawn can score a maximum of one mark
		Heri	tag	Drawing above with no labels scores one mark

Each of the following diagrams is worth one mark. The words p-orbitals must be present to score the mark

p-orbitals

C	Question		Expected Answers	Marks	Additional Guidance
5	b	i	Double bond does not rotate / restricted rotation of the double bond ✓	2	ALLOW π bond does not rotate
			Each carbon atom of double bond is bonded to (two) different groups ✓		ALLOW each carbon atom of double bond is bonded to (two) different atoms / each end of the π-bond is bonded to different groups or atoms ✓
		ii	C and E ✓	1	

C	Question	Expected Answers	Marks	Additional Guidance
5	С	CH₃CH₂OH / ethanol ✓	1	IGNORE alcohol
	d		9	ANNOTATE WITH TICKS AND CROSSES QWC mark and 8 other marking points
		$C_4H_8 + HBr \rightarrow C_4H_9Br \checkmark$ $C_2H_4 + HBr \rightarrow C_2H_5Br \checkmark$		The equation must be the overall equation not a series of steps as in a mechanism
		B makes CH ₃ CH ₂ CH ₂ CH ₂ Br ✓ CH ₃ CHBrCH ₂ CH ₃ ✓		ALLOW skeletal or displayed formulae ALLOW B makes 1-bromobutane and 2-bromo butane ✓ if marks for the structures not awarded
		QWC – number of products is linked to structure of alkene e.g. because D is symmetrical OR B is not symmetrical ✓	es	5 OZ
		Movement of electron pair from double bond to attack hydrogen of H–Br and breaking of H–Br bond ✓	as	H H H
		Correct dipole shown on H–Br ✓	0	H H H
		Correct carbonium ion drawn ✓		H 5+
		Curly arrow from Br [−] to the carbonium ion ✓		Br S =
				ALLOW curly arrow from lone pair or minus sign of bromide ion
				ALLOW marks for the mechanism even if the wrong alkene is used e.g. for alkene B If two mechanisms are drawn mark the one for alkene D

C	Quest	ion	Expected Answers	Marks	Additional Guidance
5	е	i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Must have at least two repeat units and the free bonds at the end All carbon–carbon bonds in the polymer chain must be shown ALLOW bond to ethyl group to any part of ethyl group IGNORE any brackets drawn
		ii	Poly(but-1-ene) ✓	1 7 e s	ALLOW polybut-1-ene n.b. the bracket is part of the answer DO NOT ALLOW polybutene
	f	i	(Lots of) OH group present ✓ Can form hydrogen bonds with water ✓	2	ALLOW hydroxyl group present / hydroxy group Alcohol group is not sufficient
		ii	Any two from: Incineration to produce energy OR combustion to produce energy ✓ Sorting and recycling OR sorting and remoulding ✓ Cracked (to give monomers) OR as an organic feedstock ✓	2	Used as a fuel is not sufficient IGNORE use photodegradable or biodegradable polymers
			Total	21	

Question	Expected Answers	Marks	Additional Guidance
6 a	Low pressure because more (gas) molecules on right hand side of equation OR low pressure because ΔV = positive \checkmark	2	ALLOW low pressure because more (gas) moles on right hand side of equation
	Low temperature because the (forward) reaction is exothermic ✓		
b		3	ANNOTATE WITH TICKS AND CROSSES
	Increased pressure speeds up reaction / ora ✓ 900 °C increases the rate OR increased temperature speeds up reaction / ora ✓ Idea that high enough temperature without compromising yield OR idea that high enough pressure without compromising yield ✓	es	ALLOW 'pushes gases through system'
c i	$5.68 \times 10^7 / 5.7 \times 10^7 \checkmark$	1	ALLOW two or more significant figures Calculator answer is 5.6812500 × 10 ⁷
ii	Used to heat the incoming gases ✓	1	ALLOW used to heat rest of factory OR sold to the national grid Provide energy to create conditions is not sufficient because one condition is pressure
	Total	7	

Question	Expected Answers	Marks	Additional Guidance
7	Infrared	8	ANNOTATE WITH TICKS AND CROSSES
	QWC – 1720 cm ⁻¹ indicates carbonyl group ✓		ALLOW 1720 indicates presence of aldehydes,
	QWC – broad 2900 cm ⁻¹ indicates O–H bond in carboxylic acid ✓		ketones, esters, carboxylic acid, amides ALLOW 2900 indicates carboxylic acid
	QWC – 1080 cm ⁻¹ indicates C–O bond ✓		ALLOW 1080 indicates alcohol, esters, carboxylic
	Percentage composition Mole ratio C : H : O = 2.23 : 2.22 : 4.44 ✓	es	acids
	Empirical formula is CHO₂ ✓	ac	ALLOW 26.7/12.0. 2.22/1.0 and 71.1/16.0 ALLOW COOH ALLOW two marks for correct empirical formula with no working out
	(mass of one mole is 90 g) so $M_{\rm r}$ is 90 \checkmark		
	QWC – molecular formula is $C_2H_2O_4$ with working out from $M_r \checkmark$		ALLOW 0.0945/0.00105 = 90
	СООН	23.0	СООН
	Structure is COOH ✓		ALLOW CHO
	Total	8	ALLOW SITE

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Chemistry A

Advanced GCE F324

Mark Scheme for June 2010

Archives & Heritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Allow Kekulé structures throughout

Que	esti	on	Expected Answers	Marks	Additional Guidance
1	а		Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
	b	i	compound A if NO₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) compound B NH₂ compound C if NO₂ in wrong position penalise here and ECF for rest of b(i) and b(ii)	a g	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW ALLOW any 4-amino-1,3-dimethylbenzene drawn in any orientation ECF amine of incorrect compound A (e.g. position of NO ₂ or lack of methyl sticks/groups) ALLOW diazonium chloride salt of 1,3-dimethylbenzene ECF diazonium salt/compound of incorrect compound B IGNORE CI ⁻ ion allow N=N ⁺ not allow *N ₂ *N ₂

Question		Expected Answers	Marks	Additio	nal Guidance
				ALLOW if + charge is floati is closer to the correct N allow N N	ng between the two Ns only if it not allow N N N N N N N N N N N N N
	compound D		es	ALLOW any of OH	OH
		Herit	ag	ОН	0.
				ALLOW O ⁻ in place of OH	

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> $HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + 2HSO_4^- + NO_2^+ \checkmark$		Equation to show formation of NO_2^+ ion \checkmark ALLOW $HNO_3 + H_2SO_4 \rightarrow H_2O + HSO_4^- + NO_2^+$ $HNO_3 + H_2SO_4 \rightarrow HSO_4^- + H_2NO_3^+ \rightarrow H_2O + NO_2^+$
If NO ₂ is in correct position	mark 4 – curly arrow from C–H bond back to reform π ring AND correct products \checkmark	5	ALLOW mark 2 curly arrow must be from 1,3-dimethylbenzene to NO ₂ ⁺ and ECF for marks 3 and 4
do not penalise even if			DO NOT ALLOW intermediate
compound A in b(i) is not in correct position	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	es	π -ring must be more than $\frac{1}{2}$ way up
	mark 2 − curly arrow from intermediate with π ring to ${}^{+}NO_{2}$ ✓ ring broken in the correct place ✓ Link to compound A in part (i) − cannot score full marks [in b(i) & b(ii)] if NO_{2} is not adjacent to a methyl	ag	ALLOW CH ₃ s shown
			ALLOW $H_3O^+ + HSO_4^- \rightarrow H_2O + H_2SO_4$
iii	2 ✓	1	No other correct response
	Total	13	

Qı	ıesti	on	Expected Answers	Marks	Additional Guidance
2	а	i	Ester group must be displayed to get both marks and must contain 4 Os	2	ALLOW for both marks COUNTY C
			Archi Heri	ve ta	ALLOW for one mark OC — CH ₂ —CH ₂ —O— ALLOW Kekulé structure / (CH ₂) ₂ ALLOW one mark if end bonds missing
					ALLOW 1 mark if the CH ₂ CH ₂ is drawn skeletally ALLOW for O O C O C O C O H H H ALLOW 1 mark if repeat unit shows a displayed ester group and contains a benzene ring and two other carbons DO NOT ALLOW -OCC ₆ H ₄ COOCH ₂ CH ₂ O-
		ii	HO—CH ₂ —CH ₂ —O—C——————————————————————————————————	1	ALLOW Kekulé structure/ (CH ₂) ₂ CO ₂ for ester groups C ₆ H ₄ if already penalised in a(i)

Que	esti	on	Expected Answers	Marks	Additional Guidance
	b	i	$C_7H_5O_2$	1	ALLOW any order of elements ALLOW $C_{14}H_{10}O_4 \rightarrow C_7H_5O_2$ or $C_{14}H_{10}O_4 = C_7H_5O_2$
		ii	Penalise incorrect bond linkage in 2b(ii) only. Do not penalise elsewhere on the paper	2	ALLOW COOH/CO ₂ H ALLOW
				ta	ALLOW HO(CH ₂) ₂ OH
	С	i	HO (Na ⁺)	2	ALLOW any of the following for 1 mark HO Or Or Or Na HO CH2 O'Na DO NOT ALLOW any other response
		ii	(PGA is) (bio)degradable OR photodegradable OR hydrolysed (but hydrocarbon based polymers are non-biodegradable) ✓ One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly – if one spelt correctly and another incorrectly spelt – ALLOW mark	1	ALLOW broken down by bacteria (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional information is incorrect e.g. biodegradable and can be recycled
			Total	9	

F324 Mark Scheme June 2010

Question	Expecte	d Answers	Marks	Additional Guidance
3 a	Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with 2,4-DNP(H) and 'orange precipitate' ✓ must be the ketone ✓ 2,4-DNP(H) AND orange precipitate ✓ is either aldehyde OR ketone ALLOW carbonyl OR C=O✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	Tollens' test AND 'silver precipitate/mirror' ✓ is the aldehyde ✓ react with carbonate/ hydrogencarbonate/ Na/Mg and 'fizzes/ bubbles/ effervesces/ gas evolved ✓ must be the (carboxylic) acid ✓ 2,4-DNP(H) and no orange precipitate ✓ is the (carboxylic) acid ✓ Tollens' test & 'silver ppt/mirror' ✓ is the aldehyde ✓	4	ALLOW ammoniacal AgNO ₃ / Ag ⁺ (NH ₃) ₂ / Ag ⁺ (NH ₃) ALLOW acidified dichromate OR Fehlings as an alternative to Tollens – observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points ALLOW PCI ₅ as a test for the acid – observation would be 'white fumes (of HCI)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded
b	Peak in range 2500–3300 shows O–H ✓ [need wavenumber (or ran		1	DO NOT ALLOW single peak quoted within range 2500–3300 other than 3000 (cm ⁻¹) for OH DO NOT ALLOWrange 3200–3550 (cm ⁻¹) IGNORE any reference to C-O or C=O

Question	Expected Answers	Marks	Additional Guidance
С	Alternative approaches depending on whether or not the aldehyde is correct		ALLOW 3-methylbutanal, any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation
	Doublet indicates adjacent C is bonded to only 1H CR (relative) peak area indicates 2 x CH₃ (in the same environment) ✓ Doublet indicates adjacent C is bonded to only 1H✓ AND (relative) peak area indicates 2 x CH₃ (in the same environment) ✓		ALLOW doublet/peak at 0.9ppm due to R–CH ALLOW the splitting shows adjacent to CH/environment that contains 1 H/proton ALLOW 6 Hs/ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO
	If aldehyde is correct (CH ₃) ₂ CH—CH ₂ —CHO If aldehyde is correct only need to explain doublet OR peak areas If aldehyde is correct only if aldehyde is incorrect must explain both doublet or peak areas	liv	e.g. H ₃ C C C would score two marks if the doublet and the peak areas were correctly explained
d i	H_3C — CH_2 — CH_2 — CH_3 \checkmark ketone 3	1	ALLOW displayed/skeletal formulae
ii	There are 4 (different C) environments ✓ (therefore) it is ketone 2 / O H ₃ C——CH——C——CH ₃ CH ₃	3	ALLOW 2 Cs are in same environment/equivalent ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one
	(C responsible for peak at δ = 210 ppm) is C=O/carbonyl carbon \checkmark	12	c—c—c
	Total	12	

Quest	tion	Expected Answers	Marks	Additional Guidance
4 a	i	The time (from the injection of the sample) for the component to leave the column ✓	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
	ii	They have similar retention times ✓	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe $R_{\rm f}$ values in part $a(i)$ ALLOW same retention times
	iii	Butylbutanoate ✓	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
b	i	hydrocarbon chain must be correct for one mark H H H H H H H H H H H H H H H H H H H	2	ALLOW any correct unambiguous structure/ CH ₃ (CH ₂) ₄ CHCHCHCHCOOCH ₂ CH ₃ / CH ₃ (CH ₂) ₄ CHCHCHCHCOOC ₂ H ₅ CH ₃ (CH ₂) ₄ (CH) ₄ COOCH ₂ CH ₃ DO NOT ALLOW C ₅ H ₁₁ CHCHCHCHCOOCH ₂ CH ₃ etc ALLOW CO ₂ for ester ALLOW 1 mark for correct 2,4-decadiene structure e.g. ALLOW 1 mark for correct ethyl oate structure e.g. or —CO ₂ C ₂ H ₅ or —COOC ₂ H ₅

Question	Expected Answers	Marks	Additional Guidance
ii	O O H₂C O C R		ALLOW
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Archiv	70	any orientation of the three fatty acids
С	 react phenylethanal with H₂SO₄/K₂Cr₂O₇✓ to get phenylethanoic acid/C₆H₅CH₂COOH ✓ 		ALLOW H ⁺ & Cr ₂ O ₇ ²⁻ or H ₂ SO ₄ /Na ₂ Cr ₂ O ₇ - any other oxidising agent or other named acid – please consult with TL
	mark 2 can be scored if dichromate is used without being acidified	2	ALLOW LiAIH ₄ as alternative to NaBH ₄
either	3. react phenylethanal with NaBH₄ ✓		phenylethanoic acid & phenylethanol must be unambiguously identified by either name or formula
henylethanoi cid or 2- henyethanol	d. to get 2-phenylethanol/C ₆ H ₅ CH ₂ CH ₂ OH ✓ mark 3 must be correct to score mark 4	7	DO NOT ALLOW or oxidised to form(a carboxylic) acid or reduced to form alcohol for marks 2 and 4
ot prepared - utomatically ose two mark	5. react pnenyletnanoic acid with 2-pnenyletnanoi. If both		ALLOW conc H ₂ SO ₄ DO NOT ALLOW dilute or H ₂ SO ₄ (aq) DO NOT ALLOW just acid catalyst
	6. H₂SO₄ if linked to the reaction of an alcohol and acid✓		DO NOT ALLOW HCI, HNO ₃
	7. reflux in either (1) or (5) or catalyst used in (5) ✓QWC must spell catalyst or reflux correctly		Please annotate, use ticks to show where marks are awarded
	Total	13	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а	i	HO N	1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	Mark 1 – production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult Mark 2 – one of the isomers is more (pharmacologically) active or one of the isomers might have adverse/harmful/nasty side effects Marks 3 and 4 – problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool	4 5 3 6	IGNORE any reference to dosage ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	b	i	H_2C CH_2 + NH_3 \longrightarrow $HO-CH_2-CH_2-NH_2$	1	ALLOW epoxy ethane as C ₂ H ₄ O, (CH ₂) ₂ O, CH ₂ OCH ₂ ALLOW product as HO(CH ₂) ₂ NH ₂ DO NOT ALLOW product as C ₂ H ₇ NO
		ii	HO−CH ₂ −CH ₂ −NH−CH ₂ −CH ₂ −OH ✓	1	ALLOW (CH ₂) ₂ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

Question	Expected Answers	Marks	Additional Guidance
C i	HO—CH ₂ —CH ₂ —NH ₃ ⁺ Cl ⁻ Must show Cl ⁻ ion ✓	1	ALLOW HOCH ₂ CH ₂ NH ₃ Cl if formula is correct and both charges not shown ALLOW (CH ₂) ₂ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
ii	HO—CH ₂ —CH ₂ —NH ₃ ⁺ HS ⁻ Must show HS ⁻ ion ✓	1	ALLOW if formula is correct and both charges not shown ALLOW (CH ₂) ₂ / any correct unambiguous structure ALLOW (HO—CH ₂ —CH ₂ —NH ₃) ₂ S ²⁻
d i	Both NH₂ and COOH are joined to the same C ✓	ge	ALLOW H ₂ N—C—CO ₂ H or RCH(NH ₂)CO ₂ H R The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
ii	$HO-CH_2-CH_2-NH_2 + 2[O] \longrightarrow HO-C-CH_2-NH_2 + H_2O \checkmark$	1	ALLOW (CH ₂) ₂ DO NOT ALLOW molecular formula
e i	Question 5e is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages 15 or 16 have been used	ndidates	can use instead of requesting additional paper.

Ques	stion	Expected Answers	Marks	Additional Guidance
	i	Isomer F H H H H H HO—C—C—C—C—NH ₂ H H H H H	2	ALLOW HO(CH ₂) ₄ NH ₂ / ALLOW any correct unambiguous structure of 1-aminobutan-4-ol
		Isomer G	s e	ALLOW CH ₃ CH(OH)CH(NH ₂)CH ₃ ALLOW any correct unambiguous structure of 2-aminobutan-3-ol.
		Total	13	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Chemistry A

Advanced GCE F325

Equilibria, Energetics and Elements

Mark Scheme for June 2010

Tieritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Qı	estic	on	Expected Answers	Marks	Additional Guidance
1	а		F B G E D FIVE correct	3	ALLOW 1450 736 G 76 -642
			FOUR correct ✓✓ THREE correct ✓		
	b		Correct calculation $-642 - (+76 + (2 \times 150) + 736 + 1450 + (2 \times -349)) \checkmark$ -642 - 1864 $= -2506 \checkmark (kJ mol^{-1})$	2	ALLOW for 1 mark: -2705 (2 × 150 and 2 × 349 not used for Cl) -2356 (2 × 150 not used for Cl) -2855 (2 × 349 not used for Cl) +2506 (wrong sign) DO NOT ALLOW any other answers
	С		Heri	3	ANNOTATIONS MUST BE USED
			Magnesium ion OR Mg ²⁺ has greater charge (than sodium ion OR Na ⁺) OR Mg ²⁺ has greater charge density ✓		ALLOW magnesium/Mg is 2+ but sodium/Na is 1+ DO NOT ALLOW Mg atom is 2+ but Na atom is 1+ ALLOW 'charge density' here only
			Magnesium ion OR Mg ²⁺ is smaller ✓		ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg ²⁺ has a smaller atomic radius
			Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion OR Greater attraction between oppositely charged ions ✓		ALLOW anion OR negative ion for Cl ⁻ DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction
					ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion)
			Total	8	ALLOW reverse argument throughout in terms of Na ⁺

Que	esti	on	Expected Answers	Marks	Additional Guidance
2	а		$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b		graph: Straight/diagonal line through origin OR 0,0 AND 1st order with respect to PrO = (1	ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0)
		 1st order with respect to BrO₃⁻ ✓ initial rates data: When [Br⁻] is doubled, rate × 2 ✓ 1st order with respect to Br⁻ ✓ 	V 4 e	ALLOW 'As BrO ₃ ⁻ doubles, rate doubles' AND 1st order ALLOW rate is proportional to concentration AND 1st order Mark order and explanation independently Mark order first, then explanation	
			When $[H^+] \times 2$, rate $\times 4 (2^2) \checkmark$ 2nd order with respect to $H^+ \checkmark$ Rate equation rate = k [BrO ₃ ⁻] [Br ⁻] $[H^+]^2 \checkmark$	ta	ALLOW ECF from candidate's orders above

Question	Expected Answers	Marks	Additional Guidance
Question	Expected Answers Calculation of rate constant (3 marks) $k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ $= 1.7 \times 10^{-2} \text{ OR } 1.65 \times 10^{-2} \checkmark \text{ dm}^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$	Marks 3	Calculation can be from any of the experimental runs – they all give the same value of k ALLOW $mol^{-3} dm^9 s^{-1}$ ALLOW 1.6510579×10^{-2} and correct rounding to 1.7×10^{-2} Correct numerical answer subsumes previous marking point DO NOT ALLOW fraction: $\frac{238}{14415}$ ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen. Example 1: 1st order with respect to H^+ rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] $k = \frac{rate}{[BrO_3^-][Br^-][H^+]}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$ = 5.1×10^{-3} OR 5.12×10^{-3} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $5.11827957 \times 10^{-3}$ and correct rounding to 5.1×10^{-3}
			Example 2: Zero order with respect to BrO_3^- rate = k [Br ⁻] [H ⁺] ² $k = \frac{\text{rate}}{[Br^-][H^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3×10^{-4} OR 8.26×10^{-4} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $8.255289629 \times 10^{-4}$ and correct rounding to 8.3×10^{-4}
	Total	10	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
3	а			4	ALLOW C ₂ H ₅ throughout question
			measured pH > 1 OR [H $^+$] < 0.1 (mol dm $^{-3}$) \checkmark		ALLOW [H ⁺] < [CH ₃ CH ₂ COOH] OR [H ⁺] < [HA] ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7
			$[H^+] = 10^{-pH} \checkmark$	aiv	ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]}$ OR $\frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]}$	111	ALLOW [H ⁺][A ⁻] OR [H ⁺] ² [HA] [HA]
			Calculate K_a from $\frac{[H^+]^2}{0.100} \checkmark$	rit	IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also
				'	(i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10 ⁻¹⁴ and correct rounding to 3.5 × 10 ⁻¹⁴
			$[H^{+}] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 0.28840315 and correct rounding to 0.29, i.e. ALLOW 0.288
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		ALLOW alternative approach using pOH:
					pOH = $14 - 13.46 = 0.54 \checkmark$ [OH ⁻] = $10^{-0.54} = 0.29 \text{ (mol dm}^{-3}) \checkmark$
					Correct answer gets BOTH marks

Question	Expected Answers	Marks	Additional Guidance
С	Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR CH₃CH₂COOH + NaOH → CH₃CH₂COONa + H₂O ✓	7	ANNOTATIONS MUST BE USED ALLOW C ₂ H ₅ throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid)
	Some propanoic acid remains OR propanoic acid AND propanoate (ions) / sodium propanoate present ✓ equilibrium: CH ₃ CH ₂ COOH = H ⁺ + CH ₃ CH ₂ COO ⁻ ✓	niv	ALLOW: weak acid AND its conjugate base/salt present Throughout, do not penalise comments that imply that pH is constant in presence of buffer DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH ₃ CH ₂ COOH; ALLOW A ⁻ for CH ₃ CH ₂ COO ⁻
	Added alkali $CH_3CH_2COOH \text{ reacts with added alkali}$ $OR \ CH_3CH_2COOH + OH^- \rightarrow$ $OR \ added \ alkali \text{ reacts with } H^+$ $OR \ H^+ + OH^- \rightarrow \checkmark$ $\rightarrow CH_3CH_2COO^- \ OR \ Equilibrium \rightarrow \text{right } \checkmark$ $Added \ acid$ $CH_3CH_2COO^- \text{ reacts with added acid}$ $OR \ [H^+] \ \text{increases } \checkmark$ $\rightarrow CH_3CH_2COOH \ OR \ Equilibrium \rightarrow \text{left } \checkmark$		Equilibrium responses must refer back to a written equilibrium. IF no equilibrium shown, use the equilibrium as written in expected answers (which is also written on page 6 of the paper) ALLOW weak acid reacts with added alkali ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
		5	

Question	Expected Answers	Marks	Additional Guidance
d	$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HNO ₃ + CH ₃ CH ₂ COOH = CH ₃ CH ₂ COO ⁻ + H ₂ NO ₃ ⁺ × base 2 acid 1 base 1 acid 2 ✓
e i	2CH ₃ CH ₂ COOH + Mg → (CH ₃ CH ₂ COO) ₂ Mg + H ₂ ✓	ni\	IGNORE state symbols ALLOW ionic equation: 2H ⁺ + Mg → Mg ²⁺ + H ₂ IGNORE any random charges in formula of (CH ₃ CH ₂ COO) ₂ Mg as long as the charges are correct (charges are treated as working) i.e. (CH ₃ COO ⁻) ₂ Mg OR (CH ₃ COO) ₂ ⁻ Mg should not be penalised However, Mg ²⁺ instead of Mg on the left side of equation is obviously wrong
ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ $\mathbf{OR} \ 2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ $\mathbf{OR} \ H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
	Total	17	

Qu	ıesti	on	Expected Answers	Marks	Additional Guidance
4	а	i	Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe ²⁺ /Fe ³⁺ ✓ Ag in solution of Ag ⁺ ✓	3	DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not)
				niv rit	IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) ECF if species have been quoted (see Additional Guidance below) (iii) ECF for equation (iv) ECF for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e ⁻ For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V ✓	1	ALLOW ECF as in (i)
	b	i	Cl ₂ OR O ₂ AND H ⁺ ✓	1	ALLOW chlorine ALLOW O ₂ AND 4H ⁺ ALLOW O ₂ AND acid DO NOT ALLOW O ₂ alone DO NOT ALLOW equation or equilibrium
		ii	Г ✓	1	ALLOW 21 OR iodide DO NOT ALLOW equation or equilibrium

Question	Expected Answers	Marks	Additional Guidance
С	A fuel cell converts energy from reaction of a fuel with oxygen into a voltage/electrical energy \checkmark $2H_2 + O_2 \rightarrow 2H_2O \checkmark$ Two from:	5	ANNOTATIONS MUST BE USED ALLOW combustion for reaction of fuel with oxygen/reactants ALLOW a fuel cell requires constant supply of fuel OR operates continuously as long as a fuel (and oxygen) are added ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ IGNORE state symbols
	 under pressure OR at low temperature OR as a liquid adsorbed on solid absorbed within solid Energy is needed to make the hydrogen OR energy is needed to make fuel cell 	niv	ALLOW 'material' OR metal for solid ALLOW as a metal hydride
	Total	13	1206

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а		$(K_c =) \frac{[NH_3]^2}{[N_2] [H_2]^3} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ⁻² ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect K _c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0}$ OR 1.2 (mol dm ⁻³)	ve	1st mark is for realising that concentrations need to be calculated.
			AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm ⁻³) \checkmark	4-0	
			$[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)} \checkmark$	ILd	Correct numerical answer with no working would score all previous calculation marks
			= 0.876 OR 0.88 (mol dm ⁻³) ✓		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH ₃ = $0.876 \times 6 = 5.26$ OR 5.3 (mol) \checkmark		ALLOW calculator value down to 5.3, correctly rounded

Question	Expected Answers	Marks	Additional Guidance
b	EXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT		ALLOW ECF from incorrect concentrations (3 marks) For example, If concentrations not calculated at start, then $[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)} \checkmark$
	Α		= 31.5 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 31.5 × 6 = 189.6 (mol) \checkmark
	Archi	ve	IF candidate has K_c expression upside down, then all 4 marks are available in (b) by ECF
	Heri	ita	Correct [N ₂] AND [H ₂] \checkmark $[NH_3] = \sqrt{\frac{[N_2][H_2]^3}{K_c}} = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}} \checkmark$
			= 11.0 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 11.0 × 6 = 66.0 (mol) \checkmark
			IF candidate has used K_c value of 8.00×10^{-2} AND values for N_2 AND H_2 with powers wrong, mark by ECF from calculated as below (3 max in (b))
			Correct [N₂] AND [H₂] ✓
			[NH ₃] expression ×
			ECF: Calculated [NH₃] ✓
			ECF : Equilibrium amount of NH ₃ ✓

Que	stion	Expected Answers	Marks	Additional Guidance
	C i	Equilibrium shifts to right OR Equilibrium towards ammonia ✓	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards'
		Right hand side has fewer number of (gaseous) moles ✓		ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
	ii	K_c does not change \checkmark Increased pressure increases concentration terms on bottom of K_c expression more than the top OR system is now no longer in equilibrium \checkmark top of K_c expression increases and bottom decreases until K_c is reached \checkmark	3 VE	ANNOTATIONS MUST BE USED Any response in terms of K_c changing scores ZERO for Part (ii) ALLOW K_c is temperature dependent only OR K_c does not change with pressure ALLOW $\frac{[NH_3]^2}{[N_2][H_2]^3}$ no longer equal to K_c
	d i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4 + H_2O \longrightarrow CH_3OH + H_2$ $CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4 + H_2O \longrightarrow 2H_2 + HCHO$ $CH_4 + 2H_2O \longrightarrow 3H_2 + HCOOH$
	ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Que	stic	on	Expected Answers	Marks	Additional Guidance
	е	i	Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = $(2 \times 192) - (191 + 3 \times 131) \checkmark$ = $-200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$		NO UNITS required at this stage IGNORE units
			Use of 298 K (could be within $\triangle G$ expression below) \checkmark	ve	15 &
			$\Delta G = \Delta H - T \Delta S$ OR		
			$\Delta G = -92 - (298 \times -0.200)$		
			OR $\Delta G = -92000 - (298 \times -200) \checkmark$	Ita	ge
			= $-32.4 \text{ kJ mol}^{-1} \text{ OR } -32400 \text{ J mol}^{-1} \checkmark$ (Units must be shown)	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown) Award all 5 marks above for correct answer with no working
					IF 25 °C has been used instead of 298 K, correctly calculated Δ <i>G</i> values are = −87 kJ mol ⁻¹ OR −87000 J mol ⁻¹ 4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks
			For feasibility, $\Delta G < 0$ OR ΔG is negative \checkmark	1	
		ii	As the temperature increases, $T\Delta S$ becomes more negative OR $T\Delta S$ becomes more negative than ΔH OR $T\Delta S$ becomes more significant \checkmark	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T\Delta S$ ALLOW $-T\Delta S$ becomes more positive ALLOW $-T\Delta S$ decreases
			Eventually $\Delta H - T\Delta S$ becomes positive \checkmark		ALLOW ΔG becomes positive OR $\Delta G > 0$

Qu	Question		Expected Answers	N	Marks	Additional Guidance
		ii	Activation energy is too high OR reaction too slow ✓		1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
			To	otal	22	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
6	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2^+} + 2e^- \checkmark$ $Cr_2O_7^{2^-} + 14H^+ + 8e^- \longrightarrow 2Cr^{2^+} + 7H_2O \checkmark$	3	ALLOW multiples
			Arch	niv	WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only
			$4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$		NO ECF for overall equation i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution ✓	_1_	ALLOW ligand exchange
		ii	$[Cr(H2O)6]3+ + 6NH3 \longrightarrow [Cr(NH3)6]3+ + 6H2O$	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓	2	First mark is for the idea of two coordinate bonds
			Lone pairs on two O atoms ✓		ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C)
					Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
iii	Forms two optical isomers OR two enantiomers OR two non-superimposable mirror images ✓	3	
	✓ For each structure	ni\ rit	ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: OR OR 2nd mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first

Question	Expected Answers	Marks	Additional Guidance
е	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16	8	ANNOTATIONS MUST BE USED
	OR 0.793 : 3.17 : 0.794 : 2.78 ✓ A: N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: (NH ₄) ₂ Cr ₂ O ₇
	lons: NH ₄ ⁺ ✓ Cr ₂ O ₇ ²⁻ ✓	o i v	IF candidate has obtained NH ₄ CrO ₄ for A, ALLOW NH ₄ ⁺ DO NOT ALLOW CrO ₄ ⁻
	B : Cr ₂ O ₃ ✓		763 00
	Correctly calculates molar mass of C = 1.17 × 24.0 = 28.08 (g mol ⁻¹) ✓	rid	ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
	C : N ₂ ✓		
	Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
	Total	22	

Qι	ıesti	on	Expected Answers	Marks	Additional Guidance
7	а	i	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark
			200		e.g. $\frac{1}{2}$ H ₂ O ₂ $\longrightarrow \frac{1}{2}$ O ₂ + H ⁺ + e ⁻
					$5H_2O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$
	b		Marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED
			$n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{1000} = 4.69 \times 10^{-4} \text{ (mol) } \checkmark$		DO NOT ALLOW 4.7×10^{-4}
			$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol) } \checkmark$	٦İ١	ALLOW 1.173 x 10^{-3} OR 1.17 x 10^{-3} (i.e. 3 significant figures upwards) ALLOW by ECF : $5/2 \times$ ans above
			$n(H_2O_2)$ in 250 cm ³ solution = $10 \times 1.1725 \times 10^{-3} = 1.1725 \times 10^{-2}$ (mol) \checkmark	rit	ALLOW by ECF 10 × ans above ALLOW concentration $H_2O_2 = 0.0469$ mol dm ⁻³
			concentration in g dm ⁻³ of original H ₂ O ₂ = $40 \times 1.1725 \times 10^{-2} \times 34 = 15.9$ (g dm ⁻³) \checkmark	4	ALLOW by ECF $40 \times n(H_2O_2) \times 34$ ALLOW 0.0469 x 10 x 34 = 15.9 g dm ⁻³ \checkmark
					ALLOW two significant figures, 16 (g dm ⁻³) up to calculator value of 15.946 g dm ⁻³
			$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol) } \checkmark$		ALLOW 0.028 dm ³ OR 0.02814 dm ³ ALLOW 28 cm ³ OR 28.14 cm ³
			volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	Value AND units required DO NOT ALLOW 0.03 dm ³
					ALLOW by ECF : $24.0 \times$ calculated moles of O_2 (2 significant figures up to calculator value)
			Total	8	

Appendix 1

Extra guidance for marking atypical responses to 5e(i) and 5e(ii)

Qı	ıesti	on	Expected Answer	Mark	Additional Guidance
5	е	i	TOTAL ENTROPY APPROACH: ALL MARKS AVAILABLE		ANNOTATIONS MUST BE USED
			Unless otherwise stated, marks are for correctly calculated values.		
			Working shows how values have been derived.	Ve	IC X
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = (2 × 192) - (191 + 3 × 131) \(\)	AC	3 00
			$= -200 (J K^{-1} mol^{-1}) OR -0.200 (kJ K^{-1} mol^{-1}) \checkmark$		NO UNITS required at this stage IGNORE units
			Use of 298 K (could be within expression below) ✓	та	9 e
			$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$		
			$\Delta S_{\text{surroundings}} = -\frac{\Delta H}{T}$		
			OR $\Delta S_{\text{total}} = \Delta S_{\text{system}} - \frac{\Delta H}{T}$	5	
			OR $\Delta S_{\text{total}} = -0.200 - \frac{-92}{298}$		
			OR $\Delta S_{\text{total}} = -200 - \frac{-92000}{298}$ \checkmark		
			= 0.109 kJ (K ⁻¹ mol ⁻¹) OR 109 J (K ⁻¹ mol ⁻¹) \checkmark		ALLOW 0.109 kJ OR 109 J IF 25°C has been used instead of 298 K, correctly calculated
			Feasible when $\Delta S_{\text{total}} > 0 \checkmark$	1	ΔS_{total} values are = 3.48 kJ K ⁻¹ mol ⁻¹ OR 3,480 J K ⁻¹ mol ⁻¹

Qu	ıesti	on	Expected Answer	Mark	Additional Guidance
5	е	i	MAX/MIN TEMPERATURE APPROACH: 5 MARKS MAX AVAILABLE		ANNOTATIONS MUST BE USED
			Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		This candidate has not answered the question but many marks are still available.
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = $(2 \times 192) - (191 + 3 \times 131) \checkmark$ = $-200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$	ve	NO UNITS required at this stage IGNORE units
			Use of 298 K (could be within ΔG expression below) \checkmark		
			$\Delta G = \Delta H - T\Delta S$ OR When $\Delta G = 0$, $0 = \Delta H - T\Delta S$; OR $T = \frac{\Delta H}{\Delta S} = \frac{-92}{-0.200}$ OR $T = \frac{\Delta H}{\Delta S} = \frac{-92000}{-200}$ = 460 K \checkmark = 187 °C (use of 298) \checkmark	ita	ge
			The condition ΔG = 0 because temperature at which ΔG = 0 is the maximum temperature for feasibility AND justification for the being the maximum \checkmark		By this approach, the calculated temperature is the switchover between feasibility and non-feasibility but it cannot be assumed that this is the maximum temperature

Qu	Question		Expected Answer	Mark	Additional Guidance
5	е	ii	As the temperature increases, $\Delta H/T$ becomes less negative OR $\Delta H/T$ becomes more negative than $\Delta S(\text{system})$ OR $\Delta H/T$ becomes less significant OR $\Delta S(\text{surroundings})$ becomes less significant OR $\Delta S(\text{system}) > \Delta H/T$ OR $\Delta S(\text{system}) > \Delta S(\text{surroundings})$ \checkmark	2	ALLOW $\Delta H/T > \Delta S_{\rm system}$ (i.e. assume no sign at this stage) ALLOW $-\Delta H/T$ becomes more positive ALLOW $-\Delta H/T$ increases
			Eventually ∆S(total) becomes negative ✓	\/C	S &

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

