

A Level

Mathematics

Session: 2010 June

Type: Mark scheme

Code: 3890-7890; 3892-7892

Units: 4721; 4722; 4723; 4724; 4725; 4726; 4727;

2728; 4729; 4730; 4731; 4732; 4733; 4734;

4735; 4736; 4737

GCE

Mathematics

Advanced Subsidiary GCE 4721

Core Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

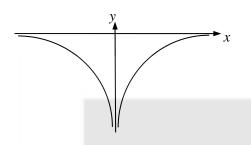
Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 (i)

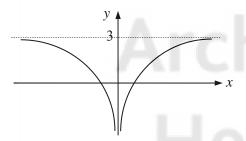

	1
(ii)	_
(11)	2

B1

$$\frac{1}{\sqrt{2}}$$
 or $\frac{1}{\sqrt{9}}$ so

A1

2 (i)


B1*

Reasonably correct curve for $y = -\frac{1}{x^2}$ in 3^{rd} and 4^{th} quadrants only

B1 dep* Very good curves in curve for $y = -\frac{1}{x^2}$ in 3^{rd} and 4^{th} quadrants

SC If 0, very good single curve in either 3rd or 4th quadrant and nothing in other three quadrants. **B1**

(ii)

M1

Translation of their $y = -\frac{1}{x^2}$ vertically

Multiply numerator and denom by $3 - \sqrt{5}$

A1

Reasonably correct curve, horizontal asymptote soi at y = 3

(iii) $y = -\frac{2}{x^2}$

B1

1

3 (i) $\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$

$$= \frac{12(3-\sqrt{5})}{9-5}$$
$$= 9-3\sqrt{5}$$

A1

M1

 $(3+\sqrt{5})(3-\sqrt{5})=9-5$

A 1

A1 3

(ii) $3\sqrt{2} - \sqrt{2}$ $= 2\sqrt{2}$

M1

Attempt to express $\sqrt{18}$ as $k\sqrt{2}$

A1

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
	2	A1		Expansion with at most 1 incorrect term
	$=x^3-3x^2+4$	A1	3	Correct, simplified answer
(ii)	y, 4	B1		+ve cubic with 2 or 3 roots
	x	B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2	B1	3	(-1, 0) and turning point at $(2, 0)$ labelled or
	/		_	indicated on x-axis and no other x intercepts
	, ,		6	
5	$k = x^2$	M1*		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^2
	$4k^2 + 3k - 1 = 0$.0.		
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4} \text{ (or } k = -1)$	A1		
	$x = \pm \frac{1}{2}$	M1		Attempt to square root to obtain x
	$x - \pm \frac{1}{2}$	A1	بر با	$\pm \frac{1}{2}$ and no other values
			5	196
	-1	M1		Attempt to differentiate
6	$y = 2x + 6x^{-\frac{1}{2}}$	A1		$kx^{-\frac{3}{2}}$
	$y = 2x + 6x^{-2}$ $\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$	A1		Completely correct expression (no +c)
	dx			
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$
	$= \frac{13}{8}$	A1	5	
	$=\frac{8}{8}$	AI		
			5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an equation in 1 variable only
		A1		correct unsimplified expression
	$2(36 - 24y + 4y^2) + y^2 = 57$			1
	$9y^2 - 48y + 15 = 0$	A1		obtain correct 3 term quadratic
	$3y^2 - 16y + 5 = 0$			compact mostly of to solve 2 towns and dusting
	(3y-1)(y-5) = 0	M1 dep		correct method to solve 3 term quadratic
	$y = \frac{1}{3} \text{ or } y = 5$	A1		
	16	A1		
	$x = \frac{16}{3}$ or $x = -4$		6	SC If A0 A0, one correct pair of values, spotted or from correct factorisation www

B1

8 (i)	$2(x^2 + \frac{5}{2}x)$	B1		$\left(x+\frac{5}{4}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$q = -2p^2$
	$= 2\left(x + \frac{5}{4}\right)^2 - \frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4}, -\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
(=1)	X(2X + 3) > 0	A1		$0, -\frac{5}{2} \operatorname{seen}$
	$x < -\frac{5}{2}, x > 0$	M1		Correct method to solve quadratic
	$x < -\frac{1}{2}$, $x > 0$			inequality.
		A1	10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^2 = (4-1)^2 + (5-3)^2$	M1	٦.	Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(***)	(1)2 (2)2 22	M1		$(x+1)^2$ and $(y-3)^2$ seen
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2$
	$x^2 + y^2 + 2x - 6y - 19 = 0$			
	x + y + 2x - 0y - 1y = 0	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent $= -\frac{5}{2}$	B1√		oe
	$y - 5 = -\frac{5}{2}(x - 4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

M1

A1

M1

2

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$
	$6x^2 + 10x - 4 = 0$
	$2(3x^2 + 5x - 2) = 0$
	(3x-1)(x+2) = 0
	$x = \frac{1}{3}$ or $x = -2$
	$y = -\frac{19}{27}$ or $y = 12$
(ii)	$-2 < x < \frac{1}{3}$

B1 1 term correct **B1** Completely correct (no +c) Sets their $\frac{dy}{dx} = 0$ M1*

M1 Correct method to solve quadratic dep*

A1 SC If A0 A0, one correct pair of values, spotted or from correct factorisation www 6 **A1**

both their x values from part (i)

When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$ (iii)

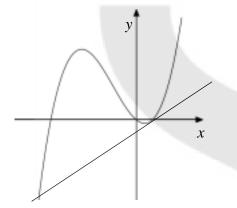
Allow \leq and \geq Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$ **M1**

and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$

Correct y coordinate **B1**

 $y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$

Correct equation of straight line using their values. Must use their dy value not e.g. the


Any inequality (or inequalities) involving

negative reciprocal

10x - 4y - 7 = 0

Shows rearrangement to given equation CWO throughout for A1

(iv)

B1

Sketch of a cubic with a tangent which meets it at 2 points only

B1

+ve cubic with max/min points and line with +ve gradient as tangent to the curve to 14 the right of the min

SC₁

B1 Convincing algebra to show that the

 $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x-1)(2x-1)(x+7)

B1 Correct argument to say there are 2 distinct roots

SC2 B1 Recognising y = 2.5x - 7/4 is tangent from part (iii)

B1 As second B1 on main scheme

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE 4722

Core Mathematics 2

Mark Scheme for June 2010

Heritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y -values – must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) (ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h [5] 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Attempt at least one relevant term, with or without powers of x A1 them of the binomial expansion including coeffs of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Obtain $x = 100$ A1 ft Obtain correct (unsimplified) terms (not necessarily summed) — either coefficients or still with powers of x involved					
(ii) $f(-1) = -1 + 3 + 3 - 14$ $= -9$ M1 Attempt $f(-1)$ or equiv, including inspection / long division / coefficient matching A1 ft 2 Obtain $a = 3$ Obtain $a = 3$ Obtain $a = 3$ State or imply at least 3 of the 4 correct y-coords, and no others M1 Use correct trapezium rule, any h , to find area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y-values – must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) (ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h S M1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ Obtain $15x^3$ A1 Obtain $15x^3$ A1 Obtain or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved	1 (i)	2a-6=0	M1*		inspection / long division / coefficient
(ii) $f(-1) = -1 + 3 + 3 - 14$ $= -9$ M1 Attempt $f(-1)$ or equiv, including inspection / long division / coefficient matching A1 ft 2 Obtain -9 (or $2a - 15$, following their a) State or imply at least 3 of the 4 correct y-coords, and no others M1 Use correct trapezium rule, any h , to find area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y-values — must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) (ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h [S] 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $11.25x^2$ A1 Obtain $11.25x^2$ A1 Obtain 1 Attempt at least one relevant term, with or without powers of x Obtain correct (unsimplified) terms (not necessarily summed) — either coefficients or still with powers of x involved A1 3 Obtain 100				3	remainder, to 0 and attempt to solve
Correct h (soi) for their h values – must be at equal intervals S			A1		Obtain u = 3
2 (i) $\operatorname{area} \approx \frac{1}{2} \times 3 \times \left(\sqrt{8} + 2\left(\sqrt{11} + \sqrt[4]{14}\right) + \sqrt[4]{17}\right)$ B1 State or imply at least 3 of the 4 correct y-coords, and no others M1 Use correct trapezium rule, any h, to find area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y-values – must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) A1 Any mention of increasing n or decreasing h [5] 3 (i) $(1 + \sqrt{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved	(ii)	f(-1) = -1 + 3 + 3 - 14 = -9	M1		inspection / long division / coefficient
2 (i) $area \approx \frac{1}{2} \times 3 \times \left(\frac{1}{2}\sqrt{8} + 2\left(\frac{1}{2}\sqrt{11} + \frac{3}{2}\sqrt{14}\right) + \frac{3}{2}\sqrt{17}\right)$ B1 State or imply at least 3 of the 4 correct y-coords, and no others M1 Use correct trapezium rule, any h , to find area between $x = 1$ and $x = 10$ A1 4 Obtain 20.8 (allow 20.7) (ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h [5] 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ M1 Attempt at least one relevant term, with or without powers of x Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved			A1 ft	2	Obtain -9 (or $2a - 15$, following their a)
area $\approx \frac{1}{2} \times 3 \times (\sqrt{8} + 2(\sqrt{11} + \sqrt{14}) + \sqrt{17})$ y-coords, and no others M1 Use correct trapezium rule, any h , to find area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y-values – must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) Any mention of increasing n or decreasing h S M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $\cos f \cos x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ M1 Attempt at least one relevant term, with or without powers of x Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved				5	
area between $x = 1$ and $x = 10$ M1 Correct h (soi) for their y -values – must be at equal intervals A1 4 Obtain 20.8 (allow 20.7) (ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h [5] 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Attempt at least one relevant term, with or without powers of x A1 them of the binomial expansion including coeffs of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Obtain $x = 100$ A1 ft Obtain correct (unsimplified) terms (not necessarily summed) — either coefficients or still with powers of x involved	2 (i)	area $\approx \frac{1}{2} \times 3 \times (\sqrt[3]{8} + 2(\sqrt[3]{11} + \sqrt[3]{14}) + \sqrt[3]{17})$	B1		
tii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing h S 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ B1 Attempt at least one relevant term, with or without powers of x A1 Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100		~ 20.8	M1		Use correct trapezium rule, any h , to find area between $x = 1$ and $x = 10$
(ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing n or decreasing n or decreasing n or decreasing n Obtain $n = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $n = 1 + 5x + 11.25x^2 + 15x^3$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $n = 11.25x^2$ A1 Obtain $n = 15x^3$ 4 (ii) $n = 100$ M1 Attempt at least one relevant term, with or without powers of $n = 100$ A1 ft Obtain correct (unsimplified) terms (not necessarily summed) — either coefficients or still with powers of $n = 100$ A1 3 Obtain $n = 100$			M1		
(ii) use more strips / narrower strips B1 1 Any mention of increasing n or decreasing n or decreasing n or decreasing n or decreasing n Obtain $n = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $n = 1 + 5x + 11.25x^2 + 15x^3$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $n = 11.25x^2$ A1 Obtain $n = 15x^3$ 4 (ii) $n = 100$ M1 Attempt at least one relevant term, with or without powers of $n = 100$ A1 ft Obtain correct (unsimplified) terms (not necessarily summed) — either coefficients or still with powers of $n = 100$ A1 3 Obtain $n = 100$					
decreasing h [5] 3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100			A1	4	Obtain 20.8 (allow 20.7)
3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100	(ii)	use more strips / narrower strips	B1	1	
3 (i) $(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$ B1 Obtain $1 + 5x$ M1 Attempt at least the third (or fourth) term of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ A1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100				5	
of the binomial expansion, including coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100	3 (i)	$(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$	B1		Obtain $1 + 5x$
coeffs A1 Obtain $11.25x^2$ A1 Obtain $15x^3$ 4 (ii) coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100			M1		Attempt at least the third (or fourth) term
(ii) coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100					
(ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100			A1		Obtain $11.25x^2$
(ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100			A1		Obtain $15x^3$
(ii) $coeff of x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ $= 100$ M1 Attempt at least one relevant term, with or without powers of x A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100				4	
= 100 A1 ft Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100	·	00 0 3 (2 15) (4 1125) (2 5)	3.54		A.,
necessarily summed) – either coefficients or still with powers of x involved A1 3 Obtain 100	(ii)	coeff of $x' = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ = 100	M1		
_			A1 ft		necessarily summed) – either coefficients
[]			A1	3	Obtain 100
				7	

4 (i)	$u_1 = 6$, $u_2 = 11$, $u_3 = 16$	B1	1	State 6, 11, 16
(ii)	$S_{40} = {}^{40}/_2 (2 \times 6 + 39 \times 5)$ = 4140	M1		Show intention to sum the first 40 terms of a sequence
		M1		Attempt sum of their AP from (i), with $n = 40$, $a = \text{their } u_1 \text{ and } d = \text{their } u_2 - u_1$
		A1	3	Obtain 4140
(iii)	$w_3 = 56$ $5p + 1 = 56$ or $6 + (p - 1) \times 5 = 56$	B1		State or imply $w_3 = 56$
	p = 11	M1		Attempt to solve $u_p = k$
		A1	3	Obtain $p = 11$
			7	
5 (i)	$\frac{\sin \theta}{8} = \frac{\sin 65}{11}$	M1	16	Attempt use of correct sine rule
	$\theta = 41.2^{\circ}$	A1	2	Obtain 41.2°, or better
(ii) a	$180 - (2 \times 65) = 50^{\circ}$ or $65 \times \frac{\pi}{180} = 1.134$ $50 \times \frac{\pi}{180} = 0.873$ A.G. $\pi - (2 \times 1.134) = 0.873$	M1	ta	Use conversion factor of $\pi/180$
		A1	2	Show 0.873 radians convincingly (AG)
(ii) b	area sector = $\frac{1}{2}$ x 8^2 x $0.873 = 27.9$	M1		Attempt area of sector, using $(\frac{1}{2}) r^2 \theta$
	area triangle = $\frac{1}{2}$ x 8 ² x sin 0.873 = 24.5 area segment = 27.9 – 24.5 = 3.41	M1		Attempt area of triangle using (½) $r^2 \sin \theta$
		M1		Subtract area of triangle from area of sector
		A1	4	Obtain 3.41or 3.42

_				
6 a	$\int_{3}^{5} (x^{2} + 4x) dx = \left[\frac{1}{3} x^{3} + 2x^{2} \right]_{3}^{5}$ $= (^{125}/_{3} + 50) - (9 + 18)$	M1		Attempt integration
	$= (^{125}/_3 + 50) - (9 + 18)$	A1		Obtain $\frac{1}{3}x^3 + 2x^2$
	$=64^{2}/_{3}$	M1		Use limits $x = 3$, 5 – correct order & subtraction
		A1	4	Obtain 64 ² / ₃ or any exact equiv
b	$\int (2 - 6\sqrt{y}) dy = 2y - 4y^{\frac{3}{2}} + c$	B1		State 2 <i>y</i>
		M1		Obtain $ky^{\frac{3}{2}}$
		A1	3	Obtain $-4y^{\frac{3}{2}}$ (condone absence of $+c$)
С	$\int_{1}^{\infty} 8x^{-3} dx = \left[\frac{-4}{x^2} \right]_{1}^{\infty}$	B1		State or imply $\frac{1}{x^3} = x^{-3}$
	= (0) - (-4)	M1		Attempt integration of kx^n
	= 4	A1		Obtain correct $-4x^{-2}$ (+c)
		A1 ft	4	Obtain 4 (or $-k$ following their kx^{-2})
				Obtain 4 (or -k Tollowing their km)
7 (i)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$	M1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$
7 (i)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$	M1		Use either $\sin^2 x + \cos^2 x = 1$, or
7 (i) (ii)	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$		11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer
	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$	A1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly.
	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$	A1 B1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in
	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$	A1 B1 M1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$
	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$	A1 B1 M1 A1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic Attempt to solve $\tan x = k$ (at least one
	$= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$ $\tan^2 x - 1 = 5 - \tan x$ $\tan^2 x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$	A1 B1 M1 A1 M1	11	Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$ Use other identity to obtain given answer convincingly. State correct equation Attempt to solve three term quadratic in $\tan x$ Obtain 2 and -3 as roots of their quadratic Attempt to solve $\tan x = k$ (at least one root)

$$(3w - 1)\log 5 = 250 \log 4$$

$$3w - 1 = \frac{250\log 4}{\log 5}$$

$$w = 72.1$$

M1* Introduce logarithms throughout

M1* Use $\log a^b = b \log a$ at least once

A1 Obtain $(3w - 1)\log 5 = 250 \log 4$ or equiv

M1d* Attempt solution of linear equation

A1 Obtain 72.1, or better 5

 $\log_x \frac{5y+1}{3} = 4$

b

$$\log_x \frac{1}{3} = 5y + 1$$

$$\frac{5y+1}{3} = x^4$$
$$5y+1 = 3x^4$$

$$y = \frac{3x^4 - 1}{5}$$

M1 Use $\log a - \log b = \log^a/b$ or equiv

M1 Use $f(y) = x^4$ as inverse of $\log_x f(y) = 4$

M1 Attempt to make y the subject of $f(y) = x^4$

9

9 (i) ar = a + d, $ar^3 = a + 2d$

$$2ar - ar^3 = a$$
$$ar^3 - 2ar + a = 0$$

$$r^3 - 2r + 1 = 0$$
 A.G.

M1

Attempt to link terms of AP and GP,

implicitly or explicitly.

M1

Attempt to eliminate *d*, implicitly or explicitly, to show given equation.

A1

3 Show $r^3 - 2r + 1 = 0$ convincingly

(ii) $f(r) = (r-1)(r^2 + r - 1)$

B1

Identify (r-1) as factor or r=1 as root

Attempt to find quadratic factor

 $r = \frac{-1 \pm \sqrt{5}}{2}$

Hence $r = \frac{-1 + \sqrt{5}}{2}$

M1*
A1

Obtain $r^2 + r - 1$

M1d*

Attempt to solve quadratic

A1

5

Obtain $r = \frac{-1 + \sqrt{5}}{2}$ only

(iii) $\frac{a}{1-r} = 3 + \sqrt{5}$

-

 $a = (\frac{3}{2} - \frac{\sqrt{5}}{2})(3 + \sqrt{5})$

 $a = \frac{9}{2} - \frac{5}{2}$
a = 2

M1

Equate S_{∞} to $3 + \sqrt{5}$

A1

Obtain $\frac{a}{1 - \left(\frac{-1 + \sqrt{5}}{2}\right)} = 3 + \sqrt{5}$

M1

Attempt to find a

A1

Obtain a = 2

12

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE 4723

Core Mathematics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 (i) Attempt use of product rule

Obtain $3x^2e^{2x} + 2x^3e^{2x}$

M1 producing ... + ... form

A1 2 or equiv

(ii) Attempt use of chain rule to produce $\frac{kx}{3+2x^2}$ form

M1 any constant k

Obtain $\frac{4x}{3+2x^2}$

A1 2

(iii) Attempt use of quotient rule

M1 or equiv; condone u/v confusions

Obtain $\frac{2x+1-2x}{(2x+1)^2}$ or $(2x+1)^{-1}-2x(2x+1)^{-2}$

A1 2 or (unsimplified) equiv

[If ...+c included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of ...+c.]

6

2 (i) Obtain one of $\pm \ln(\pm x \pm 4)$

Obtain correct equation $y = -\ln(x-4)$

M1

A1 2 or equiv; condone use of modulus signs instead of brackets

(ii) State, in any order, S, S and T State T, then S, then S

M1 or equiv such as S^2 , T or 2S, T

A1 2 or equiv (note that S, S, T⁹ and S, T³, S are alternative correct answers)

4

3 (i) Use $\csc\theta = \frac{1}{\sin\theta}$

Attempt to express equation in terms of $\sin \theta$ Obtain or clearly imply $6\sin^2 \theta - 11\sin \theta - 10 = 0$ B1

- M1 using $\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$ or equiv
- A1 3 or $-6\sin^2\theta + 11\sin\theta + 10 = 0$
- (ii) Attempt solution to obtain at least one value of $\sin \theta$

[Answer(s) only: award 0 out of 3.]

Obtain -41.8

Obtain -138

M1 should be $s = -\frac{2}{3}, \frac{5}{2}$

- A1 allow –42 or greater accuracy
- A1 3 or greater accuracy; and no others between -180 and 180

4	(i)	Either: Integrate to obtain $k \ln x$ Use at least one relevant logarithm property Obtain $k \ln 3 = \ln 81$ and hence $k = 4$	B1 M1 A1 3 AG; accurate work required	
		Or 1: (where solution involves no use of a logarithm pr Integrate to obtain $k \ln x$ Obtain correct explicit expression for k and conclude $k = 4$ with no error seen	Example 2 by B1 B2 3 AG; e.g. $k = \frac{\ln 81}{\ln 6 - \ln 2} = 4$	
		Or 2: (where solution involves verification of result by Integrate to obtain $4 \ln x$ Use at least one relevant logarithm property Obtain $\ln 81$ legitimately with no error seen	initial substitution of 4 for <i>k</i>) B1 M1 A1 3 AG; accurate work required	
	(ii)	State volume involves $\int \pi \left(\frac{4}{r}\right)^2 dx$	B1 possibly implied	
		Obtain integral of form $k_1 x^{-1}$	M1 any constant k_1 including π or not	
		Use correct process for finding volume produced from <i>S</i>	a S M1 $\int (k_2 2^2 - k_3 y^2) dx$, including π or not with	
		Obtain $16\pi - \frac{16}{3}\pi$ and hence $\frac{32}{3}\pi$	correct limits indicated; or equiv A1 4 or exact equiv 7	
5	(i)	Attempt process for finding both critical values	M1 squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities	
		Obtain –4	A1	
		Obtain $\frac{2}{3}$	A1	
		Attempt process for solving inequality	M1 table, sketch,; needs two critical values; implied by plausible answer	
		Obtain $-4 \le x \le \frac{2}{3}$	A1 5 with \leq and not \leq	
	(ii)	Use correct process to find value of $ x+2 $ using any value	ue M1 whether part of answer to (i) or not	
		Obtain $2\frac{2}{3}$ or $\frac{8}{3}$	A1 2 dependent on 5 marks awarded in part (i)	

6	(i)	Attempt calculations involving 1.0 and 1.1 Obtain - 0.57 and 0.76 Refer to sign change (or equiv for rearranged eqn)	M1 A1	C	using radians or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged) AG; following correct work only
	(ii)	Obtain correct first iterate Carry out iteration process Obtain at least 3 correct iterates Obtain 1.05083 $[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.1050809 \rightarrow 1.10508000000000000000000000000000000000$	05082 1.050	4 a 26 -	7;
	(iii)	State or imply $\sec^2 2x = 1 + \tan^2 2x$ Relate to earlier equation Deduce $2x = 1.05083$ and hence 0.525	B1 M1 A1√		by halving or doubling answer to (ii) or carrying out equivalent iteration process collowing their answer to (ii); or greater accuracy
		[SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$ Use iterative process to obtain 0.525	B1 B1 10	2 0	or greater accuracy]
7		Differentiate to obtain $k_1(3x-1)^3$ Obtain correct $12(3x-1)^3$ Substitute 1 to obtain 96 Attempt to find x -coordinate of Q Obtain $\frac{5}{6}$ Integrate to obtain $k_2(3x-1)^5$ Obtain correct $\frac{1}{15}(3x-1)^5$ Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$ Attempt to find shaded area by correct process Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16)$ and hence) $\frac{4}{5}$	M1 A1	i i	any constant k_1 or (unsimplified) equivors using tangent with $y=0$ or using gradient or exact equivors any constant k_2 or (unsimplified) equivors equivors equiv
8	(i)	Obtain $R = 3\sqrt{2}$ or $R = \sqrt{18}$ or $R = 4.24$ Attempt to find value of α Obtain $\frac{1}{4}\pi$ or 0.785	B1 M1 A1	C	or equiv condone sin/cos muddles and degrees n radians now
	(ii) a	Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution of $3\cos x + 3\sin x = 0$ Obtain $\frac{3}{4}\pi$	M1 A1 2		condone degrees here or, $-\frac{5}{4}\pi$, $-\frac{1}{4}\pi$, $\frac{7}{4}\pi$,; in radians now
	- I	Obtain at least one positive value of $3x - \alpha$ Obtain $\frac{1}{36}\pi$	*M1 A1 M1 A1 4	Ċ	with attempt at rearranging $T(3x) = \frac{8}{9}\sqrt{6}$ $\pm \frac{1}{6}\pi, \pm \frac{11}{6}\pi,$ dep *M

9	(i)	Attempt to find x-coord of staty point or complete square Obtain $(\frac{3}{2}, -9)$ or $4(x - \frac{3}{2})^2 - 9$ or -9 State $f(x) \ge -9$	M1 A1 or equiv A1 3 using any notation; with ≥
	(ii)	Make one correct (perhaps general) relevant statement Conclude with correct evidence related to this f	B1 not 1-1, f is many-one,; maybe implied if attempt is specific to this f B1 2 AG; (more or less) correct sketch; correct relevant calculations,
	(iii)	<u>Either</u> : Attempt to find expression for g ⁻¹	*M1 or equiv
		Obtain $\frac{1}{a}(x-b)$	A1 or equiv
		Compare $\frac{1}{a}(x-b)$ and $ax+b$	M1 dep *M; by equating either coefficients of x
			or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
		Obtain at least $-\frac{b}{a} = b$ and hence $a = -1$	A1 4 AG; necessary detail required; or equiv
		[SC1: first two steps as above, then substitute $a =$	= -1: max possible M1A1B1]
		[SC2: substitute $a = -1$ at start: Attempt to find	inverse M1 Obtain $-x+b$ and conclude A1 2]
		Or: State or imply that $y = g^{-1}(x)$ is reflection	
		of $y = g(x)$ in line $y = x$	B1
		State that line unchanged by this reflection is	
		perpendicular to $y = x$ Conclude that a is -1	M2 A1 4
		Conclude that <i>u</i> is –1	A1 4
	(iv)	State or imply that $gf(x) = -(4x^2 - 12x) + b$	B1
		Attempt use of discriminant or relate to range of f	M1 or equiv
		Obtain $64+16b < 0$ or $9+b < 5$ Obtain $b < -4$	A1 or equiv
			13
			A A A A A A A A A A A A A A A A A A A

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE 4724/01

Core Mathematics 4

Mark Scheme for June 2010

Archives & Heritage

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 First 2 terms in expansion = 1-5x

$$3^{\text{rd}}$$
 term shown as $\frac{-\frac{5}{3} \cdot -\frac{8}{3}}{2} (3x)^2$

В1 (simp to this, now or later)

M1
$$-\frac{8}{3}$$
 can be $-\frac{5}{3}-1$

$$(3x)^2$$
 can be $9x^2$ or $3x^2$

$$=+20x^{2}$$

4th term shown as
$$\frac{-\frac{5}{3} \cdot -\frac{8}{3} \cdot -\frac{11}{3}}{2 \cdot 3} (3x)^3$$

M1
$$-\frac{11}{3}$$
 can be $-\frac{5}{3}-2$

$$(3x)^3$$
 can be $27x^3$ or $3x^3$

$$=-\frac{220}{3}x^3$$
 ISW

A1 Accept
$$-\frac{440}{6}x^3$$
 ISW

N.B. If 0, SR B2 to be awarded for $1 - \frac{5}{3}x + \frac{20}{9}x^2 - \frac{220}{81}x^3$. Do not mark $(1+x)^{-\frac{5}{3}}$ as a MR.

5

A1

2 Attempt quotient rule

[Show fraction with denom $(1-\sin x)^2$ & num + $/-(1-\sin x)+/-\sin x+/-\cos x+/-\cos x$]

Numerator = $(1 - \sin x) - \sin x - \cos x - \cos x$

A1 terms in any order

{ Product symbols must be clear or implied by further work }

Reduce correct numerator to $1-\sin x$

B1 or
$$-\sin x + \sin^2 x + \cos^2 x$$

Simplify to
$$\frac{1}{1-\sin x}$$
 ISW

A1 Accept
$$-\frac{1}{\sin x - 1}$$

4

 $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2}$ 3

$$A(x-1)(x-2)+B(x-2)+C(x-1)^2 \equiv x^2$$

$$A = -3$$

$$B = -1$$

$$C = 4$$

[NB1: Partial fractions need not be written out; correct format + correct values sufficient.

NB2: Having obtained B & C by cover-up rule, candidates may substitute into general expression & algebraically manipulate; the M1 & A1 are then available if deserved.]

5

These special cases using different formats are the only other ones to be considered

Max

$$\frac{A}{x-1} + \frac{Bx+C}{(x-1)^2} + \frac{D}{x-2}$$
; M1 M1; A0 for any values of A, B & C, A1 or B1 for D = 4

$$\frac{Ax+B}{(x-1)^2}+\frac{C}{x-2};$$

M0 M1; A1 for
$$A = -3$$
 and $B = 2$, A1 or B1 for $C = 4$

A1 or B1 for
$$C = 4$$

Att by diff to connect dx & du or find $\frac{dx}{du}$ or $\frac{du}{dx}$ (not dx=d<u>u</u>)M1 no accuracy; not 'by parts'

$$dx = 2u \ du \ \text{or} \ \frac{du}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}}$$
 AEF

Indefinite integral
$$\rightarrow \int 2(u^2 - 2)^2 \left(\frac{u}{u}\right) (du)$$
 A1 May be implied later

{If relevant, cancel u/u and} attempt to square out M1

$$\{ dep \int kI(du) \text{ where } k = 2 \text{ or } \frac{1}{2} \text{ or } 1 \text{ and } I = (u^2 - 2)^2 \text{ or } (2 - u^2)^2 \text{ or } (u^2 + 2)^2 \}$$

Att to change limits if working with f(u) after integration M1 or re-subst into integral attempt and use

Indefinteg =
$$\frac{2}{5}u^5 + \frac{8}{3}u^3 + 8u$$
 or $\frac{1}{10}u^5 + \frac{2}{3}u^3 + 2u$ A1 or $\frac{1}{5}u^5 + \frac{4}{3}u^3 + 4u$

$$\frac{652}{15}$$
 or $43\frac{7}{15}$ ISW but no '+c' A1

 $\frac{d}{dx}(xy) = x\frac{dy}{dx} + y$ s.o.i. B1 Implied by e.g., $4x \frac{dy}{dx} + y$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$$

5

Diff eqn(=0 can be implied)(solve for $\frac{dy}{dx}$ and) put $\frac{dy}{dx}$ = 0 M1

Produce only 2x + 4y = 0 (though AEF acceptable) *A1 without any error seen

Eliminate x or y from curve eqn & eqn(s) just produced M1

Produce either $x^2 = 36$ or $y^2 = 9$ dep* A1 Disregard other solutions

 $(\pm 6, \mp 3)$ AEF, as the only answer ISW dep* A1 Sign aspect must be clear

State/imply scalar product of any two vectors = 0M1 6 (i) $(4+2a-6=0 \to M1A1)$ Scalar product of correct two vectors = 4 + 2a - 6**A**1

A13 a = 1

(ii) (a) Attempt to produce at least two relevant equations M1 e.g. 2t = 3 + 2s

Solve two not containing 'a' for s and tObtain at least one of $s = -\frac{1}{2}$, t = 1**A**1

Substitute in third equation & produce a = -2A1 4

(b) Method for finding magnitude of any vector possibly involving 'a' M1

Using $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ for the pair of direction vectors M1 possibly involving 'a'

107, 108 (107.548) or 72, 73, 72.4, 72.5 (72.4516) c.a.o. A1 3 1.87, 1.88 (1.87707) or 1.26

10

7

M1

7 (i) Differentiate x as a quotient, $\frac{v \, du - u \, dv}{v^2}$ or $\frac{u \, dv - v \, du}{v^2}$ M1 or product clearly defined

$$\frac{dx}{dt} = -\frac{1}{(t+1)^2}$$
 or $\frac{-1}{(t+1)^2}$ or $-(t+1)^{-2}$

A1 WWW
$$\rightarrow$$
 2

$$\frac{dy}{dt} = -\frac{2}{(t+3)^2}$$
 or $\frac{-2}{(t+3)^2}$ or $-2(t+3)^{-2}$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 M1 quoted/implied and used

$$\frac{dy}{dx} = \frac{2(t+1)^2}{(t+3)^2} \quad \text{or} \quad \frac{2(t+3)^{-2}}{(t+1)^{-2}} \quad \text{(dep 1st 4 marks) *A1} \quad \text{ignore ref } t = -1, t = -3$$

State <u>squares</u> +ve or $(t+1)^2$ & $(t+3)^2$ +ve $\therefore \frac{\mathrm{d}y}{\mathrm{d}x}$ +ve $\det \mathrm{A1}$ 6 or $(\frac{t+1}{t+3})^2$ +ve. Ignore ≥ 0

(ii) Attempt to obtain t from either the x or y equation M1 No accuracy required

$$t = \frac{2-x}{x-1}$$
 AEF or $t = \frac{2}{y} - 3$ AEF

Substitute in the equation not yet used in this part M1 or equate the 2 values of t

Use correct meth to eliminate ('double-decker') fractions M1

Obtain 2x + y = 2xy + 2 ISW AEF A15 but not involving fractions 11

8 (i) Long division method

Identity method

Evidence of division process as far as 1^{st} stage incl sub $M1 \equiv Q(x-1) + R$

(Quotient =) x-4 A1 Q = x-4

(Remainder =) 2 ISW A13 R = 2; N.B. might be B1

(ii) (a) Separate variables;
$$\int \frac{1}{y-5} dy = \int \frac{x^2 - 5x + 6}{x-1} dx$$
 M1 ' \int ' may be implied later

Change
$$\frac{x^2 - 5x + 6}{x - 1}$$
 into their (Quotient + $\frac{\text{Rem}}{x - 1}$) M1

 $\ln(y-5) = \sqrt{\text{(integration of their previous result) (+c)}}$ ISW $\sqrt{\text{A1 3}}$ f.t. if using Quot + $\frac{\text{Rem}}{x-1}$

(ii) (b) Substitute y = 7, x = 8 into their eqn containing 'c' M1 & attempt 'c' $(-3.2, \ln \frac{2}{49})$

Substitute x = 6 and their value of 'c' M1 & attempt to find y

y = 5.00 (5.002529) Also $5 + \frac{50}{49}e^{-6}$ A2 4 Accept 5, 5.0,

Beware: any wrong working anywhere \rightarrow A0 even if answer is one of the acceptable ones.

Attempt to multiply out $(x + \cos 2x)^2$ 9(i)

M1 Min of 2 correct terms

Finding $\int 2x \cos 2x \, dx$

Use u = 2x, $dv = \cos 2x$

1st stage $f(x)+/-\int g(x)dx$ M1

 1^{st} stage $x \sin 2x - \int \sin 2x \, dx$

A1

 $\therefore \int 2x \cos 2x \, dx = x \sin 2x + \frac{1}{2} \cos 2x$

A1

Finding $\int \cos^2 2x \, dx$

Change to $k \int +/-1+/-\cos 4x \, dx$

where $k = \frac{1}{2}$, 2 or 1 M1

Correct version $\frac{1}{2} \int 1 + \cos 4x \, dx$

A1

 $\int \cos 4x \, dx = \frac{1}{4} \sin 4x$ $Result = \frac{1}{2} x + \frac{1}{8} \sin 4x$

B1 seen anywhere in this part

(i) ans = $\frac{1}{3}x^3 + x \sin 2x + \frac{1}{2}\cos 2x + \frac{1}{2}x + \frac{1}{8}\sin 4x$ (+ c)

(ii) $V = \pi \int_{0}^{\frac{1}{2}\pi} (x + \cos 2x)^2 (dx)$

M1

Use limits 0 & $\frac{1}{2}\pi$ correctly on their (i) answer

M1

(i) correct value = $\frac{1}{24}\pi^3 - \frac{1}{2} + \frac{1}{4}\pi - \frac{1}{2}$

A1

Final answer = $\pi \left(\frac{1}{24} \pi^3 + \frac{1}{4} \pi - 1 \right)$

A14 c.a.o. No follow-through

13

Alternative methods

If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y(1 - \sin x) = \cos x$, award

M1for clear use of the product rule (though possibly trig differentiation inaccurate)

for $-y \cos x + (1 - \sin x) \frac{dy}{dx} = -\sin x$ **A**1

for reducing to a fraction with $1-\sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator B1

for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$ **A**1

If $y = \frac{\cos x}{1 - \sin x}$ is changed into $y = \cos x (1 - \sin x)^{-1}$, award

for clear use of the product rule (though possibly trig differentiation inaccurate) M1

for $\left(\frac{dy}{dx}\right) = \cos^2 x (1 - \sin x)^{-2} + (1 - \sin x)^{-1} - \sin x$ AEF **A**1

- for reducing to a fraction with $1-\sin x$ or $-\sin x + \sin^2 x + \cos^2 x$ in the numerator B1
- for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$ **A**1
- 6(ii)(a) If candidates use some long drawn-out method to find 'a' instead of the direct route, allow
 - M1 as before, for producing the 3 equations
 - M1 for any satisfactory method which will/does produce 'a', however involved
 - A2 for a = -2
- **7(ii)** Marks for obtaining this Cartesian equation are not available in part (i).

If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:

Method 1 where candidates differentiate implicitly

- M1 for attempt at implicit differentiation
- for $\frac{dy}{dx} = \frac{2y-2}{1-2x}$ AEF **A**1
- for substituting parametric values of x and yM1
- for simplifying to $\frac{2(t+1)^2}{(t+3)^2}$ A2
- **A**1 for finish as in original method

Method 2 where candidates manipulate the Cartesian equation to find $x = \text{or } y = \text{o$

- for attempt to re-arrange so that either y = f(x) or x = g(y)M1
- for correct $y = \frac{2-2x}{1-2x}$ AEF or $x = \frac{2-y}{2-2y}$ AEF **A**1
- M1
- for differentiating as a quotient for obtaining $\frac{dy}{dx} = \frac{2}{(1-2x)^2}$ or $\frac{(2-2y)^2}{2}$ A2
- **A**1 for finish as in original method
- 8(ii)(b) If definite integrals are used, then
 - M2
- for $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_y^7 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_6^8$ or equivalent or M1 for $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_7^y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_6^8$ or equivalent
 - for 5, 5.0, 5.00 (5.002529) with caveat as in main scheme dep M2 A2

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE 4725

Further Pure Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1

B1		Establish result true for $n = 1$ or $n = 2$
M1		Add next term to given sum formula
M1		Attempt to factorise or expand and
		simplify to correct expression
A 1		Correct expression obtained
A 1	5	Specific statement of induction
		conclusion
	—	

5

2 (-7)**(i)**

M1Obtain a single value **A**1 Obtain correct answer as a matrix

All elements correct

 $BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$

M1 Obtain a 2×2 matrix

В1 4C seen or implied by correct answer

B1ft 4 Obtain correct answer, ft for a slip in BA

6

A1

3 Either

$$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$$

 $\frac{1}{3}n(2n-1)(2n+1)$ Or

$$\sum_{r=1}^{2n} r^2 - 4 \sum_{r=1}^{n} r^2$$

 $\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$

 $\frac{1}{3}n(2n-1)(2n+1)$

Express as a sum of 3 terms M1M1 Use standard sum results

A1 Correct unsimplified answer

M1 Attempt to factorise

A1 Obtain at least factor of n and a quadratic

Obtain correct answer a.e.f. 6 A1

Express as difference of $2\sum r^2$ series M1

Use standard result M1

Correct unsimplified answer A1

Attempt to factorise M1

Obtain at least factor of n **A**1

Obtain correct answer **A**1

4	(i)	5 + 12i
		13
		67.4° or 1.18

B1B1 Correct real and imaginary parts B1ft Correct modulus

Correct argument

(ii)

M1 Multiply by conjugate
A1 Obtain correct numerator

 $-\frac{11}{85} - \frac{27}{85}$

A1 3 Obtain correct denominator

7

B1ft 4

5	(a)	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$		B1B12	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i)		Archi	R1R12	Stretch in x-direction of 5

(b) (i) (ii)

B1B12 Stretch, in *x*-direction sf 5 B1B12 Rotation, 60° clockwise

6

B1B12 Circle centre (3, -4), through origin

B1B12 Vertical line, clearly x = 3

(ii)

B1ft Inside their circle

B1ft 2 And to right of their line, if vertical

7	Either $\alpha + \beta = -2k \alpha\beta = k$ $y^2 - 4ky + 4k = 0$	B1B1 M1 A1 M1 A1 B1ft 7	State or use correct results Attempt to find sum of new roots Obtain $4k$ Attempt to find product of new roots Obtain $4k$ Correct quadratic equation a.e.f.
	Or $\alpha + \beta = -2k$ $\frac{-2k}{\alpha}$ $y = \frac{-2k}{x}$ $y^2 - 4ky + 4k = 0$	B1 B1 B1 M1 A1 M1	State or use correct result State or imply form of new roots State correct substitution Rearrange and substitute for <i>x</i> Correct unsimplified equation Attempt to clear fractions Correct quadratic equation a.e.f.

Or

$$\frac{-k \pm \sqrt{k^2 - k}}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$
B1 Express both new roots in terms of k

$$\frac{M1}{k^2 - 4ky + 4k} = 0$$
M1 Attempt to find sum of new roots
$$\frac{A1}{k^2 - 4ky + 4k} = 0$$
M1 Attempt to find product of new roots
$$\frac{A1}{k^2 - 4ky + 4k} = 0$$
M1 Attempt to find product of new roots
$$\frac{A1}{k^2 - 4ky + 4k} = 0$$
M1 Attempt to find product of new roots
$$\frac{A1}{k^2 - 4ky + 4k} = 0$$
M1 Correct quadratic equation a.e.f.

8	(i)		M1 A1	2	Attempt to rationalise denominator or cross multiply Obtain given answer correctly
	(ii)	$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	M1 M1 A1 A1 M1	6	Express terms as differences using (i) Attempt this for at least 1 st three terms 1 st three terms all correct Last two terms all correct Show pairs cancelling Obtain correct answer, in terms of <i>n</i>
	(iii)		В1	1 9	Sensible statement for divergence
9	(i)	$\det \mathbf{A} = a^2 - a$	M1 M1 A1	3	Show correct expansion process for 3 x 3 Correct evaluation of any 2 x 2 Obtain correct answer
	(ii)	(a) (b) (c)	M1 A1 M1 A1 B1	6	Find a pair of inconsistent equations State inconsistent or no solutions Find a repeated equation State non unique solutions State that det A is non-zero or find correct solution State unique solution SC if detA incorrect, can score 2 marks for correct deduction of a unique solution, but only once
10	(i)	$x^2 - y^2 = 3 xy = 2$ $z = 2 + i$	M1 A1 M1 M1 A1	5	Attempt to equate real and imaginary parts Obtain both results Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x or y value Obtain correct answer as a complex no.
	(ii)		B1	1	Obtain given answer correctly
	(iii)	$w^3 = 2 \pm 11i$ $w = 2 - i$	M1 A1 M1 M1 A1	5 11	Attempt to solve quadratic equation Obtain correct answers Choose negative sign Relate required value to conjugate of (i) Obtain correct answer

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4726

Further Pure Mathematics 2

Mark Scheme for June 2010

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

- Derive/quote $g'(x) = p/(1+x^2)$ Attempt f'(x) as $a/(1+bx^2)$ Use $x = \frac{1}{2}$ to set up a solvable equation in p, leading to at least one solution Get $p = \frac{5}{4}$ only
- Reasonable attempt at e^{2x} (1+2x+2x²) Multiply out their expressions to get all terms up to x^2 Get 1+3x+4x² Use binomial, equate coefficients to get 2 solvable equations in a and nReasonable attempt to eliminate a or nGet n=9, a=1/3 cwo
- 3 Quote/derive correct $dx=2dt/(1+t^2)$ Replace all x (not dx=dt) Get $2/(t-1)^2$ or equivalent Reasonable attempt to integrate their expression Use correct limits in their correct integral Clearly tidy to $\sqrt{3}+1$ from cwo
- **4 (i)** Get a = -2Get b = 6Get c = 1

(ii) √6 3

- B1
 M1 Allow any *a*, *b*=2 or 4
 M1
 A1 AEEF
- M1 3 terms of the form $1+2x+ax^2$, $a\neq 0$
- M1 (3 terms) x (minimum of 2 terms)
 A1 cao
 Reasonable attempt at binomial, each term
 M1 involving a and n (an=3, a²n(n-1)/2=4)
 M1
 A1 cao
 SC Reasonable f'(x) and f"(x) using
 - SC Reasonable f'(x) and f"(x) using product rule (2 terms) M1
 Use their expressions to find f'(0) and f"(0) M1
 Get $1+3x+4x^2$ cao A1
- B1
 M1 From their expressions
 A1

 M1
 A1√ Must involve √3
 A1 A.G.
- B1 May be quoted B1 May be quoted B1 May be quoted G1 (from correct working)
- B1 Correct shape in $-1 < x \le 3$ only (allow just top or bottom half)
- B1 90^0 (at x=3) (must cross x-axis i.e. symmetry)
- B1 Asymptote at x=-1 only (allow -1 seen)
- B1 $\sqrt{\text{Correct crossing points}}$; $\pm \sqrt{(b/c)}$ from their b,c

5 (i) Reasonable attempt at parts Get $e^x(1-2x)^n$ - $\int e^x \cdot n(1-2x)^{n-1}$ -2 dx	M1 Leading to second integral A1 Or $(1-2x)^{n+1}/(-2(n+1))e^x$ $-\int (1-2x)^{n+1}/(-2(n+1))e^x dx$
Evidence of limits used in integrated part Tidy to A.G.	M1 Should show ± 1 A1 Allow $I_{n+1} = 2(n+1)I_n - 1$
(ii) Show any one of $I_3=6I_2-1$, $I_2=4I_1-1$, $I_1=2I_0-1$ Get $I_0(=e^{\frac{1}{2}}-1)$ or $I_1(=2e^{\frac{1}{2}}-3)$ Substitute their values back for their I_3 Get $48e^{\frac{1}{2}}-79$	B1 May be implied B1 M1 Not involving <i>n</i> A1
6 (i) Reasonable attempt to differentiate $\sinh y = x$ to get dy/dx in terms of y Replace $\sinh y$ to A.G.	M1 Allow $\pm \cosh y dy/dx = 1$ A1 Clearly use $\cosh^2 - \sinh^2 = 1$ SC Attempt to diff. $y = \ln(x + \sqrt{x^2 + 1})$ using chain rule M1 Clearly tidy to A.G.
(ii) Reasonable attempt at chain rule Get $dy/dx = a \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ Reasonable attempt at product/quotient Get d^2y/dx^2 correctly in some form Substitute in and clearly get A.G.	M1 To give a product A1 M1 Must involve sinh and cosh A1 $\sqrt{\text{From d}y/\text{d}x} = k \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ A1 SC Write $\sqrt{(x^2+1)}\text{d}y/\text{d}x = k \sinh(a\sinh^{-1}x)$ or similar Derive the A.G.
7 (i) Get 5.242, 5.239, 5.237 Get 5.24	B1√Any 3(minimum) correct from previous value B1 Allow one B1 for 5.24 seen if 2 d.p.used
(ii) Show reasonable staircase for any region Describe any one of the three cases Describe all three cases	
(iii) Reasonable attempt to use log/expo. rule Clearly get A.G.Attempt f'(x) and use at least once in correct N-R formulaGet answers that lead to 1.31	M1 A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p.
(iv) Show f'(ln36) = 0 Explain why N-R would not work	B1 B1 Tangent parallel to <i>Ox</i> would not meet <i>Ox</i> again or divide by 0 gives an error

8 (i) Use correct definition of cosh x Attempt to cube their definition involving e ^x and e ^{-x} (or e ^{2x} and e ^x) Put their 4 terms into LHS and attempt to simplify Clearly get A.G.	B1 M1 Must be 4 terms M1 A1 SC Allow one B1 for correct derivation from $\cosh 3x = \cosh(2x+x)$
(ii) Rewrite as $k \cosh 3x = 13$ Use ln equivalent on $13/k$	M1 M1 Allow $\pm \ln \operatorname{or} \ln(13/k \pm \sqrt{(13/k)^2 - 1})$ for their k or attempt to set up and solve quadratic via exponentials
Get $x = (\pm) \frac{1}{3} \ln 5$ Replace in $\cosh x$ for u Use $e^{a \ln b} = b^a$ at least once Get $\frac{1}{2} (5^{\frac{1}{3}} + 5^{-\frac{1}{3}})$	A1 M1 M1 A1
9 (i) Attempt integral as $k(2x+1)^{1.5}$ Get 9 Attempt subtraction of areas Get 3	M1 A1 cao M1 Their answer – triangle A1 $$ Their answer – 6 (>0)
(ii) Use $r^2=x^2+y^2$ and $x=r\cos\theta$, $y=r\sin\theta$ Eliminate x and y to produce quadratic equation (=0) in r (or $\cos\theta$) Solve their quadratic to get r in terms of (or vice versa) Clearly get A.G. Clearly show $\theta_1(\text{at }B)=\tan^{-1}\frac{3}{4}$ and $\theta_2(\text{at }A)=\pi$	B1 M1 θ A1 $$ A1 $r > 0$ may be assumed B1 SC Eliminate y to get r in terms of x only M1 Get $r = x + 1$ A1 SC Start with $r = 1/(1 - \cos \theta)$ and derive cartesian
(iii) Use area = $\frac{1}{2} \int r^2 d\theta$ with correct r Rewrite as $k \csc^4(\frac{1}{2}\theta)$ Equate to their part (i) and tidy Get 24	B1 cwo; ignore limits M1 Not just quoted M1 To get ∫ = some constant A1 A.G.

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Mathematics

Advanced GCE 4727

Further Pure Mathematics 3

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

	Direction of $l_1 = k[7, 0, -10]$ Direction of $l_2 = k[1, 3, -1]$	B1	For both directions
	EITHER $\mathbf{n} = [7, 0, -10] \times [1, 3, -1]$	M1	For finding vector product of directions of
	$OR \begin{cases} [x, y, z] \cdot [7, 0, -10] = 0 \implies 7x - 10z = 0 \\ [x, y, z] \cdot [1, 3, -1] = 0 \implies x + 3y - z = 0 \end{cases}$		l_1 and l_2 OR for using 2 scalar products and obtaining equations
	\Rightarrow n = $k[10, -1, 7]$	A1	For correct n
	METHOD 1 Vector $(\mathbf{a} - \mathbf{b})$ from l_1 to $l_2 = \pm [4, 6, -10]$		
	$OR \pm [-4, 3, 1] OR \pm [3, 3, -9] OR \pm [-3, 6, 0]$	B1	For a correct vector
	$d = \frac{\left (\mathbf{a} - \mathbf{b}) \cdot \mathbf{n} \right }{\left \mathbf{n} \right } = \frac{36}{\sqrt{150}}$	M1*	For finding $(a-b) \cdot n$
	$a = { \mathbf{n} } = {\sqrt{150}}$	M1	For $ \mathbf{n} $ in denominator OR for using $\hat{\mathbf{n}}$
		(*dep)	' '
	$d = \frac{6}{5}\sqrt{6} \approx 2.94$	A1 7	For correct distance AEF
	METHOD 2 Planes containing l_1 and l_2 perp. to n	M1*	For finding planes and $p_1 - p_2$ seen
	are $\mathbf{r} \cdot [10, -1, 7] = p_1 = 70, \mathbf{r} \cdot [10, -1, 7] = p_2 = 34$	B1	For $p_1 = 70k$ and $p_2 = 34k$
	$\Rightarrow d = \frac{ 70 - 34 }{\sqrt{150}} = \frac{36}{\sqrt{150}} = \frac{6}{5}\sqrt{6} \approx 2.94$	M1 (*dep)	For $ \mathbf{n} $ in denominator <i>OR</i> for using $\hat{\mathbf{n}}$
		A1	For correct distance AEF
	METHOD 3	Di	3 Ot
	$\mathbf{r}_1 = [7\lambda, 0, 10 - 10\lambda] \ OR \ [7 + 7\lambda, 0, -10\lambda]$	B1	For correct points on l_1 and l_2
	$\mathbf{r}_2 = [4 + \mu, 6 + 3\mu, -\mu] \ OR \ [3 + \mu, 3 + 3\mu, 1 - \mu]$		using different parameters
	$7\lambda + 10\alpha - \mu = \begin{vmatrix} 4 & -3 & 3 & -4 \\ -\alpha - 3\mu & = & 6 & 6 & 3 & 3 \\ -10\lambda + 7\alpha + \mu & = & -10 & 0 & -9 & 1 \end{vmatrix}$	M1*	For setting up 3 linear equations from
	$-10\lambda + 7\alpha + \mu = \begin{vmatrix} -10 & 0 & -9 & 1 \end{vmatrix}$		$\mathbf{r}_1 + \alpha \mathbf{n} = \mathbf{r}_2$ and solving for α
	$\Rightarrow \alpha = -\frac{6}{25}$		
	$ \mathbf{n} = \sqrt{150}$	M1 (*dep)	For $ \mathbf{n} $ seen multiplying α
	$\Rightarrow d = \frac{6}{25}\sqrt{150} = \frac{6}{5}\sqrt{6} \approx 2.94$	A1	For correct distance AEF
		7	
_			

2 (i) $ar = r^5a \Rightarrow rar = r^6a$ M1 Pre-multiply $ar = r^5a$ by r $r^6 = e \Rightarrow rar = a$ A1 2 Use $r^6 = e$ and obtain answer AG (ii) METHOD 1 For $n = 1$, $rar = a$ OR For $n = 0$, $r^0 a r^0 = a$ B1 For stating true for $n = 1$ OR for $n = 0$ Assume $r^k a r^k = a$ EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1} = rar = a$ OR $r^{k+1} a r^{k+1} = r r^k a r^k . r = rar = a$ OR $r^{k+1} a r^{k+1} = r^k . rar . r^k = r^k a r^k = a$ A1 For obtaining correct form Hence true for all $n \in \mathbb{Z}^+$ A1 4 For statement of induction conclusion METHOD 2	
(ii) METHOD 1 For $n = 1$, $rar = a$ OR For $n = 0$, $r^0 a r^0 = a$ Assume $r^k a r^k = a$ EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1} = rar = a$ OR $r^{k+1} a r^{k+1} = r r^k a r^k . r = rar = a$ OR $r^{k+1} a r^{k+1} = r^k . rar . r^k = r^k a r^k = a$ Hence true for all $n \in \mathbb{Z}^+$ METHOD 2 B1 For stating true for $n = 1$ OR for $n = 0$ For attempt to prove true for $k + 1$ For obtaining correct form A1 For statement of induction conclusion	
For $n = 1$, $rar = a$ OR For $n = 0$, $r^0 a r^0 = a$ Assume $r^k a r^k = a$ EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1} = rar = a$ OR $r^{k+1} a r^{k+1} = r r^k a r^k . r = rar = a$ OR $r^{k+1} a r^{k+1} = r^k . rar . r^k = r^k a r^k = a$ Hence true for all $n \in \mathbb{Z}^+$ M1 For attempt to prove true for $k+1$ For obtaining correct form A1 4 For statement of induction conclusion	
Assume $r^k a r^k = a$ EITHER Assumption $\Rightarrow r^{k+1} a r^{k+1} = r a r = a$ OR $r^{k+1} a r^{k+1} = r . r^k a r^k . r = r a r = a$ OR $r^{k+1} a r^{k+1} = r^k . r a r . r^k = r^k a r^k = a$ Hence true for all $n \in \mathbb{Z}^+$ M1 For attempt to prove true for $k+1$ For obtaining correct form A1 4 For statement of induction conclusion METHOD 2	
EITHER Assumption $\Rightarrow r^{k+1}ar^{k+1} = rar = a$ M1 For attempt to prove true for $k+1$ OR $r^{k+1}ar^{k+1} = r.r^kar^k.r = rar = a$ OR $r^{k+1}ar^{k+1} = r^k.rar.r^k = r^kar^k = a$ A1 For obtaining correct form Hence true for all $n \in \mathbb{Z}^+$ A1 4 For statement of induction conclusion METHOD 2	
OR $r^{k+1}ar^{k+1} = r.r^kar^k.r = rar = a$ OR $r^{k+1}ar^{k+1} = r^k.rar.r^k = r^kar^k = a$ A1 For obtaining correct form Hence true for all $n \in \mathbb{Z}^+$ A1 4 For statement of induction conclusion METHOD 2	
OR $r^{k+1}ar^{k+1} = r^k . rar. r^k = r^k ar^k = a$ A1 For obtaining correct form Hence true for all $n \in \mathbb{Z}^+$ A1 4 For statement of induction conclusion METHOD 2	
Hence true for all $n \in \mathbb{Z}^+$ A1 4 For statement of induction conclusion METHOD 2	
METHOD 2	
2 2	
$r^2 a r^2 = r. rar. r = rar = a$, similarly for M1 For attempt to prove for $n = 2, 3$	
$r^3ar^3=a$	
$r^4ar^4 = r \cdot r^3ar^3 \cdot r = rar = a$, A1 For proving true for $n = 2, 3, 4, 5$	
similarly for $r^5 a r^5 = a$	
$r^6 a r^6 = e a e = a$ B1 For showing true for $n = 6$	
For $n > 6$, $r^n = r^{n \mod 6}$, hence true for all $n \in \mathbb{Z}^+$ A1 For using $n \mod 6$ and correct conclusion METHOD 3	n
$r^n a r^n = r^{n-1} . rar. r^{n-1}$ M1 Starting from n , for attempt to prove true	e for
$OR \ r^n a r^n = r^n . r^5 a . r^{n-1} = r^{n+5} a r^{n-1}$	
$= r^{n-1} a r^{n-1}$ A1 For proving true for $n-1$	
$= r^{n-2} a r^{n-2} = \dots$ A1 For continuation from $n-2$ downward	S
= rar = a B1 For final use of $rar = a$	
SR can be done in reverse	
METHOD 4	
$ar = r^5 a \Rightarrow ar^2 = r^5 ar = r^{10} a$ etc. M1 For attempt to derive $ar^n = r^{5n} a$	
$\Rightarrow a r^n = r^{5n} a$ For correct equation SR may be stated without proof	
$\Rightarrow r^n a r^n = r^{6n} a$ B1 For pre-multiplication by r^n	
$= ea = a$ A1 For obtaining a ($r^6 = e$ may be implied	1)
6	

3		
	(i)	$w^2 = \cos\frac{4}{5}\pi + i\sin\frac{4}{5}\pi$
		$w^3 = \cos\frac{6}{5}\pi + i\sin\frac{6}{5}\pi$
		$w^* = \cos\frac{2}{5}\pi - i\sin\frac{2}{5}\pi$

 $=\cos\frac{8}{5}\pi + i\sin\frac{8}{5}\pi$

B1 For
$$w^*$$
 seen or implied

SR For exponential form with i missing, award B0 first time, allow others

Allow $\operatorname{cis} \frac{k}{5}\pi$ and $e^{\frac{k}{5}\pi i}$ throughout

(ii) $1+w+w^{2}$ B) 1+w $1+w+w^2+w^3+w^4$

B1* For
$$1+w$$
 in approximately correct position

Β1 For $AB \approx BC \approx CD$ (*dep)

(*dep) For *E* at the origin B1 4

Allow points joined by arcs, or not joined Labels not essential

For correct equation AEF (in any variable) $z^{5}-1=0$ OR $z^{5}+z^{4}+z^{3}+z^{2}+z=0$ B1 Allow factorised forms using w, exp or trig 9

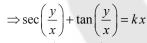
Α1

4 (i) $y = xz \Rightarrow \frac{dy}{dx} = z + x \frac{dz}{dx}$

For correct integration (*k* not required here)

 $\Rightarrow xz + x^2 \frac{dz}{dx} - xz = x \cos z \Rightarrow x \frac{dz}{dx} = \cos z$

M1 For substituting into DE


$$\Rightarrow \int \sec z \, dz = \int \frac{1}{x} dx$$

For DE in variables separable form A1 For attempt at integration

 $\Rightarrow \ln(\sec z + \tan z) = \ln kx$

M1 to In form on LHS

 $OR \ln \tan \left(\frac{1}{2}z + \frac{1}{4}\pi\right) = \ln kx$

For correct solution A1

 $OR \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = kx$

AEF including RHS = $e^{(\ln x)+c}$

(ii) $(4, \pi) \Rightarrow \sec \frac{1}{4}\pi + \tan \frac{1}{4}\pi = 4k$

 $OR \tan\left(\frac{1}{8}\pi + \frac{1}{4}\pi\right) = 4k$

M1 For substituting $(4, \pi)$ into their solution (with k)

 \Rightarrow sec $\left(\frac{y}{r}\right)$ + tan $\left(\frac{y}{r}\right)$ = $\frac{1}{4}\left(1+\sqrt{2}\right)x$

For correct solution AEF A1 2 Allow decimal equivalent 0.60355 x

Allow $e^{\ln x}$ for x

 $OR \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = \left(\frac{1}{4}\tan\frac{3}{8}\pi\right)x \text{ or } \frac{1}{4}\left(1 + \sqrt{2}\right)x$

8

$C + i S = 1 + \frac{1}{2} e^{i\theta} + \frac{1}{4} e^{2i\theta} + \frac{1}{8} e^{3i\theta} + \dots$ $= \frac{1}{1 - \frac{1}{2} e^{i\theta}} = \frac{2}{2 - e^{i\theta}}$	M1 A1 M1	For using $\cos n\theta + i \sin n\theta = e^{in\theta}$ at least once for $n \ge 2$ For correct series For using sum of infinite GP
$= \frac{1}{1 - \frac{1}{2}e^{i\theta}} = \frac{2}{2 - e^{i\theta}}$	M1	For correct series
$=\frac{1}{1-\frac{1}{2}e^{i\theta}}=\frac{2}{2-e^{i\theta}}$		For using sum of infinite CD
$1 - \frac{1}{2}e^{i\theta} 2 - e^{i\theta}$		FOI USING SUM OF INTIBILE GP
-	A1 4	For correct expression AG
		SR For omission of 1st stage award up to M0 A0 M1 A1 OEW
$2(2-e^{-i\theta})$	M1	For multiplying top and bottom by complex
$\left(2-e^{i\theta}\right)\left(2-e^{-i\theta}\right)$		conjugate
$4-2e^{-i\theta}$ $4-2\cos\theta+2i\sin\theta$		For reverting to $\cos\theta$ and $\sin\theta$
$= \frac{4 - 2(e^{i\theta} + e^{-i\theta}) + 1}{4 - 4\cos\theta + 1}$	M1	and equating Re OR Im parts
$\frac{4-2\cos\theta}{\cos\theta}$ $2\sin\theta$	A1	For correct expression for C AG
$\Rightarrow C = \frac{1}{5 - 4\cos\theta}, S = \frac{1}{5 - 4\cos\theta}$	A1 4	For correct expression for S
	8	
Aux. equation $m^2 + 2m + 17 = 0$	M1	For attempting to solve
$\Rightarrow m = -1 \pm 4i$	A1	correct auxiliary equation For correct roots
$CF(v=)e^{-x}(A\cos 4x + B\sin 4x)$		
		For correct CF (allow $A \frac{\cos}{\sin} (4x + \varepsilon)$)
		(trig terms required, not $e^{\pm 4ix}$)
PI $(v-) nv + a \rightarrow 2n + 17(nv + a) - 17v + 36$	M1	f.t. from their <i>m</i> with 2 arbitrary constants For stating and substituting PI of correct
$11 (y -) px + q \rightarrow 2p + 1/(px + q) - 1/x + 30$	1411	form
$\Rightarrow p=1$	A1	For correct value of <i>p</i>
and $q=2$	A1	For correct value of q
GS $y = e^{-x} (A\cos 4x + B\sin 4x) + x + 2$	B1√ 7	For GS. f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI.
		Requires $y = 1$.
$x \gg 0 \Rightarrow e^{-x} \rightarrow 0 \ OR \ very \ small$	B1	For correct statement. Allow graph
$\Rightarrow y = x + 2$ approximately	B1√ 2	For correct equation
		Allow \approx , \rightarrow and in words Allow relevant f.t. from linear part of GS
		Allow relevant 1.t. Holli lillear part of US
=	$\Rightarrow m = -1 \pm 4i$ CF $(y =) e^{-x} (A\cos 4x + B\sin 4x)$ PI $(y =) px + q \Rightarrow 2p + 17(px + q) = 17x + 36$ $\Rightarrow p = 1$ and $q = 2$ GS $y = e^{-x} (A\cos 4x + B\sin 4x) + x + 2$ $x \gg 0 \Rightarrow e^{-x} \rightarrow 0 \ OR \text{ very small}$	$= \frac{4 - 2e^{-i\theta}}{4 - 2\left(e^{i\theta} + e^{-i\theta}\right) + 1} = \frac{4 - 2\cos\theta + 2i\sin\theta}{4 - 4\cos\theta + 1}$ $\Rightarrow C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}, S = \frac{2\sin\theta}{5 - 4\cos\theta}$ Aux. equation $m^2 + 2m + 17(=0)$ $\Rightarrow m = -1 \pm 4i$ CF $(y =) e^{-x} \left(A\cos 4x + B\sin 4x\right)$ All $\Rightarrow p = 1$ and $q = 2$ GS $y = e^{-x} \left(A\cos 4x + B\sin 4x\right) + x + 2$ B1 $\sqrt{7}$ $x \gg 0 \Rightarrow e^{-x} \rightarrow 0 \ OR \ very \ small$ B1

7 (i)	$(1, 3, 5)$ and $(5, 2, 5) \Rightarrow \pm [4, -1, 0]$ in Π	M1	For finding a vector in Π
	$\mathbf{n} = [2, -2, 3] \times [4, -1, 0] = k[1, 4, 2]$	M1	For finding vector product of direction vectors of l and a line in Π
		A1	For correct n
	$\Rightarrow \mathbf{r} \cdot [1, 4, 2] = 23$	A1 4	For correct equation. Allow multiples
(ii)	METHOD 1 Perpendicular to Π through $(-7, -3, 0)$ meets Π	M1	For using perpendicular from point on l to Π
	where $(-7+k)+4(-3+4k)+2(2k)=23$	M1	Award mark for $k\mathbf{n}$ used For substituting parametric line coords into Π
	$\Rightarrow k = 2 \Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1 A1 4	For normalising the n used in this part For correct distance AEF
	METHOD 2		
	$\Pi \text{ is } x + 4y + 2z = 23$	M1	For attempt to use formula for perpendicular distance
	$\Rightarrow d = \frac{\left (-7) + 4(-3) + 2(0) - 23 \right }{\sqrt{1^2 + 4^2 + 2^2}} = 2\sqrt{21} \approx 9.165$	M1	For substituting a point on <i>l</i> into plane equation
	$\sqrt{1^2 + 4^2 + 2^2}$	M1 A1	For normalising the n used in this part For correct distance AEF
	METHOD 3	AI	
	$\mathbf{m} = [1, 3, 5] - [-7, -3, 0] = (\pm)[8, 6, 5]$ $OR = [5, 2, 5] - [-7, -3, 0] = (\pm)[12, 5, 5]$	M1	For finding a vector from l to Π
		M1	For finding m.n
	$\Rightarrow d = \frac{\mathbf{m} \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{42}{\sqrt{21}} = 2\sqrt{21} \approx 9.165$	M1	For normalising the n used in this part
	VI T4 T2	A1	For correct distance AEF
	METHOD 4		As Method 1, using parametric form of Π
	[-7, -3, 0] + k[1, 4, 2] = [1, 3, 5] + s[2, -2, 3] + t[4, -1]	1, 0] M1	For using perpendicular from point on l to Π Award mark for $k\mathbf{n}$ used
		M1	For setting up and solving 3 equations
	$\Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1	For normalising the n used in this part
		A1	For correct distance AEF
	METHOD 5		
	$d_1 = \frac{23}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{23}{\sqrt{21}}$	M1	For attempt to find distance from O to Π OR from O to parallel plane containing l
	$d_2 = \frac{[-7, -3, 0] \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{-19}{\sqrt{21}}$	M1	For normalising the n used in this part
	VI Z	M1	For finding $d_1 - d_2$
	$\Rightarrow d_1 - d_2 = d = \frac{23 - (-19)}{\sqrt{21}} = 2\sqrt{21} \approx 9.165$	A1	For correct distance AEF
(iii)	(-7, -3, 0) + k(1, 4, 2)	M1	State or imply coordinates of a point on the reflected line
	Use $k = 4$	M1	State or imply $2 \times \text{distance from (ii)}$
	$\mathbf{b} = [2, -2, 3]$	В1	Allow $k = \pm 4$ OR $\pm 4\sqrt{21}$ f.t. from (ii) For stating correct direction
	$\mathbf{a} = [-3, 13, 8]$	A1 4	For correct point seen in equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$
	$\mathbf{r} = [-3, 13, 8] + t[2, -2, 3]$	A1 4	AEF in this form
	1 - [-3, 13, 0] + i[2, -2, 3]		ALT III UIIS IOIIII

12

8 (i)	$\{A,D\}$ OR $\{A,E\}$ OR $\{A,F\}$	B1 1	For stating any one subgroup
(ii)	A is the identity	B1 B1 2	For identifying A as the identity
	5 is not a factor of 6 OR elements can be only of order 1, 2, 3, 6	B1 2	For reference to factors of 6
(iii)		M1	For finding <i>BE</i> and <i>EB</i> AND using $\omega^3 = 1$
	$_{\rm DE}$ $\begin{pmatrix} 0 & 1 \end{pmatrix}$ $_{\rm D}$ $_{\rm ED}$ $\begin{pmatrix} 0 & \omega \end{pmatrix}$ $_{\rm ED}$	A1	For correct BE (D or matrix)
	$BE = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = D$, $EB = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} = F$	A1	For correct EB (F or matrix)
	$D_{\text{out}}\begin{pmatrix} 0 & 1 \end{pmatrix} = E_{\text{out}}\begin{pmatrix} 0 & \omega \end{pmatrix}_{\text{out}}$		- · · · · ·
	$D or \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, F or \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} \in M$	A1 4	For justifying closure
	⇒ closure property satisfied		
(iv)	$B^{-1} = \frac{1}{1} \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix} = C$	M1	For correct method of finding either inverse
	1(0 ω)	A1	For correct $B^{-1} = C$ Allow $\begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}$
	$1 \left(0 o^2 \right)$		
	$E^{-1} = \frac{1}{-1} \begin{pmatrix} 0 & -\omega^2 \\ -\omega & 0 \end{pmatrix} = E$	A1 3	For correct $E^{-1} = E$ Allow $\begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}$
(v)	METHOD 1		
` ′	M is not commutative	B1	For justification of <i>M</i> being not
	e.g. from $BE \neq EB$ in part (iii) N is commutative (as \times mod 9 is commutative)	B1	commutative For statement that N is commutative
	\Rightarrow M and N not isomorphic	B1# 3	For correct conclusion
	METHOD 2 Elements of <i>M</i> have orders 1, 3, 3, 2, 2, 2	B1*	For all orders of one group correct
	Elements of <i>N</i> have orders 1, 6, 3, 2, 3, 6	B1	For sufficient orders of the other group
	Different orders <i>OR</i> self-inverse elements	(*dep)	correct
	\Rightarrow M and N not isomorphic	B1#	For correct conclusion SR Award up to B1 B1 B1 if the self-
			inverse elements are sufficiently well
			identified for the groups to be non-isomorphic
	METHOD 3		
	M has no generator since there is no element of order 6	B1	For all orders of <i>M</i> shown correctly
	N has 2 OR 5 as a generator	В1	For stating that <i>N</i> has generator 2 <i>OR</i> 5
	\Rightarrow M and N not isomorphic	B1#	For correct conclusion
	METHOD 4		
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{bmatrix} A & B & C & D & E & F \\ B & B & C & A & F & D & E \end{bmatrix}$		
	$C \mid C \mid A \mid B \mid E \mid F \mid D$	B1*	For stating correctly all 6 squared elements of one group
	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		of one group
	$F \mid F \mid D \mid E \mid B \mid C \mid A$		
	N 1 2 4 8 7 5		
	1 1 2 4 8 7 5 2 2 4 8 7 5 1		
	4 4 8 7 5 1 2	B1	For stating correctly sufficient squared
	8 8 7 5 1 2 4	(*dep)	elements of the other group
	7 7 5 1 2 4 8 5 5 1 2 4 8 7		
	$\Rightarrow M \text{ and } N \text{ not isomorphic}$	B1#	For correct conclusion
			# In all Methods, the last B1 is dependent or
		13	at least one preceding B1
		13	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Mathematics

Advanced Subsidiary GCE 4728

Mechanics 1

Mark Scheme for June 2010

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

	T		
1	t = 5/1.2	M1	5=1.2t or 0=5-1.2t
i	t = 4.17 s	A1	4 1/6 s, 4.166 or better, 4.16 recurring.
1	ι 4.173		4 1/0 3, 4.100 of better, 4.10 recurring.
		[2]	
ii	$s = (-5)^2/2x1.2$	M1	$s = 5^2/2x1.2$ or $5^2 = 2x1.2s$ or $0 = 5^2 - 2x1.2s$
11	` '		
	s = 10.4 m	A1	Accept 10 5/12, but not 10
	OR(using(i))	[2]	
	$s = 5x4.17 - 1.2x4.17^2/2$	M1	Time must be > 0 . Accept t from (i)
	s = 10.4 m	A1	Award if -4.17 used.
	OR(using(i))		
	$s = (5 (+ 0))/2 \times 4.17$	M1	
	s = 10.4 m	A1	
iii	Fr = 3x1.2	B1	Accept 3.6, +/-
	R = 3x9.8	B1	Accept 3g, +/-
		M1	
	$\mu = (3x)1.2/(3x)9.8$		Ratio of 2 positive numerical force terms
	$\mu = 0.122$	A1	Not 0.12
	OR	[4]	
	R = 3x9.8	B1	Accept 3g, +/-
			11000pt 3g, 1/-
	Mass x acceleration = $\pm -3x1.2$	B1	
	$+/-\mu \times 29.4 = +/-3\times 1.2$	M1	Either both positive or both negative.
	$\mu = 0.122$	A1	20.7
	F 5.122	***	
	/ (1 0111		
2	+/-(0.4x3 - 0.6x1.5)	B1	+/- 0.3
2 i	$+/-(0.4 \times 0.1 + 0.6 \text{ V})$	B1	Nb the terms have same signs
1	,		
	(0.4x3 - 0.6x1.5) = +/-(0.4x0.1 + 0.6v)	M1	Equating their total mom before & after
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	Accept 13/30 or 0.43 recurring, but not 0.43
	OR	[4]	B, 0 at 100 0. 15
			Management of D
	+/-(0.4x3 - 0.4x0.1) = +/-1.16	B1	Momentum change of P
1	(0.6v + 0.6x1.5) = 0.6v + 0.9	B1	Momentum change of Q
	1.16 = +/-(0.6v + 0.9)	M1	Equating momentum changes
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	0.26/0.6 = v
ii	+/-(0.4x0.1 - 0.6v)	B1	Nb the terms have different signs
1	(0.4x3 - 0.6x1.5) = +/-(0.6v - 0.4x0.1)	M1	Must use +/- same before momentum as in (i)
	v = 0.567	A1	May be implied, or in any format
	PQ = 0.1x3 + 0.567x3	M1	(0.1 + 0.567)x3
	PQ = 2 m	A1	Accept 2.00(1), 2.0, 2.00
	OR	[5]	
			Both must be correct
	+/-0.4x3 + 0.4x0.1 and $+/-0.6v + 0.6x1.5$	B1	Both must be correct
	1.24 = +/-0.6v + 0.9	M1	Equating change in momentum
	v = 0.567	A1	May be implied, or in any format
	etc		
L	Cic		
_			
3	$H = +/-(9 - 5\cos 60)$	M1	$+/-(9 + 5\cos 120)$
i	H = 6.5 N AG	A1	· ·
1	AG		
		[2]	
ii	$V = +/-(12 - 5\sin 60)$	M1	$+/-(12 + 5\cos 150)$
**	· · · · · · · · · · · · · · · · · · ·		
	V = 7.67 N	A1	Accept 7.666 or better, or 7.6 recurring
		[2]	
iii	$R^2 = 6.5^2 + 7.67^2$	M1	Uses Pythagoras on forces V(ii) and 6.5
	R = 10.1 N	A1	10.053
	$\tan A = 6.5/7.67 \text{ or } 7.67/6.5$	M1	Uses trigonometry in relevant triangle
	A = 40(.3) or 49.7	A1	May be implied by final answer
	11 10(.3) 01 17.1	7.1	
			As this is not a final answer, exact accuracy is
			not an issue
	Bearing = 320°	A1	Or better
	200000		OI JULIUI
1	1	[5]	

4	$3.2 - 0.2t^2 = 0$	M1	Puts 0 for v and attempts to solve QE
i	t = 4 s	A1	Accept dual solution +/-4
		[2]	
ii	a = -2x0.2t	M1*	Differentiates v
	a = -0.4x4	D*M1	Substitutes +ve t(i) in derivative of v
	$a = -1.6 \text{ ms}^{-2}$	A1	Negative only
		[3]	
iii		M1*	Integrates v, not multiplication by t
	$s=3.2t-0.2t^3/3$ (+c)	A1	
	t = 0, s = 0 so c = 0	B1	Or correct use of limits 0 and 4
	$s(4) = 3.2x4 - 0.2x4^3/3$	D*M1	Accept without/loss of c
	s = 8.53 m	A1	8 8/15 Accept with/without c
		[5]	

5	+/-3x20/2	M1	Use area of scalene triangle(s). Not suvat.
i	30 m	A1	Accept -30
		[2]	
ii		M1	Equates <u>scalene</u> trapezium area to distance (i)
	(t+4)x3/2 = 30 or 3t/2 = 30 - 4x3	A1	[(T-60)+4]x3/2 = 30, award A2
	t = 16 or t = 12	A1	
	T = 76	A1	
		[4]	
iii	T(accn) = 3/0.4 (=7.5 s)	B1	
	decn = 3/([76-60] - 4 - 7.5)	M1	Or $3 = \text{decn } x ([76-60] - 4 - 7.5)$
	$decn = (+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
	OR	[3]	
	$S(accn) = 3^2/(2x0.4)$ (= 11.25 m)	B1	
	$decn = 3^2 / [2x(30 - 3x4 - 11.25)]$	M1	306
	$decn = (+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring

6	$T - 0.85g \sin 30 = 0.85a$	B1	Either equation correct
i	0.55g - T = 0.55a	B1	Both eqns correct and consistent 'a' direction
a	a = 1.225/1.4	M1	Solves 2 sim eqn
	a = 0.875	A1	
	T = 4.91	A1	4.908 or better – has to be positive
		[5]	
b	$F = 2T\cos 30$	M1	Or Pythagoras or cosine rule
	F = 8.5(02)	A1ft	$cv(4.91)x\sqrt{3}$
		[2]	
ii		M1	Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i)
	$v^2 = 1.3^2 + 2x0.875x1.5 (=4.315)$	A1ft	$v = 2.077(v^2 = 1.69 + 3xcv(0.875))$
	a = +/-gsin30	B1	a = +/-4.9
	0 = 4.315 - 2x4.9s	M1	Uses $0^2 = u^2 + /-2$ as, with a not g or (i), u not 1.3
	(s = 0.44)	A1	May be implied – need not be 3sf
	S = 1.94	A1	
		[6]	

7	$Fr = 4 + 5\sin 60$	M1	All $4 + \text{component } 5 (4 + 4.333(01))$
i	Fr = 8.33	A1	May be implied
	$R = 12 - 5\cos 60$	M1	+/-(All 12 - component 5 (12 - 2.5))
	R = 9.5	A1	May be implied, +ve from correct work
	$\mu = (4 + 5\sin 60)/(12 - 5\cos 60)$	M1	Friction/Reaction, Fr>4, R<12, both positive
	$\mu = 0.877$	A1	
	·	[6]	
ii	Upper block		
	$\mu = 5\sin 60/(9-5\cos 60)$ (=4.3/6.5)	M1	(Component 5)/(9-component 5)
	$\mu = 0.666$	A1	
		[2]	
iii	Upper mass = 9/g	B1	0.918(36)
	$(9/g)a = 5\sin 60 - 0.1(9 - 5\cos 60)$	M1	N2L 0.918(36)a= 4.33(01) – 0.1x6.5
			where friction = $0.1x(9$ -component 5)
	a = 4.01	A1	, ,
	Lower mass		
	Tractive force = $4 + 0.1(9-5\cos 60)$ (= 4.65)	M1	Compares TF (tractive force) and max friction
	Max Friction = $0.877(3+(9-5\cos 60))$ (= 8.33)		· · · · · · · · · · · · · · · · · · ·
	Tractive force < Max Friction	A1	
	a = 0	A1	5452
	OR for Lower Mass	[6]	
	$ma = 4+0.1(9-5\cos 60)-0.877(3+9-5\cos 60)$	M1	N2L with 3 force terms:
	/-\		-3 CV
	-ve a caused by friction impossible, hence	A1	
	a = 0	A1	

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Mathematics

Advanced GCE 4729

Mechanics 2

Mark Scheme for June 2010

Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

1	$v^2 = 2 \times 9.8 \times 10$	M1	Using $v^2 = u^2 + 2as$ with $u = 0$
	$v = 14 \text{ m s}^{-1}$	A1	
	speed = $\sqrt{(7^2 + 14^2)}$ 15.7 or $7\sqrt{5}$ ms ⁻¹	M1	Method to find speed using their "v"
		A1	
	$\tan^{-1}(14/7)$ or $\tan^{-1}(7/14)$	M1	Method to find angle using their "v"
	63.4° to the horizontal	A1 6	26.6° to vertical
			6

2	(i)	$(6\sin\Pi/2) \div (\Pi/2)$	M1	Use of correct formula
		3.82	A1 2	AG
				(1)
	(ii)	8d = 3(6-3.82) + 5x9.82	M1	Method to find centre of mass
		or $8x = \pm \{3(-3.82) + 5x3.82\}$	A1	
		d = 6.95 or 6.96 or x = +/-0.955	A1	
		$tan\theta = 0.96/6$	M1	Attempt to find the required angle
		$\theta = 9^{\circ}$	A1 5	1 1
				7

3	(i)	D = 128 000/80 (= 1600)	B1	200
		$k(80)^2 = 128\ 000/80$	M1	Driving force = resistance
			A1	-
		$k = \frac{1}{4}$	A1	
		R = 900 N FT	B1 5	FT on their k $(R = 3600k)$
		110111		
(ii)		$D = 128\ 000\ /\ 60\ (=2133\frac{1}{3})$	B1	
		2000 x 9.8 x sin2°	B1	
		$6400/3-900-2000 \times 9.8 \times \sin 2^\circ = 2000a$	M1	4 terms required
		$a = 0.275 \text{ m s}^{-2}$	A1 4	
				9

4	(i)	$4T\cos 20^{\circ} = 5 \text{ x g x } 2.5$	M1 A1	Using moments; allow sin/cos mix Allow with omission of g
		T = 32.6 N	A1 3	Thiow with omission of g
	(ii)	X = Tsin20°	M1	allow sin/cos mix
		X = 11.1 FT	A1	FT their T
		$Y + T\cos 20^{\circ} = 5 \times g$	M1	
		or $2.5Y = 1.5 \times T\cos 20$ or $4Y = 1.5 \times 5g$		
		Y = 18.4 FT	A1	FT their T, but not from omission of
				g
		$R = \sqrt{(X^2 + Y^2)} \text{ or } tan^{-1}(Y/X)$ or $tan^{-1}(X/Y)$	M1	$X \neq 0, Y \neq 0$
		R = 21.5 N	A1	
		$\theta = 58.8^{\circ}$ above the horizontal	A1 7	or 31.2° to left of vertical
				10

5	(i)	$T\cos 45^{\circ} + R\sin 45^{\circ} = mg$	*M1 A1	3 terms
		Tsin45° - Rcos45° = mlsin45° ω^2	*M1 A1	3 terms; $a = r \omega^2$
		$2T = \sqrt{2}mg + ml\omega^{2}$ $T = m/2(\sqrt{2}g + l\omega^{2})$	Dep*M1 A1 6	Method to eliminate R AG www
	(ii)	R = 0	B1	may be implied
		$2R = \sqrt{2}mg - ml\omega^2$ or $T\cos 45^\circ = mg$	B1	
		or $T = ml\omega^2$	M1	
		Solve to find ω	M1	
		$\omega = 4.16 \text{ rad s}^{-1}$	A1 4	10

6	(i)	2mu = 2mv + 3mv $v = 2/5 u$	M1 A1 A1 3	Conservation of momentum Must be $v =$
	(ii)	e = (3v - v) / u e = 4/5	M1 A1 2	Using restitution AG
	(iii)	Initial K.E. = $9mv^2 / 2 = 18mu^2 / 25$ Final K.E. = $9mv^2 / 8 = 9mu^2 / 50$ $\frac{1}{2}m(V)^2$ = Final K.E. V = 3u / 5	B1 FT B1 FT M1 A1 4	FT on their v from (i) FT on their v from (i) AG
	(iv)	$4mu / 5 - 3mu / 5 = 2mx + my$ $u / 5 = 2x + y$ $e = 4/5 = (y - x) / u$ $4u = 5y - 5x$ solving 2 relevant equations $x = -u/5 \ y = 3u/5$ $y = 3u/5$ away from wall (x) + towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

7 (i)	$R = 0.2 \times 9.8 \times \cos 30^{\circ} (= 1.70)$	B1	
	$F = 0.1 \times 9.8 \times \cos 30^{\circ} (= 0.849)$ FT	B1	FT on their R, but not $R = 0.2g$
		M1	Use of conservation of energy
	$\frac{1}{2} \times 0.2 \times 11^2 - \frac{1}{2} \times 0.2 \text{ v}^2 =$	A1	
	$0.2 \times 9.8 \times 5\sin 30 + 5 \times 0.849$	A1	
	$v = 5.44 \text{ m s}^{-1}$	A1 6	AG
	V 3.11 III S	711 0	110
Or	$F + 0.2gsin30 = \pm 0.2a$	M1	Use of N2L, 3 terms
			OSC OF INZE, 5 terms
last 4	$a = \pm 9.1$	A1	
marks	$v^2 = 11^2 + 2 \times a \times 5$	M1	Complete method to find v
of (i)	$v = 5.44 \text{ m s}^{-1}$	A1	
(ii)	$t = 5\cos 30^{\circ}/5.44\cos 30^{\circ}$	M1	time to lateral position over C
	t = 0.919 s	A1	
	$u = 5.44 \sin 30^{\circ} (= 2.72)$	B1	
	$s = 2.72 \times 0.919 - 4.9 \times 0.919^2$	M1	
	s = -1.6 (or better)	A1	Ht dropped
	Ht drop to $C = 5\sin 30^\circ = 2.5 \text{ m}$	B1	
	Ball does not hit the roof	A1 7	13
			C X,
Or	$y = x \tan \theta - gx^2 \sec^2 \theta / 2V^2$	B1	2 OK
first	substitute values	M1	
5	$V = 5.44$ $\theta = 30^{\circ}$ $x = 5\cos 30^{\circ}$	A1	all 3 correct
marks	$y = 2.5 - 9.8 \times 25 \times 3/4 \times 4/3 / (2 \times 5.44^2)$	A1	an 3 correct
	, , , , , , , , , , , , , , , , , , , ,		~~
of (ii)	y = -1.6 (or better)	A1	00
OD (#)	5.44 : 200 (2.70)	D1	
OR (ii)	$u = 5.44\sin 30^{\circ} (= 2.72)$	B1	
	$-2.5 = 5.44\sin 30t - 4.9t^2$	M1	2
		A1	aef
	t = 1.04	A1	time to position level with AC
	$x = 5.44\cos 30 \times 1.04 = 4.9$ (or better)	A1	
	Horizontal distance from B to C =		
	$5\cos 30 = 4.3 \text{(or better)}$	B1	
	Ball does not hit the roof	A1 7	
OR (ii)	$y = x \tan\theta - gx^2 \sec^2 \theta / 2V^2$	B1	
	substitute values	M1	
	$-2.5 = 0.577x - 0.221x^2$	A1	aef
	Attempt to solve quadratic for x	M1	
	x = 4.9 (or better)	A1	
	Horizontal distance from B to C =		
	$5\cos 30 = 4.3$ (or better)	B1	
	Ball does not hit the roof	A1 7	
OR (ii)	$u = 5.44\sin 30^{\circ} = 2.72$	B1	
(/	$-2.5 = 5.44\sin 30t - 4.9t^2$	M1	
		A1	aef
	t = 1.0 (or better)	A1	time to position level with AC
	$T = 5\cos 30^{\circ}/5.44\cos 30^{\circ}$	M1	mile to position level with the
	T = 0.92 (or better)	A1	time to lateral position over C
	Ball does not hit the roof	A1 7	time to lateral position over C
	Dan does not filt the root	AI /	
1		1	

OR (ii)	Attempt at equation of trajectory	M1	
	$y = 0.577x - 0.221x^2$	A1	
	y = -0.577x	B1	Equation of BC
	Solving their quadratic and linear		
	equations to get at least x or y	M1	
	x = 5.2 (or better) or $y = -3.0$ (or better)	A1	
	Horizontal distance from B to C =		Must be the one needed for
	$5\cos 30 = 4.3$ (or better)		comparison
	Or Ht drop to $C = 5\sin 30^\circ = 2.5$	B1	_
	Ball does not hit the roof	A1 7	
OR (ii)	Attempt at equation of trajectory	M1	
	$y = 0.577x - 0.221x^2$	A1	
	y = -0.577x	B1	
	Solving their quadratic and linear		
	equations	M1	
	x = 5.2 (or better) and $y = -3.0$ (or	A1	
	better)		
	Distance = 6.0 (or better)	B1	Distance from B to point of
	Archi	10	intersection
	Ball does not hit the roof	A1 7	3 0

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4730

Mechanics 3

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

4		1	[]
1			For triangle with two of its sides marked
		,,,,	0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using $I = \Delta mv$ in one direction.
	For included angle marked α or for		All Discourse
	$0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$	A1	Allow B1 for omission of 0.8
	For opposite side marked 4/0.8 (or 4) or for		
	$0.8x8.5\sin\alpha = 4\sin\beta$	A1	Allow B1 for omission of 0.8
			For using the cosine rule or for eliminating
	2 2	M1	β
	$8.4^2 + 6.8^2 - 2x8.4x6.8\cos\alpha = 4^2$	A1ft	ft 0.8 mis-used or not used
	$\alpha = 28.1^{\circ}$	A1	
		[6]	
2(i)	$[100a = 2aV_B]$	M1	For taking moments about A for AB
	Vertical component at B is 50 N	A1	
	Vertical component at C is 150 N	A1	
		[3]	
(ii)			For taking moments about B for BC (3
			terms needed) or about A for the whole (4
		M1	terms needed)
	$100(0.5a) + (\sqrt{3} a)F = 150a$ or		- 0
	$100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	DC X,
	Frictional force is 57.7 N	A1	- 3 OK
	Direction is to the right	B1	
		[4]	
3(i)	u = 4	B1	
	v = 2	B1	. ~ ~
	Heri	[2]	100
(ii)			For using the principle of conservation of
(11)		M1	momentum or for using NEL with $e = 1$
	mu = ma + mb (or $u = b - a$)	A1	momentum of for using TVEE with c
	u = b - a (or $mu = ma + mb$)	B1	
	$a = 0$ and $b = 4ms^{-1}$	Alft	ft incorrect u
	Speed of A is 2ms ⁻¹ and direction at 90° to	11110	it incorrect a
	the wall	A1ft	ft incorrect v
	Speed of B is 4ms ⁻¹ and direction parallel to		
	the wall	A1ft	ft incorrect u
		[6]	
		[[-]	
4(i)		·	For using Newton's second law (1 st or 2 nd
- (- /	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	stage)
			For attempting to integrate (1 st stage) and
			using $v(0) = 0$ (may be implied by the
		M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$	A1	1,
	[v(12) = 1.92]	M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$		For using Newton's second law (2 nd stage)
	$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$	M1	For using $v(12) = 1.92$
	$v = t^3/1800 - 12t/50 + 3.84$	A1	5 ()=
	$v(24) = 5.76 = 3 \times v(12)$	A1	AG
	()	[8]	
l		I L^J	<u>I</u>

(00)		T	T
(ii)	Sketch has $v(0) = 0$ and slope decreasing		
	(convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave		
	upwards) for $12 < t < 24$	B1	
	Sketch has v(t) continuous, single valued		
	and increasing (except possibly at $t = 12$)		
	with $v(24)$ seen to be $> 2v(12)$	B1	
	with v(24) seen to be > 2v(12)		
		[3]	
5(i)	For using amplitude as a coefficient of a	l	
	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t		
	in a relevant trigonometric function.	B1	
	$x_1 = 3\cos t \text{ and } x_2 = 4\cos 1.5t$	B1	(W
	ni soos and ni	[3]	
(ii)		1 1 1	For using distance travelled by P ₂ for
(11)		M1	$0 < t < 5\pi/3$ is $5A_2$
	D 4 1: 4 : 20		$0 < t < 3\pi/3$ is $3A_2$
	Part distance is 20m	A1	
	500 (0.50)7		For subtracting displacement of P ₂ when
	[20 - (-3.62)]	M1	t = 5.99 from part distance.
	Distance travelled by P ₂ is 23.6 m	A1	
	Archi	[4]	NC X-
(iii)	7=1111	M1	For differentiating x_1 and x_2
()	$\dot{x}_1 = -3\sin t; \ \dot{x}_2 = -6\sin 1.5t$	A1	S
	$x_1 = -5\sin t, x_2 = -0\sin t.5t$	711	For evaluating when $t = 5.99$ (must use
		M1	radians)
			radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	0.00
		[4]	
	Alternative for (iii):		2 2 2 2
			For using $v^2 = n^2(a^2 - x^2)$ (must use radians
		M1	to find values of x)
	$v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	
	$[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$		For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \implies v_2 < 0$	M1	changes sign at intervals of T/2 s
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	8 8
6(i)	PE loss at lowest allowable point = 25W	B1	
0(1)	1 E 1033 at 10 west allowable point 23 W	D1	For using EE = $\lambda x^2/(2L)$; may be scored in
) / 1	
	FF : 22000 5 ² /(2 20)	M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	D C DD L LTT
		_	For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
		[5]	
(ii)	[800 = 32000 x/20]	M1	For using $W = \lambda x/L$ at max speed
` ′	,		For using the principle of conservation of
		M1	energy (3 terms required)
	$\frac{1}{2} (800/9.8) v^2$	1,11	the state of the s
	$= 800 \times 20.5 - 32000 \times 0.5^{2} / (2 \times 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1	
		[4]	
(iii)			For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \times 5/20$	A1	
	Max. deceleration is 88.2 ms ⁻²	A1	
	40000000000000000000000000000000	[3]	
		1 121	1

7(i)			For using the principle of conservation of
/(1)	$\left[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m 6}^2 = \text{mg}(0.7) \right]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	energy for the community
	Coefficient of restitution is 0.695	B1ft	ft 4.9 ÷ speed of P before collision
		[3]	Special of a control company
(ii)		<u> </u>	For using the principle of conservation of
	$[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
	3.13(3 × 1 0000)		For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mgcos \theta = mv^2/0.7$	A1	With a _f V/1
	$[T - m9.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v ²
	\ '	A1	AG
	Tension is $14.7\text{m}(1 + 2\cos\theta)\text{N}$	[6]	110
(iii)	$T = 0 \rightarrow \theta = 120^{\circ}$	B1	
(111)	1 0 2 0 120	D1	For using $a_r = -g\cos\theta$
			$ \begin{cases} \text{or } 3.43(3 + 4\cos\theta)/0.7 \end{cases} $
		M1	or $a_t = -g\sin\theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or	1.11	or $a_t - g\sin\theta$
	transverse acceleration is (\pm) 1.5 ms of	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		DC X.
	transverse acceleration is (\pm) 8.49 ms ⁻¹	B1	E2 CK
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
	Lloui		(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43\{3 + 4(-0.5)\} \times 0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^{\circ} \times 0.7) \times \cos^2 60^{\circ}]$	M1	For using $V = v(120^{\circ}) \times \cos 60^{\circ}$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2} m(4.9^2 - 0.8575)]$ or		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2} m(3.43 - 1.05)$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4731

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

1 (i)	Haina a 1 2		
(i)	Using $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$,		
	$1020 = 80 \times 15 + \frac{1}{2}\alpha \times 15^2$	M1	
	$\alpha = -1.6$	A1	
	Angular deceleration is 1.6 rad s ⁻²	[2]	
(ii)	Using $\theta = \omega_2 t - \frac{1}{2} \alpha t^2$,		
	$\theta = 0 - \frac{1}{2} \times (-1.6) \times 5^2$	M1	
	Angle is 20 rad		# :- 10 F
	Aligio is 20 lad	A1 ft	ft is $12.5 \mid \alpha \mid$
(iii)	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$,	[2] M1	
()	- 2 (E) ·		
	$0 = 80^2 + 2 \times (-1.6) \theta$	A1 ft	
	$\theta = 2000$		1000
	Number of revolutions is 318 (3 sf)	A1	Accept $\frac{1000}{\pi}$
		[3]	π
2	Area is $\int_{0}^{\ln 3} e^{-x} dx$		Limite and an entire d
		M1	Limits not required
	$\lceil \rceil^{\ln 3}$ 2	1//	DC X
	$= \left[-e^{-x} \right]^{\ln 3} \left(= \frac{2}{3} \right)$	A1	For $-e^{-x}$
	$\int x y \mathrm{d}x = \int_0^{\ln 3} x \mathrm{e}^{-x} \mathrm{d}x$		
		M1	Limits not required
	$= \left[-xe^{-x} - e^{-x} \right]^{\ln 3} \left(= \frac{2}{3} - \frac{1}{3} \ln 3 \right)$	M1	Integration by parts
	$= -xe^{-x} - e^{-x} = \frac{(=\sin 3)}{3}$		For $-xe^{-x} - e^{-x}$
	$\frac{2}{2} - \frac{1}{2} \ln 3$	A1	
	$\overline{x} = \frac{\frac{2}{3} - \frac{1}{3} \ln 3}{\frac{2}{3}} = 1 - \frac{1}{2} \ln 3$		
	3	A1	
	$\int \frac{1}{2} y^2 dx = \int_0^{\ln 3} \frac{1}{2} (e^{-x})^2 dx$		
			$\int (e^{-x})^2 dx \text{or} \int (-\ln y) y dy + (\frac{1}{3} \ln 3) \times \frac{1}{6}$
	$= \left[-\frac{1}{4} e^{-2x} \right]_0^{\ln 3} (=\frac{2}{9})$	M1	J () (3 / 6
	$=$ $\begin{bmatrix} -\frac{1}{4}e \end{bmatrix}_0$ $(=\frac{1}{9})$		$-\frac{1}{4}e^{-2x}$ or $-\frac{1}{2}y^2 \ln y + \frac{1}{4}y^2$ (dep on
	$\frac{2}{3}$ 1	A1	T
	$\overline{y} = \frac{\frac{2}{9}}{\frac{2}{3}} = \frac{1}{3}$		M1)
	3	A1	Max penalty of 1 mark for correct
		[9]	answers in an unacceptable form (eg
		[-]	decimals)
3	By conservation of angular momentum	M1	Using Iω
(i)	$I_2 \times 15 = 0.9 \times 16$	A1	
	$I_2 = 0.96$		
	$I_2 = 0.9 + m \times 0.4^2$	M1	
	Mass is 0.375 kg	A1	
		[4]	
(ii)	KE before is $\frac{1}{2} \times 0.9 \times 16^2$	M1	Using $\frac{1}{2}I\omega^2$
	KE after is $\frac{1}{2} \times 0.96 \times 15^2$	A1 ft	Both expressions correct
	-		Don't expressions correct
	Loss of KE is $115.2 - 108 = 7.2 \mathrm{J}$	A1	
		[3]	

4	- 110°	M1	Velocity triangle with 90° opposite \mathbf{v}_{C}
(i)	2110	A1	Correct velocity triangle
	$\cos \alpha = \frac{12}{15}$ $\alpha = 36.87^{\circ}$ (4 sf) Bearing of \mathbf{v}_{B} is $110 - 36.87 = 073.13$	M1	Finding a relevant angle
	= 073° (nearest degree)	A1 ag [4]	
(ii)	Magnitude is $\sqrt{15^2 - 12^2} = 9 \text{ ms}^{-1}$	B1	Accept 8.95 to 9.05
	Direction is 90° from \mathbf{v}_{B}	M1	
	Bearing is $73.13+90=163^{\circ}$ (nearest	A1	
	degree)	[3]	
	Alternative for (ii) (using given answer in (i))	V	or Relative velocity is $ \begin{pmatrix} v \sin \theta \\ v \cos \theta \end{pmatrix} = $
	$v^2 = 12^2 + 15^2 - 2 \times 12 \times 15 \cos 37^\circ$		or $v^2 = (2.6)^2 + (-8.6)^2$
	$v = 9$ $\sin \theta \sin 37^{\circ}$	B1	Accept 8.95 to 9.05
	$\frac{\sin \beta}{12} = \frac{\sin 37^{\circ}}{v}$	M1	Finding a relevant angle
	$\beta = 53^{\circ}$	IVII	or $\tan \theta = \frac{2.6}{-8.6}$
	Bearing is $110 + 53 = 163^{\circ}$	۸.4	-8.6
(iii)	As viewed from B	M1	Diagram indicating initial displacement and relative velocity May be implied
	B 3500 A C		
	$d = 3500 \sin 56.87^{\circ}$ Shortest distance is 2930 m (3 sf)	M1 A1 [3]	Accept 2910 to 2950
	Alternative for (iii) $d^2 = (3500 \sin 40^\circ + 2.6t)^2$		
	$+(3500\cos 40^{\circ} - 8.6t)^{2}$	M1	
	Minimum when $-34432 + 162t = 0$ t = 213	M1	Differentiating or completing the
	Shortest distance is 2930 m (3 sf)	A1	square
			Accept 2910 to 2950

5		M1	$(\delta m)x^2$ or $(\rho \delta x)x^2$ or integrating x^2
(i)	5.0	M1	Using $\delta m = \frac{m \delta x}{6a}$ or $\rho = \frac{m}{6a}$
	$I = \int_{-6a}^{5a} \frac{m}{6a} x^2 dx \text{ or } \int_{-6a}^{5a} \rho x^2 dx$	A1	Correct integral expression for I
	$\int_{-a}^{a} 6a$ \int_{-a}^{a}		eg $I = \int_0^{5a} + \int_0^a$
			$I = \int_{-3a}^{3a} + m(2a)^2,$
	Γ] ⁵ <i>a</i>		$I = 2 \int_0^{3a} + m(2a)^2$
	$= \left[\frac{m}{18a} x^3 \right]_{-a}^{5a} = \frac{m}{18a} (125a^3 + a^3) \text{ or } 42\rho a^3$	M1	$I = \int_0^{6a} \dots - m(3a)^2 + m(2a)^2$
	$=\frac{126ma^3}{18a}=7ma^2$	A1	Evaluating definite integral
	18 <i>a</i>	ag	Dependent on integrating x ²
		[5]	
(ii)	MD by couple in 6mga	M1	Using $C\theta$
	WD by couple is $\frac{6mga}{\pi} \times 3\pi$ (=18mga)	A1	
	Gain of PE is $mg(4a)$	B1	
	$18mga = 4mga + \frac{1}{2}(7ma^2)\omega^2$	M1 A1 ft	Equation involving WD, PE and $\frac{1}{2}I\omega^2$
	Angular speed is $\sqrt{\frac{4g}{a}}$	A1 [6]	

Heritage

6 (i)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(3\cos\theta + 4\sin\theta - 3)$	B1	
	When $\theta = 0$, $\frac{dV}{d\theta} = mga(3+0-3) = 0$	M1	Considering $\frac{dV}{d\theta} = 0$
	so $\theta = 0$ is a position of equilibrium $\frac{d^2V}{d\theta^2} = mga(-3\sin\theta + 4\cos\theta)$	A1 ag	Correctly shown
	When $\theta = 0$, $\frac{d^2V}{d\theta^2} = 4mga > 0$ hence the equilibrium is stable	M1 A1 ag [5]	Considering $\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2}$ (or other method) $V'' = 4mga \implies \mathrm{Stable} \mathrm{M1A0}$ $V'' = 4mga \implies \mathrm{Minimum} \implies \mathrm{Stable}$ M1A1
(ii)	Speed of <i>P</i> and <i>Q</i> is $a\dot{\theta}$ KE is $\frac{1}{2}(5m)(a\dot{\theta})^2 + \frac{1}{2}(3m)(a\dot{\theta})^2$ or $\frac{1}{2}(8m)(a\dot{\theta})^2$ $= \frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2$ $= 4ma^2\dot{\theta}^2$	A1 ag [2]	Or moment of inertia of P is $5ma^2$ $\frac{5}{2}ma^2\dot{\theta}^2 + \frac{3}{2}ma^2\dot{\theta}^2$ M1A1 $\frac{1}{2}(5ma^2)\dot{\theta}^2 + \frac{1}{2}(3ma^2)\dot{\theta}^2$ M1A0 $\frac{1}{2}(8ma^2)\dot{\theta}^2$ M1A0
(iii)	$V + 4ma^2\dot{\theta}^2 = K$ $\frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} + 8ma^2\dot{\theta}\ddot{\theta} = 0$ $mga(3\cos\theta + 4\sin\theta - 3)\dot{\theta} + 8ma^2\dot{\theta}\ddot{\theta} = 0$ For small θ , $\sin\theta \approx \theta$, $\cos\theta \approx 1$ $mga(3 + 4\theta - 3) + 8ma^2\ddot{\theta} \approx 0$ $\ddot{\theta} \approx -\frac{g}{2a}\theta$ Approximate period is $2\pi\sqrt{\frac{2a}{g}}$	M1 A1 M1 A1 ft A1 [5]	= 0 is required for A1 (may be implied by later work) Linear approximation (ft is dep on M1M1)

7		M1	Using parallel (or perpendicular) axes
(i)	$I = \frac{1}{3}m\{(3a)^2 + (4a)^2\} + m(5a)^2$	A1	rule
	$=\frac{100ma^2}{1}$	A1	or $I = \frac{4}{3}m(3a)^2 + \frac{4}{3}m(4a)^2$
	3	[3]	
(ii)	B Said 4a G 3a C mg D		
	By conservation of energy, $\frac{1}{2}(\frac{100}{3}ma^2)\omega^2 = mg(4a - 3a)$ $\frac{50}{3}ma^2\omega^2 = mga$	M1 A1 ft	Equation involving KE and PE
	Angular speed is $\sqrt{\frac{3g}{50a}}$ $-mg(3a) = (\frac{100}{3}ma^2)\alpha$ Angular acceleration is $(-)\frac{9g}{100a}$	A1 ag M1 A1 [5]	Using $C = I\alpha$
(iii	$P - mg\cos\theta = m(5a)\omega^2$	M1	Equation involving P and $r\omega^2$
)	$P - \frac{4}{5}mg = m(5a)\left(\frac{3g}{50a}\right)$ $P = \frac{11}{10}mg$	A2	Give A1 if correct apart from sign(s) (Allow $\frac{3}{5}H + \frac{4}{5}V$ in place of P)
	$Q - mg\sin\theta = m(5a)\alpha$	M1	Equation involving Q and $r\alpha$
	$Q - \frac{3}{5}mg = -m(5a)\left(\frac{9g}{100a}\right)$ $Q = \frac{3}{20}mg$ $F = \sqrt{P^2 + Q^2} = \frac{1}{20}mg\sqrt{22^2 + 3^2}$	A2 ft	Give A1 if correct apart from sign(s) ft for wrong value of α ft for wrong value of r in second equation (Allow $\frac{3}{5}V - \frac{4}{5}H$ in place of Q)
	$=\frac{\sqrt{493}}{20}mg$	M1 A1 ag [8]	Dependent on previous M1M1
	Alternative for (iii)		
	$H = m(5a)\omega^2 \sin \theta - m(5a)\alpha \cos \theta$	M1	Equation involving H , $r\omega^2$ and $r\alpha$
	$H = m(5a) \left(\frac{3g}{50a}\right) \left(\frac{3}{5}\right) + m(5a) \left(\frac{9g}{100a}\right) \left(\frac{4}{5}\right)$	A2 ft	Give A1 if correct apart from sign(s)
	$V - mg = m(5a)\omega^2 \cos\theta + m(5a)\alpha \sin\theta$	M1	Equation involving V , $r\omega^2$ and $r\alpha$
	$V - mg = m(5a) \left(\frac{3g}{50a}\right) \left(\frac{4}{5}\right) - m(5a) \left(\frac{9g}{100a}\right) \left(\frac{3}{5}\right)$	A2 ft	Give A1 if correct apart from sign(s)
	$H = \frac{27}{50} mg$, $V = \frac{97}{100} mg$		

$F = \sqrt{H^2 + V^2} = \frac{1}{100} mg \sqrt{54^2 + 97^2}$	M1	Dependent on previous M1M1
$=\frac{\sqrt{12325}}{100}mg=\frac{\sqrt{493}}{20}mg$	A1	
	ag	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Mathematics

Advanced GCE 4732

Probability and Statistics 1

Mark Scheme for June 2010

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper

	er-rounding only once in paper.	1	
1i	590	B1 1	Allow approximately 590
ii	Graph horiz (for \geq 55 mks) oe	B1 1	or levels off, or grad = 0, grad not increase
			Allow line not rise, goes flat, plateaus, stops
			increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27	M1	eg 26 mks \rightarrow 150 th 27 mks \rightarrow 180 th
"	Double & attempt read x	M1	eg read at cf = 300 or 360 Indep of first M1
	Bouote & uttempt read x	1111	May be implied by ans
	Max $C = 29$ to 31.5	A1 3	Answer within range, no working, M1M1A1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$A_1 J$	32 without working, sc B1
	I O = 25 5 26 5 or IIO = 24 25 5	M1	M1 for one correct quartile
V	LQ = 25.5-26.5 or UQ = 34-35.5		*
	IQR = 8-10	A1	$dep \ge 1$ correct quartile or no working
	(C)	D10 2	1 '
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar,
			more varied, more variable, greater variance,
			more spaced apart, further apart
			ft their IQR; must be consistent with IQR
	795355		53/65
	Α		Correct comment with no working: M0A0B1
Total	A KAI	9	IOC X.
2i	Opposite orders or ranks or scores		or reversed, or backwards, or inverse
	or results or marks		or as one increases the other decreases
	$r_s = -1$	B1 1	Needs reason AND value
ii	Attempt Σd^2 (= 6)	M1	L
	$1 - \frac{6 \times \Sigma d^2}{3(3^2 - 1)}$		r200
	$\frac{1}{3(3^2-1)}$	M1	dep 1 st M1
	$=-\frac{1}{2}$ oe		Allow use wrong table for M1M1
	2 00	A1 3	
iii	3! or ³ P ₃ or 6	M1	r attempt list possible orders of 1,2,3 (≥3 orders)
	1 ÷ their '6'	M1	2 nd M1 for fully correct method only
			or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
	$\frac{1}{6}$ oe eg $\frac{6}{36}$	A1 3	3 2 (11) 1 111111
TD 4 1	6 2 30		
Total		7	
3i	If x is contr (or indep) or y depend't,		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	B1	you choose x , you set x , x is fixed, x is chosen
	If neither variable contr'd (or indep)		Allow y not controlled AND want est y from x
	AND want est y from x : use y on x	B1 2	
			Ignore incorrect comments
iia	$S_{xx} = 510000 - \frac{1800^2}{9}$ (= 150000)		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
	, , , , , , , , , , , , , , , , , , ,		M1 for either S
	$b = \frac{1200'}{150000'} \tag{= 0.008}$	M1	$b = \frac{133.33'}{166667'}$ dep correct expressions both S's
	130000		10000.7
	144		on = 144 0 000 × 1800 (= 0)
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (=0)$
	, , , , , , , , , , , , , , , , , , ,		Must be all correct for M1
	y = 0.008x (+ 0)	A1 4	CAO
iib	312.5 or 313	B1ft 1	t their equn in (iia)
		B1ft 1	ft their equi in (iia)
iic	-0.4	1 12 1 17 1	

4732		Mark Scheme Jเ		
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller	
	Unreliable because extrapolated oe	B1 2	or not in the range of <i>x</i> or not in range of previous results	
Total		10		
4ia	0.299 (3 sf)	B1 1		
ib	0.2991 - 0.1040 = 0.195 (3 sf) or $\frac{1280}{6561}$ oe	M1 A1 2	Must subtract correct pair from table	
iia	$^{15}C_4 \times (1-0.22)^{11} \times 0.22^4$ = 0.208 (3 sf)	M1 A1 2	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$	
iib	$(15 \times 0.22 =) 3.3$ $15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22)	B1 M1	Allow M1 for $15 \times 0.22 \times 0.88$	
	= 2.57 (3 sf)	A1 3		
Total		8		
5i	$\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$ or $\frac{1}{{}^{4}C_{2}}$ or $\frac{2}{12}$	B1	or 1 out of 6 or 2 out of 12 or $\frac{2!}{4!} \times 2$	
	$(=\frac{1}{6} \mathbf{AG})$			
	$\frac{1}{4} \times \frac{2}{3}$ or $2 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{{}^{4}C_{2}}$ or $\frac{2!}{4!} \times 2$	
	Add two of these or double one $(=\frac{1}{3} \mathbf{AG})$	B1 3	V C 3 CC	
	(3 125)		or $\frac{2}{^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1	
		100	or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1	
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions Allow other values with zero probabilities.	
	P(X=5) wking as for P(X=4) above or $1 - (\frac{1}{6} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1		
	P(X=3) wking as for $P(X=6)$ above			
	or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1	or M1 for total of their probs = 1, dep B1	
	3 4 5 6		or $P(X=3) = \frac{1}{6}$, $P(X=4) = \frac{1}{3}$, $P(X=5) = \frac{1}{3}$, $P(X=6) = \frac{1}{6}$	
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6}$ oe	A1 4	Complete list of values linked to probs	
iii	$\sum xp$	M1	≥ 2 terms correct ft	
	$=4\frac{1}{2}$	A1		
	$\sum x^2 p \qquad (= 21 \frac{1}{6})$ $- 4 \frac{1}{2}$	M1 M1	≥ 2 terms correct ft Independent except dependent on +ve result	
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5		
Total		12		

4732		Walk 5	Cheme
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) \div 10
	= 5.7	A1	
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1
	$v = \frac{('342' + 3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$
	= 2.61 oe	A1 6	CAO
Total		6	
7i	$^{4}\text{C}_{2} \times {^{6}\text{C}_{3}} \times {^{5}\text{C}_{4}} \text{ or } 6 \times 20 \times 5$	M1M1	M1 for any 2 correct combs seen, even if added
	= 600	A1 3	
ii	$\frac{2}{4}$ or $\frac{{}^{3}C_{1}}{{}^{4}C_{2}}$ or $\frac{{}^{3}C_{1}{}^{6}C_{3}{}^{5}C_{4}}{{}^{4}C_{2}{}^{6}C_{3}{}^{5}C_{4}}$ or	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$
	$\frac{{}^{3}C_{1}\times^{6}C_{3}\times^{5}C_{4}}{'600'}$		
	$=\frac{1}{2}$ oe	A1 2	
iii	${}^{3}C_{1} \times {}^{6}C_{3} \times {}^{4}C_{4} + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by
	Α		something
	360	A1 3	VAC X
Total	AICI	8	ACO OK

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^n \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ⁴ C ₁ used, or YNNNY
	$^{4}C_{1} \times 0.7^{3} \times 0.3$ (= 0.412)	M1	
	× 0.3	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4733/01

Probability and Statistics 2

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

	(*) ()	T	3.51		4 0064 4 0006 4 0000 154 0004 150
1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1	•	1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0
		= 0.1325	A1	2	Or 0.132 or 0.133
	(b)	Po(0.42)	M1		Po(0.42) stated or implied
		$e^{-0.42} \frac{0.42^2}{2!} = 0.05795$	M1		Correct formula, any numerical λ
		2!	A1	3	Answer, art 0.058. Interpolation in tables: M1B2
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.
		cases in winter so not at constant			not just "independently, singly and constant average
		average rate"			rate". See notes.
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied
		P(< 3)	M1		Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence
	()	independently, which this is not, but			condition. It doesn't negate "constant probability"
		unimportant as population is large			condition but can allow B1 if "selected". See notes
3	(i)		M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc
	· /	$\left(\frac{32-40}{\sigma}\right) = \Phi^{-1}(0.2) = -0.842$	B1		0.842 seen
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied
	(11)	$\approx N(18, 14.4)$	M1		N, their <i>np</i>
			A1		variance their npq , allow $\sqrt{\text{errors}}$
		$1 - \Phi\left(\frac{19.5 - 18}{\sqrt{14.4}}\right) = 1 - \Phi(0.3953)$	M1		Standardise with np and npq , allow $$, cc errors, e.g.
		√14.4)	A1		
		= 1 - 0.6537 = 0.3463	A1	6	396, .448, .458, .486, .472; \sqrt{npq} and cc correct
4		II . n = 0.4	B1	•	Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
4		$H_0: p = 0.4,$ $H_1: p > 0.4$	B1		Fully correct, B2. Allow π . p omitted or μ used in both,
		$R \sim B(16, 0.4)$:	M1		or > wrong: B1 only. x or \overline{x} or 6.4 etc: B0
	(α)	$P(R \ge 11) = 0.0191$	A1		B(16, 0.4) stated or implied, allow N(6.4, 3.84)
	(α)	$F(K \ge 11) = 0.0191$	AI		Allow for $P(\le 10) = 0.9808$, and < 0.99 , or $z = 2.092$ or
		> 0.01	A1		$p = 0.018$, but <i>not</i> $P(\le 11) = 0.9951$ or $P(= 11) = 0.0143$
					Explicit comp with .01, or $z < 2.326$, not from ≤ 11 or $= 11$
	(β)	$CR R \ge 12 \text{ and } 11 < 12$	A1		Must be clear that it's ≥ 12 and not ≤ 11
		Probability 0.0049	A1		Needs to be seen, allow 0.9951 here, or $p = .0047$ from N
		Do not reject H ₀ . Insufficient	M1		Needs like-with-like, $P(R \ge 11)$ or $CR R \ge 12$
		evidence that proportion of	A1 FT	7	Conclusion correct on their p or CR, contextualised, not
		commuters who travel by train has			too assertive, e.g. "evidence that" needed.
		increased			Normal, $z = 2.34$, "reject" [no cc] can get 6/7
5	(i)	(a) $30 + 1.645 \times \frac{5}{\sqrt{10}}$	M1		$30 + 5z/\sqrt{10}$, allow \pm but not just –, allow $$ errors
		$\sqrt{10}$	B1		z = 1.645 seen, allow –
		= 32.6	A1		Critical value, art 32.6
		Therefore critical region is $\bar{t} > 32.6$	A1 FT	4	"> c " or " $\geq c$ ", FT on c provided > 30, can't be
		Therefore entired region is v > 32.0			recovered. Withhold if not clear which is CR
		(b) $P(\bar{t} < 32.6 \mid \mu = 35)$	M1*		Need their c, final answer < 0.5 and $\mu = 35$ at least, but
		32.6-35 [_ 1.5179]			allow answer > 0.5 if consistent with their (i)
		$\frac{32.6 - 35}{5/\sqrt{10}} \ [= -1.5178]$	dep*M1		Standardise their CV with 35 and $\sqrt{10}$ or 10
		0.0645	A1	3	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
	(ii)	$(32.6 - \mu) = 0$	M1		Standardise c with μ , equate to Φ^{-1} , can be implied by:
	(11)	$(32.6 - \mu) = 0$ $\mu = 32.6$	A1 FT		Standardise c with μ , equate to Φ , can be implied by: $\mu = \text{their } c$
		$\mu = 32.0 20 + 0.6m = 32.6$	M1		Equate and solve for m , allow from 30 or 35
		20 + 0.0m = 32.0 m = 21	A1	4	Answer, a.r.t. 21, c.a.o.
		m – 21	111	-	MR: 0.05: M1 A0 M1, 16.7 A1 FT
					·
			1		Ignore variance throughout (ii)

6	(a)	N(24, 24)	B1	Normal, mean 24 stated or implied
	(u)		B1	Variance or SD equal to mean
		$1 - \Phi\left(\frac{30.5 - 24}{\sqrt{24}}\right) = 1 - \Phi(1.327)$	M1	Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\alpha}$ errors, e.g.
		$\sqrt{24}$	A1	.131 or .1103; 30.5 and $\sqrt{\lambda}$ correct
		= 0.0923	A1 5	
	(1.)(*)	r 10/21' / 1		Answer in range [0.092, 0.0925]
	(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15
	(ii)	Consider $(200 - E)$	M1	Consider complement
		$(200 - E) \sim Po(4)$	M1	Po(200×0.02)
		$P(\ge 6) = [= 1 - 0.7851]$	M1	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107
_		= 0.2149	A1 4	Answer a.r.t. 0.215 only
7		$H_0: \mu = 56.8$	B2	Both correct
		$H_1: \mu \neq 56.8$	D.1	One error: B1, but <i>not</i> \overline{x} , etc
		$\overline{x} = 17085/300 = 56.95$	B1	56.95 or 57.0 seen or implied
		$\frac{300}{299} \left(\frac{973847}{300} - 56.95^2 \right)$	M1	Biased [2.8541] : M1M0A0
		$\frac{1}{299} \left(\frac{1}{300} - 36.95 \right)$	M1	Unbiased estimate method, allow if ÷ 299 seen anywhere
		= 2.8637	A1	Estimate, a.r.t. 2.86 [not 2.85]
			M1	Standardise with $\sqrt{300}$, allow $\sqrt{\text{errors}}$, cc
	(a)	$z = \frac{56.95 - 56.8}{\sqrt{2.8637/300}} = 1.535$	A1	$z \in [1.53, 1.54] \text{ or } p \in [0.062, 0.063], not - 1.535$
		1.535 < 1.645 or 0.0624 > 0.05	A1	Compare explicitly z with 1.645 or p with 0.05, or
		1.030 (1.010 01 0.0021 / 0.00		$2p > 0.1$, not from $\mu = 56.95$
	(β)	CV 2.8637	M1	$56.8 + z\sigma/\sqrt{300}$, needn't have \pm , allow $\sqrt{\text{errors}}$
		$CV_{56.8 \pm 1.645} \times \sqrt{\frac{2.8637}{300}}$	A1	z = 1.645
		56.96 > 56.95	A1 FT	$c = 56.96$, FT on z, and compare 56.95 [$c_L = 56.64$]
		Do not reject H_0 ;	M1	Consistent first conclusion, needs 300, correct method
		Bo not reject 110,	1411	and comparison
		insufficient evidence that mean	A1 FT	Conclusion stated in context, not too assertive, e.g.
		thickness is wrong	11	
8	(i)		M1	Integrate $f(x)$, limits 1 and ∞ (at some stage)
	(-)	$\int_{1}^{\infty} kx^{-a} dx = \left[k \frac{x^{-a+1}}{-a+1} \right]_{1}^{\infty}$	B1	Correct indefinite integral
		$\begin{bmatrix} J_1 \\ -a+1 \end{bmatrix}_1$	A1 3	Correctly obtain given answer, don't need to see
		Correctly obtain $k = a - 1$ AG		treatment of ∞ but mustn't be wrong. Not k^{-a+1}
	(ii)		M1	Integrate $xf(x)$, limits 1 and ∞ (at some stage)
	(11)	$\int_{1}^{\infty} 3x^{-3} dx = \left[3 \frac{x^{-2}}{-2} \right]_{1}^{\infty} = 1 \frac{1}{2}$	1111	[x^4 is not MR]
		$\begin{bmatrix} -2 \end{bmatrix}_1$	M1	Integrate $x^2 f(x)$, correct limits
		$\int_{1}^{\infty} 3x^{-2} dx = \left[3 \frac{x^{-1}}{-1} \right]_{0}^{\infty} - (1 \frac{1}{2})^{2}$	A1	Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$
		$\int_{1}^{3} 3x dx = \begin{bmatrix} 3 - 1 \\ -1 \end{bmatrix}_{1}^{3} - (1 \frac{7}{2})$	M1	Subtract their numerical μ^2 , allow letter if subs later
		Answer 3/4	A1 5	Final answer $\frac{3}{4}$ or 0.75 only, two, e.g. not from $\mu = -\frac{1}{2}$.
		1 1110 11 01 71	0-4.5	[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
	(iii)	c ² [.1 ² 0.0	M1*	Equate $ f(x)dx$, one limit 2, to 0.9 or 0.1.
	(111)	$\int_{1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1} \right]_{1}^{2} = 0.9$ $1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	1/11	Equate $J(x)ax$, one limit 2, to 0.9 or 0.1. [Normal: 0 ex 4]
		1	dep*M1	Solve equation of this form to get 2^{a-1} = number
		$1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	M1 indept	Use logs or equivalent to solve 2^{a-1} = number
			A1 4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0
		a = 4.322	A1 4	Allswer, a.f.t. 4.32. 1 &1. (IVITIVIT) B2 OF BU

Specimen Verbal Answers

1	α	"Cases of infection must occur randomly, independently, singly and at	
		constant average rate"	B0
	β	Above + "but it is contagious"	B1
	γ	Above + "but not independent as it is contagious"	B2
	δ	"Not independent as it is contagious"	B2
	3	"Not constant average rate", or "not independent"	B0
	λ	"Not constant average rate because contagious" [needs more]	B1
	ζ	"Not constant average rate because more likely at certain times of year"	B2
	μ	Probabilities changes because of different susceptibilities	B0
	ν	Not constant average rate because of different susceptibilities	B2
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1
	θ	More than one correct assertion, all justified	B2
	π	Valid reason (e.g. "contagious") but not referred to conditions	B1
	_		

[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".

α	"No it doesn't invalidate the calculation" [no reason]	B0
β	"Binomial requires not chosen twice" [false]	B0
γ	"Probability has to be constant but here the probabilities change"	B0
δ	Same but "probability of being chosen" [false, but allow B1]	B1
3	"Needs to be independently chosen but probabilities change" [confusion]	B0
ζ	"Needs to be independent but one choice affects another" [correct]	B2
η	"The sample is large so it makes little difference" [false]	B0
θ	"The population is large so it makes little difference" [true]	B2
λ	Both correct and wrong reasons (scattergun approach)	B1

[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition <u>does</u> require the possibility of the same person being chosen twice.]

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552

Facsimile: 01223 552553

Mathematics

Advanced GCE 4734

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

1(i)	Total has Poisson distribution with mean	M1	With ×5
	λ = 0.21×5+0.24×5 = 2.25	A1	
	$P(\geq 2) = 1 - e^{-\lambda}(1+\lambda)$	M1	λ or 1+λ in brackets (their λ)
	=0.657	A1 4	Or interpolation from tables
(ii)	EITHER: Each length is a random sample	B1	In context
	OR: Flaws occur independently on the reels	1	Accept randomly
		[5]	
2	H_0 : $μ$ =(or ≥) 170 , H_1 : $μ$ < 170	B1	For both hypotheses; accept words
	\overline{x} =167.5 s^2 = 5.9	B1 B1	SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7
	S = 0.9	וטו	IVIAX 3/1
	EITHER: (a) $(167.5 - 170)/\sqrt{(5.9/6)}$	M1	Standardise 167.5; + or – for M; /6
	= - 2.52(1) Compare with – 2.015	A1 M1	seen Explicitly Allow 2.571
	OR: $(\beta) \ 170 - t\sqrt{(5.9/6)}$	M1	Finding critical value or region.
	OR: $(\beta) 170 - t\sqrt{(5.9/6)}$ = 168.0	A1	With <i>t</i> = 2.015 or 2.571
	Compare 167.5 with CV and reject H ₀	M1	Explicitly. Allow correct use of t
	There is sufficient evidence at the 5% significance level that the machine	A1	M0 if z used SR: B1 if no explicit comparison
	dispenses less than 170 ml on average.	L	but conclusion "correct"
	пен	[7]	186
0(1)	II. There is a second in the second s		OD difference in agreementing
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day	B1	SR difference in proportions B1 define and evaluate p_1 and p_2
	they shop		with H ₀
	(H₁: All alternatives) E-Values 27.3 14. 7	M1	B1 for p =0.42 M1A1 for z = ±1.827 or 1.835(no pe)
	37.7 20.3	A1	M1A0 Max 5/8
	$\chi^2 = (4.3 - 0.5)^2 (27.3^{-1} + 37.7^{-1} + 14.7^{-1} + 20.3^{-1})$	N/1 #	At least one E value correct (M41)
	= 2.606 Compare with 2.706 Do not reject H_0 .	M1 ft A1	At least one E value correct (M1) All correct(A1)
	There is insufficient evidence of an association.	A1	At least one χ ² , no or wrong cc, (M1FtE)
	association.	M1	All correct (A1); 2.606 or 2.61 (A1)
	SR: If H ₀ association, lose 1 st B1 and last	A1	Or use calculator ($p = 0.106$) SR: B1
	M1A1	8	if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and
			last M1A1
(ii)	Conclusion the same since critical value >	B1	OR from z=±2.17, SR
	2.706	1	
	(and test statistic unchanged)		
		[9]	
		1	

4(i)	s^2 = (1183.65-246.6 ² /70)/69	M1	AEF
7(1)		M1	Allow without ft or with s^2 ; with 70
	Use $\bar{x} \pm zs / \sqrt{70}$		The state of the s
	s /√(70)	A1	Their s
	1.645	A1	
	(3.10, 3.94)	A1 5	A0 if interval not indicated
(ii)	Change 90 to around 90	B1 1	Or equivalent
(iii)	$4(0.9)^3(0.1) + 0.9^4$	M1	Use of bino with <i>p</i> =0.9 or 0.1 and 4
(111)	4(0.9) (0.1) + 0.9	IVI I	
			and
	=0.9477	A1 2	Correct terms considered. art 0.948
	05)	[8]	(1)
5(i)	$e^{-2.25} - e^{-4}$	M1	Or find last entry using $F(x)$
٥(١)	× 150	A1	or and last critiy doing t (x)
			Or 2.7 if found first
	= 13.1	A1	Or 2.7 if found first
	Last: 150 – sum=2.7	A1 ft 4	Or 13.1 any accuracy
(ii)	(H₀: Data fits the model, H₁: Data does	B1	At least two correct
` ′	not fit)		All correct
	Combine last two cells	M1*Dep	In range 13.2 to 13.5
	$\chi^2 = 7.8^2/33.2 + 11.6^2/61.6 + 7.4^2/39.4 +$	A1	SR: If last 2 cells are not combined
	$\chi = 7.6733.2 + 11.6761.6 + 7.4739.4 + 11.2^2/15.8$		
		A1	B0M1A1A1(for 13. 5) M1A1
	= 13.3(46)	M1	If no explicit comparison B1 if
	Compare with 9.348 (or 11.14), reject	1251	conclusion follows
	H_0	A1 ft	
	(There is sufficient evidence at the $2\frac{1}{2}$ %	Dep* 6	$\sigma \circ$
	-		7 -
	significance level that) the model is not a	[40]	~ -
	good fit	[10]	
	10°-0 = 700 t		
6(i)	Anxiety scores; have normal	B2	Context + 2 valid points B2
6(i)	Anxiety scores; have normal distributions:	B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1
6(i)	distributions;	B2	Context + 1VP, no context +2VP B1
6(i)	distributions; common variance; independent samples		•
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$	B1	Context + 1VP, no context +2VP B1 Not in words
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	B1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 =
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$	B1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18)
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	B1 B1 M1 A1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct +
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	B1 B1 M1 A1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct +
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9) (t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]} = -1.615$	B1 B1 M1 A1 A1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13)
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	B1 B1 M1 A1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or +
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ $= -1.615$ $t_{crit} = -1.699$	B1 B1 M1 A1 A1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13)
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not	B1 B1 M1 A1 A1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s²= 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0	B1 B1 M1 A1 A1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or +
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5%	B1 B1 M1 A1 A1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s²= 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0	B1 B1 M1 A1 A1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s²= 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5%	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1;
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or \geq st , t = ±1.699 or ±2.015
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or \geq st , t = ±1.699 or ±2.015 M1A1
6(i)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or $\geq st$, $t = \pm 1.699$ or ± 2.015 M1A1 $t = \pm 1.699$ B1; G= 6.11(2) A1;
	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ $= -1.615$ $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or \geq st , t = ±1.699 or ±2.015 M1A1
(ii)	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or $\geq st$, $t = \pm 1.699$ or ± 2.015 M1A1 $t = \pm 1.699$ B1; G= 6.11(2) A1;
	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ $= -1.615$ $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or $\geq st$, $t = \pm 1.699$ or ± 2.015 M1A1 $t = \pm 1.699$ B1; G= 6.11(2) A1;
	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ $= -1.615$ $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or $\geq st$, $t = \pm 1.699$ or ± 2.015 M1A1 $t = \pm 1.699$ B1; G= 6.11(2) A1;
	distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16-38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ $= -1.615$ $t_{\rm crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B1 B1 M1 A1 A1 B1 M1	Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or $\geq st$, $t = \pm 1.699$ or ± 2.015 M1A1 $t = \pm 1.699$ B1; G= 6.11(2) A1;

7(i)	Use $\sum F + \sum M \sim N(\mu, \sigma^2)$	M1	Sum of indep normal variables is
' (')	$\mu = 1104.9$	A1	normal
	$\sigma^2 = 6 \times 9.3^2 + 9 \times 8.5^2$	M1	Homai
	= 1169.2	A1	
	$P(> 1150) = 1 - \Phi([1150 -$	M1	Standardise, correct tail. M0 σ/√15
	1104.9]/√(1169.2)	A1	Accept .094
	= 0.0937	6	7.66667.7667.
(ii)	If unknown M, prob $\frac{1}{2}$, 6F and 9M as	M1	Considering two cases
(,	before.		- Considering two succe
	If unknown W, prob $\frac{1}{2}$, 7W and 8M	B1 B1	Mean and variance
	Having N(1093.3,1183.4)		
		A1	(1)
	$P(> 1150)= 1 - \Phi(1.648) = 0.0497$	M1	Use of $\frac{1}{2}$
	$P = \frac{1}{2} \times 0.0936 + \frac{1}{2} \times 0.0497$	A1	ART 0.072
	= 0.07165	6	
		[12]	
	0		
8(i)	$X = \frac{1}{4} S^2$	B1	23423
	$-c$, c^s 8 $\begin{bmatrix} 4 \end{bmatrix}^s$		
	$F(s) = \int_{1}^{s} \frac{8}{3s^{3}} ds = \left[-\frac{4}{3s^{2}} \right]_{1}^{s}$	M1	C X.
	35 [35]		2 OX
	$=\frac{4}{3}(1-1/s^2)$	A1	Ignore range here
	$G(x) = P(X \le x) = P(S \le 2\sqrt{x})$	M1	SR: B1 for $G(x)=F(2\sqrt{x})$ without
	$= F(2\sqrt{x})$	ni -	justification and with correct result
			ft F
	$= \frac{4}{3} - \frac{1}{3x}$	A1 ft	OA
	(1 1		2
	$g(x) = \begin{cases} \frac{1}{3x^2} & \frac{1}{4} \le x \le 1, \end{cases}$	M1	For G' (a)
	$g(x) = \begin{cases} \frac{1}{3x^2} & \frac{1}{4} \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$	B1	For range
	(o otherwise.		
		7	
(ii)	EITHER: $G(m) = \frac{1}{2}$	M1	ft G(x) in (i)
	$\Rightarrow \frac{4}{3} - \frac{1}{3x} = \frac{1}{2}$	A1 ft	CAO
	$\Rightarrow m = \frac{2}{5}$	A1	
	OR: $\int_{1/4}^{m} \frac{1}{3x^2} dx = \frac{1}{2}$	M1	Allow wrong 1/4
	$J_{1/4} 3x^2$ 2		7 men meng 4
	$\begin{bmatrix} 1 \end{bmatrix}^m = 1$		
	$\Rightarrow \left[-\frac{1}{3x} \right]_{1/4}^{m} = \frac{1}{2}$	A1	Allow wrong $\frac{1}{4}$
			·
	$\Rightarrow m = \frac{2}{5}$	A1	CAO
	5		
		3	
		[10]	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4735

Mark Scheme for June 2010

Archives & Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

1(i)	Var(2A - 3B) = 4Var(A) + 9Var(B) - 12Cov(A,B)	M1	Correct formula. Allow one
	40 00 -4 400 /4 5		error
	\Rightarrow 18 = 36 + 54 - 12Cov(A,B)	A1 A1 3	Substitute relevant values
/::\	\Rightarrow Cov(A, B) = 6	A1 3 B1 ft	CAO
(ii)	Since $Cov(A, B) \neq 0$, A and B are not independent	1 1	Must have a reason. ft Cov≠ 0
		(4)	3007
2(i)	$G'(t) = 8te^{4t^2}/e^4$	M1A1	M1 for ct ² /e ⁴
	E(X) = G'(1)		
	= 8	A1 3	
(ii)	EITHER: $G(t) = e^{-4}(1 + 4t^2 +)$	M1A1	Expand in powers of <i>t</i>
(,	$P(X=2) = \text{coefficient of } t^2 = 4e^{-4} \text{ or } 4/e^4 \text{ or } 0.0733$	A1 3	Expand in powers or t
	OR $G''(t) = (8+64t^2)e^{4t^2-4}$	M1A1	M1 for reasonable attempt
	$P(X=2) = \frac{1}{2}G''(0) = 4e^{-4} \text{ or } 4/e^{4} \text{ or } 0.0733$	A1	at M"(<i>t</i>)
	, , , , , , , , , , , , , , , , , , , ,	(6)	
3(i)	Number of different rankings ¹¹ C ₅	M1	Number of selections of 5
	77475 - 170301 ×1040		from 11
	=462	A1	0
	For <i>R</i> ≤ 17: 1+2+3+4+5 = 15 1+2+3+4+6=16	30	×.
	1+2+3+4+0=10		
	1+2+3+4+7=17	B2	B1 for 2 or 3 correct
	$P(R \le 17) = 4/462 = 2/231$ AG	A1 5	
(ii)	<i>W</i> = 17	M1	
	$P(W \le 17) = \frac{2}{231}$	106	2
	Smallest SL = $\frac{400}{231}$ %	A1ft 2	Allow $\frac{4}{231}$; ft $\frac{2}{231}$, but must
		(7)	be exact
4(i)	EITHER: (a) M'(t) = $n(1 - 2t)^{-\frac{1}{2}n-1}$	M1 A1	Correct form for M1
	E(Y) = M'(0) = n $M''(t) = n(n+2)(1-2t)^{-1/2n-2}$	A1 M1	Ft similar M'(t)
	$Var(Y) = n(n+2) - n^2 = 2n$	A1 5	$M''(0) - (M'(0))^2$
	OR: $M(t) = 1 + nt + \frac{1}{2}n(n+2)t^2$	M1A1A1	(-7)
	E(Y) = n	A1	
	$Var(Y) = n(n+2) - n^2 = 2n$	A1 5	
(ii)	$MGF = (1 - 2t)^{-30}$	B1	From [(1 – 2 <i>t</i>) ^{-1/2}] ⁶⁰
/::··\	χ^2 distribution with 60 d.f.	B1 2	
(iii)	E(S) = 60, Var(S) = 120 Using CLT, Probability =1 – Φ(10/ $\sqrt{120}$)	B1ft M1	From (i) Correct tail: allow cc
	= 0.181	A1 3	Correct tail. allow CC
		(10)	

5/i\	Assumos salarios symmetrically	B1	In context
5(i)	Assumes salaries symmetrically distributed	וטו	
	H_0 : $m(\text{edian}) = 19.5$, H_1 : $m(\text{edian}) \neq 19.5$	B1	For both; not μ ; accept words
	P = 867 (or 408)		, , , , , , , , , , , , , , , , , , , ,
	Using normal approximation	M1	
	$\mu = \frac{1}{4} \times 50 \times 51 \ (= 637.5)$	A1	
	$\sigma^2 = 50 \times 51 \times 101/24 (= 10731.25)$	A1	
	$z = (a - 637.5)/\sqrt{10731.25}$	M1	a=866.5, 867, 867.5 (or 408.5,
	Use $a = 866.5$ = 2.211, or 2.215 or 2.220 (– from 408)	A1 A1	408, 407.5)
	Compare their z with 1.96 and reject H_0	M1	407.5)
	There is sufficient evidence at the 5% SL	1011	Or <i>p</i> -value rounding to 0.026 or
	that the median salary differs from £19	A1 ft	0.027
	500	10	Compare with 0.05 or equivalent
			ft z Or find critical region
(ii)	Use sign test when salary distribution is	B1 1	
	skewed	(11)	
6(i)	N	(11)	
0(1)	0 1 2	B1	
	0 0 c 2c	M1	Calculate 9 probs in terms of c
	R 1 2c 3c 4c	ve	2007
	2 4c 5c 6c		
	Total 27 <i>c</i> = 1	A 4	
	$C = \frac{1}{27}$	A1 3	
(ii)	9c/27c	M1	Marginal probability
(,	$=\frac{1}{3}$	A1 ft	AEF; ft c
	3	2	/ LI , It o
(iii)	P(N + R > 2)		
(,	$= 15c/27c = \frac{5}{9}$	M1	AEF; ft c
	y	A1 ft	AEF, ILC
		2	
(iv)	$P(R=2) = \frac{15}{27}$		
\.,'		M1	Using conditional probabilities
	$P(N \mid R=2)$: $p_0 = \frac{4}{15}$, $p_1 = \frac{1}{3}$, $p_2 = \frac{2}{5}$	A1 ft A1 ft	One value; ft values in (i) All values
	$E(N R=2) = 1 \times \frac{1}{3} + 2 \times \frac{2}{5}$	ATIL	
	$=\frac{17}{15}$	A1	Or 1.13
		4	
(v)	Eg P($N = 0$ and $R = 0$) = 0	M1	Or from conditional probs
	$P(N=0) \times P(R=0) = \frac{6}{27} \times \frac{3}{27} \neq 0$		M0 from N=1 with R=1 or 2
	So N and R are not independent	A1	All correct
		2	
		(13)	

7(i)	$\int_0^{2\theta} \frac{x^{n+1}}{2\theta^2} dx = \left[\frac{x^{n+2}}{2(n+2)\theta^2} \right]$	M1		Correct integral
	$ \begin{bmatrix} 20 & 2\theta^2 & \lfloor 2(n+2)\theta^2 \rfloor \\ = 2^{n+1}\theta^n/(n+2) \end{bmatrix} $	A1		AEF
	$E(X) = 4\theta/3$	B1 ft	3	B0 if not 'deduced'
(ii)	Var(X) = $2\theta^2 - (4\theta/3)^2 = 2\theta^2/9$ Var(X ²) = E(X ⁴) - (E(X)) ² = $16\theta^4/3 - 4\theta^4 = 4\theta^4/3$	M1A1ft M1A1ft	4	
	$E(\sum X_i) = 3 \times 4\theta/3$	 M1		ft (i) with no <i>n</i>
(iii)	$= 4\theta$ $T_1 = \frac{1}{4}\sum X_i$ $E(\sum X_i^2) = 3 \times 2\theta^2$ $= 6\theta^2$	A1 ft A1 ft M1 A1 ft		ft with no n ft with no n or θ
	$T_2 = (\sum X_i^2)/27$	A1 ft		ft with no n ft with no n or θ
(iv)	$Var(T_2) = 1/27^2 \times 3 \times Var(X^2)$ $= 40^4/729$	M1 A1 (15)	2	-84
	Harit		~	CAO
8(i)	$P(L \cap M) = P(L \mid M)P(M) = 0.12$ and	La	M1	
	$P(L) = P(M \cap L) / P(M \mid L) = 0.12/0.4 = 0.3$	A1		
	$P(L' \cup M') = P\Big[\big(L \cap M\big)'\Big]$			
	$=1-P(L \cap M)$ = 1 - 0.2 × 0.6 = 0.88	B1	3	
(ii)	$P(N L \cap M) = 0.3$	M1		
	$\Rightarrow P(N \cap L \cap M) = 0.3 \times 0.12$ $= 0.036$ $P(M \cap M' \cap M') = 1.0.026 = 0.064$	A1 A1	3	
	$P(L' \cup M' \cup N') = 1 - 0.036 = 0.964$		[6]	

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Mathematics

Advanced GCE 4736

Mark Scheme for June 2010

Heritage

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

1(0)	21 75 07 42 42 70 56 61 05 20	3.71		00 1, 1 1 0,1 11, 1 1
1(i)	31 75 87 42 43 70 56 61 95 28	M1		28 moved to the end of the list, no other values moved
(a)	(may be shown vertically or as separate swaps)	A1		Correct list at end of first pass (cao)
	9 comparisons and 8 swaps	B1		9 and 8 (written, not tallies) (cao) - if not specified,
	, ,			assume the larger value is comparisons
	The smallest (final) moule 20	B1		(their) 28 or smallest/least or final/last/end
	The smallest (final) mark, 28	DΙ	[4]	(then) 28 of smallest/least of final/last/end
				If sorted into increasing order: 28 31 75 42 43 70 56 61
				87 95
	321			M0 A0, then 9 and $6 = B1$ and (their) 95 or
				largest/greatest/biggest or final/last/end = B1
(b)	75 87 42 43 70 56 61 95 31 28	B1	[1]	Correct list at end of second pass
(6)	75 07 12 15 70 50 01 75 51 20		[T	Correct list at clid of second pass
				If and distributed in a substantial state of the state of the
				If sorted into increasing order and already penalised in
				(i)(a) then condone here: 28 31 42 43 70 56 61 75 87 95
(c)	7 more passes	B1	[1]	7 (cao)
	A I			
(ii)	31 28 75 87 42 43 70 56 61 95	M1		31 28 75 or 31 28 75
()	75 31 28 87 42 43 70 56 61 95	A1		Correct list, in full, at end of second pass
	73 31 20 07 12 13 70 30 01 33	7.11		Lists must be easily found, not picked out from working,
	(0.00) 1 = 0.010 1 = 1.00.21 (0.00)			if the candidate has labelled passes use them as labelled
	1 comparison and 0 swaps in first pass	B1		1 and 0 (written)(cao) may appear next to list
	2 comparisons and 2 swaps in second pass	B1	[4]	2 and 2 (written)(cao) may appear next to list
				200
				If sorted into increasing order: 28 31 75
				M0, A0, then 1 and $1 = B1$; 1 and $0 = B1$
(iii)	Bubble sort does not terminate early, since it takes	B1		Identifying that bubble sort does not terminate early
\/	9 passes to get 95 to the front of the list,			(Just stating $9+8++1$ or $45 = B0$)
	so it uses 9+8++1 or 45 comparisons			Allow 'the largest number is at the end of the list' or '95
	so it ases 7 to 1 11 of 45 comparisons			at end'
	Churtha agent tales a farmer than 1 12 1 10			A good explanation of why shuttle sort requires fewer
	Shuttle sort takes fewer than 1+2++9	B1	[2]	
	comparisons, since, for example, in the fourth pass			comparisons in this particular case
	42 will be compared with 28, 31 and 75 but not		1423	Do not accept 'because the list is not in reverse order'
	with 87.			
(iv)	$20 \times \left(\frac{50}{10}\right)^2$	M1		Correct method
, ,				
	= 500 seconds	A1	[2]	500 seconds or 8 mins 20 sec (without wrong working)
		111	[4]	200 seconds of 6 fillis 20 sec (without wrong working)

2(i)	Cannot have an odd number of odd nodes Odd vertices come in pairs	B1	[1]	Sum of orders must be even Sum of orders is 9 so 4.5 arcs (which is impossible)
(ii)	eg	M1 A1	[2]	A diagram showing a graph with four vertices that is not connected and not simple Vertices have orders 1, 2, 3, 4
	Many other correct possibilities	711	[2]	vertices have orders 1, 2, 3, 1
(iii)	The vertex of order 4 needs to connect to four	M1		Specifically identifying that the problem is with the vertex
	other vertices, but there are only three other vertices available, so one vertex must be joined twice or the vertex of order 4 is connected to itself. Hence the graph cannot be simple	A1	[2]	of order 4 Explaining why the graph cannot be simple (either reason) and stating that simple cannot be achieved
		0		Ignore any claims about whether or not the graph is connected
(iv) (a)	Each vertex of order 4 connects to each of the others, since graph is simple. Hence the other two vertices must have order (at least) 3. But Eulerian, so all must have order 4.	B1	[1]	Any reasonable explanation, but <u>not just a diagram</u> of a specific case 'the other two must be odd but they can't because Eulerian' is not enough Note: the graph has five vertices
(b)	Graph is Eulerian - so each vertex order is even; simple - so no vertex has order more than 4; and connected - so no vertex has order 0. Hence each vertex has order either 2 or 4. But cannot have 3 or 4 vertices of order 4. So must have 0, 1, 2 or 5 vertices of order 4.	B1 M1 A1	[3]	Explaining why there are only four such graphs Or list all the possibilities (eg 22222 42222 44222 44444) Any two correct (note: must be simply connected and Eulerian) All four correct and no extras (apart from topologically equivalent variations)

3(i)	$y \ge x$ $x \ge 0$ $y \le 7 - \frac{2}{3}x$	M1 M1 A1	[3]	Boundaries $y = x$ and $x = 0$ in any form (may be shown as an equality or an inequality with inequality sign wrong) Boundary $2x + 3y = 21$ in any form All inequalities correct (and any extras do not affect the feasible region)
(ii)	$(0, 7) \Rightarrow 42$ $(4.2, 4.2) \Rightarrow 29.4 \text{ or } (\frac{21}{5}, \frac{21}{5}) \Rightarrow \frac{147}{5}$ At optimum, $x = 0$ and $y = 7$ $P_1 = 42$	M1 A1 A1	[3]	Substantially correct attempt at testing vertices (at least one vertex apart from (0, 0)) or using a line of constant profit (may be implied) Accept (0, 7) identified (cao) 42 (stated) (cao) NOT deduced from earlier working, unless identified
(iii)	(4.2, 4.2) $P_k = 4.2(k+6)$ or $4.2k+25.2$	B1 B1	[2]	cao cao
(iv)	Compare $kx + 6y$ with boundary $2x + 3y$ or algebraically, $4.2(k + 6)$ with 42 or $-\frac{k}{6}$ with $-\frac{2}{3}$ $\Rightarrow k \le 4$ $k \le 4$ or $k < 4$ implies M1, A1	M1	[2]	Algebraically or using line, or implied (allow = here) Accept $k < 4$ No need to say that $k > 0$, but candidates may also say $k > 0$ or $k \ge 0$ Note: k is continuous, so answers such as ' $k = 1, 2, 3, 4$ ' or ' $k = 1, 2, 3$ ', with no other working, would get M1, A0

4 (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1 B1		1.7 shown as a temporary label at <i>G</i> All temporary labels correct with no extras (may not have written temporary label when it becomes permanent) All permanent labels correct (cao) Order of labelling correct (cao) This route written down (not reversed) (cao)
			[5]	
(ii)	Route Inspection problem	B1	[1]	Accept Chinese postman Allow 'postman', 'postman route', but not just 'inspection'
(iii)	CD(CBD) = 0.3, DG(DFG) = 0.65,	M1		Any one of these seen (explicitly or as part of a
	CC (CDD CC) 0.05	A 1		calculation) All three of these seen (explicitly or as parts of
	CG(CBDFG) = 0.95	A1		calculations)
	CD (CBD) and $FG = 0.75or CD (CBD) and EG (EFG) = 1.05$	M1		Or either of these with AB to give 1.25 or 1.55 respectively
	Length = 3.7 + 0.5 + 0.3 + 0.75 = 5.25 km	M1 A1	[5]	Adding their 0.75 to 3.7 or their 0.75 to 3.7 + 0.5 + 0.3 (cao) units not needed 5.25 implies M1, M1 A1, irrespective of working
(iv)	B-D-F-G-C-B	B1		cao
	1.9 km	B1	[2]	1.9 (cao) irrespective of method
(v)	[TREE]	B1		Correct tree drawn
	Vertices added in order BDCF or BDFC	B1	355	A valid order of adding vertices or a valid order of adding
	Arcs added in order BD , BC , DF or BD , DF , BC Two shortest arcs from G total $0.45 + 0.65 = 1.1$	M1		arcs 0.45 and 0.65, or total 1.1 (may be implied from 1.6)
	Lower bound = $0.5 + 1.1 = 1.6 \text{ km}$	A1		1.6 (cao) units not needed 1.6 implies M1, A1
			F 43	
			[4]	

5(i)	$600x + 800y + 500 \ z \le 5000$	M1		Correct inequality, allow < for M mark only
	$\Rightarrow 6x + 8y + 5z \le 50$	A1		Correct fully simplified form (cao)
	$120x + 80y + 120z \le 800$	M1		Correct inequality, allow < for M mark only
	$\Rightarrow 3x + 2y + 3z \le 20$	A1	[4]	Correct fully simplified form (cao)
				TC -1 - 1 1 1 1 C - 1 1 C - 1 1
	May use slack variables, provided they also			If slack variable form used and fully simplified but without specifying that slack variables are non-negative,
	specify slack variables non-negative			SC M1 A0 for each
(;;)	eg $6x + 8y + 5z + t = 50, t \ge 0 = M1, A1$			Se Wi Ao ioi caen
(ii)	$P \mid x \mid y \mid z \mid S \mid t \mid u \mid RHS$	M1		Objective row correct and three sleek veriables used
	P x y z s t u RHS 1 -100 -40 -120 0 0 0 0	1V11		Objective row correct and three slack variables used
	0 12 20 15 1 0 0 60	A1		Three constraint rows correct (ft (i), if reasonable)
	0 6 8 5 0 1 0 50	711		Accept variations in order of rows and columns
	0 3 2 3 0 0 1 20			Condone <i>P</i> column missing here
	3 2 3 0 0 1 20			
(ii)				
	$60 \div 15 = 4$, $50 \div 5 = 10$, $20 \div 3 = 6\frac{2}{3}$			
	Pivot on the 15 in the z column	B1		Correct pivot choice from their z column
	Tivot on the 15 in the 2 column			C2 O(
	New row $2 = \text{row } 2 \div 15$	M1		Correct method for their pivot row seen (or implied from
	New row $1 = \text{row } 1 + 120 \times \text{new row } 2$			<u>correct row</u> in tableau if no attempt seen)
	New row $3 = \text{row } 3 - 5 \times \text{new row } 2$	A1		Correct method for their three other rows seen as a
	New row $4 = \text{row } 4 - 3 \times \text{new row } 2$	7	4	<u>formula</u>
			1.7	19E
	P x y z s t u RHS			Iterate to get a tableau with exactly <u>four basis columns</u>
	1 -4 120 0 8 0 0 480	M1		and <u>non-negative entries in final column</u> , in which the value of the <u>objective has not decreased</u>
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			value of the objective has not decreased
	$0 2 1\frac{1}{3} 0 -\frac{1}{3} 1 0 30$			Values in final column correct (follow through)
	3 1	A1		various in initial containin contact (Iono ii amough)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		D.1		
	$4 \div \frac{4}{5} = 5,30 \div 2 = 15,8 \div \frac{3}{5} = 13\frac{1}{3}$	B1		Correct pivot choice for their second iteration
	Pivot on the $\frac{4}{5}$ in the x column			
		M1		Correct method for their pivet row seen (or implied from
	New row $2 = \text{row } 2 \div \frac{4}{5}$	1VI I		Correct method for <u>their</u> pivot row seen (or implied from <u>correct row</u> in tableau if no attempt seen)
	New row $1 = \text{row } 1 + 4 \times \text{new row } 2$	A1		Correct method for their three other rows seen as a
	New row $3 = \text{row } 3 - 2 \times \text{new row } 2$	731		formula
	New row $4 = \text{row } 4 - \frac{3}{5} \times \text{new row } 2$			
	5			
	$P \mid x \mid y \qquad z \qquad s \qquad t u \mid RHS$	M1		Iterate to get a tableau with exactly four basis columns
	1262			and non-negative entries in final column, in which the
	1 0 3 3 0 0 300			value of the objective has not decreased
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		Values in final column correct (follow through)
	3 1			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L		JJ

	Make 5 litres of fruit salad only	B1	[13]	Interpretation of their final (non-negative) \underline{x} , \underline{y} and \underline{z} , in context (need 'only' or equivalent; '5 <i>fruit salads</i> ' is not enough) $x = 5$, $y = 0$, $z = 0$ gives B0
(iii)				
	$60 \div 12 = 5$, $50 \div 6 = 8\frac{1}{3}$, $20 \div 3 = 6\frac{2}{3}$ Pivot on the 12 in the <i>x</i> column	B1		Correct pivot choice from their <i>x</i> column
	New row $2 = \text{row } 2 \div 12$	M1		Correct method for <u>their</u> pivot row (seen or implied from correct row in tableau)
	New row $1 = \text{row } 1 + 100 \times \text{new row } 2$	A1		Correct method for their <u>objective</u> row seen as a formula
	Showing that there are no negative entries in objective row			Showing that there are no negative entries in objective row
	Saying that optimum has been achieved ('no negatives in top row')	A1	[5]	Or achieving a final tableau, in one iteration, with exactly four basis columns and non-negative entries in final column, in which the value of the objective has not decreased

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE 4737

Decision Mathematics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1	(i)		B1	A correct bipartite graph	
		H Q			[1]
	(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	A second bipartite graph showing the incomplete matching correctly No augmentations made, even if in pencil. Ignore the addition of an <i>X</i> vertex though.	[1]
	(iii)	H-P-G-Q Axe handle = Prof Mulberry $A = M$ Broomstick = Miss Olive $B = O$ Drainpipe = Mrs Lemon $D = L$ Fence post = Mr Nutmeg $F = N$ Golf club = Rev Quince $G = Q$ Hammer = Capt Peach $H = P$	B1	This path in any reasonable form or in reverse. Accept X - H - P - G - Q Not any longer path from H to Q This complete matching written down (use initials of surnames if ambiguous, eg Rev Pineapple is interpreted as P = Capt Peach)	[2]
	(iv)	Axe handle = Rev Quince $A = Q$ Broomstick = Prof Mulberry $B = M$ Drainpipe = Mr Nutmeg $D = N$ Fence post = Miss Olive $F = O$ Golf club = Capt Peach $G = P$ Hammer = Mrs Lemon $H = L$	M1 A1	A different complete matching in any form A valid complete matching in which none of the suspects uses the same weapon as in their solution to (iii) Total =	[2]

		1						1	Total =	10
	(ii)	Mr Thor	n					B1	Follow through their matchings (but not to S)	[1]
		Mr Thor Ms Will Sgt Yew	n = ow = ' =	5 pm o	or = 3 pn $or = 2 pn$ $or = 1 pn$ $or = 3 pn$	n n		B1	Second matching, cao	[2]
		Mrs Roy Dr Silve			or = 4 pr or = 5 pr			B1	First matching, cao	
		Y	0	2	0	6	3			
		$\frac{T}{W}$	0	0	1	0	0			
		R S	3	0	1	0 4	0			
		D	1 pm	2 pm	3 pm	4 pm	5 pm			
			0	2	0	6	3		reach a complete matching	
			1	0	1	2	0	A1	Their matrix augmented correctly to	[2]
			3	3	2	0 4	0	M1	Substantially correct attempt at augmenting (at most 2 errors)	
		Augmen								
			0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0 4	1 1		-0-	
			3 2	0	3	2	О		196	
		21355 00	4 5	3 0	4 3	0 4	2 0	L		
		Cross ou	ıt 0's usi	ng minir	num no	of lines		A1	Their reduced cost matrix	[3]
			0	0	3	0 4	1 1		(at most 2 independent errors)	
			5 3	0	3	4 2	0	M1	Substantially correct attempt to reduce columns	
		Reduce	4	3	4	0	2		525	
		Reduce				-				
			0	0	1	0 4	5		(at most 2 independent cirors)	
			5 3	0	4	4 2	4	1,11	reduce rows (at most 2 independent errors)	
		Reduce	4	3	5	0	6	M1	Substantially correct attempt to	
		Reduce	rows						throughout, with no negative values)	
		W Y	2	2 2	6	6	7	A1	Correct table (ie this \pm a constant	[2]
		T	6	3	7	5	7			
		R	7 5	6	8 4	3	9	M1	Modify table by subtracting each entry from a constant value	
2	(i)		1 pm	2 pm	3 pm	4 pm	5 pm			

	(*)		_				1		1
3	(i)	Stage	State	Action	Working	Suboptimal minima	B1	Structure of table correct (stage,	
			0	0	5	5	Di	state, action and 'working'	
		2				4	M1	columns)	
		3	1	0	4		A1	Stage and state values correct	[3]
		-	2	0	6	6		Action values correct	
			0	0	5 + 5 = 10	10			
		2	1	1	6 + 4 = 10	10	M1	Working column substantially	
		2	1	0	3+5=8 $5+4=9$	8		correct for stage 2 (calcs or totals)	
			2	1	3+4=9 3+4=7	7	A1	(at most 1 error)	[2]
			2	2	3 + 4 = 7 2 + 6 = 8	/	AI	Suboptimal minima (10, 8, 7) correct for stage 2 (cao)	[4]
			0	0	2+0=8 2+10=12			correct for stage 2 (cao)	
			U	1	3 + 8 = 11	11			
		1	1	1	2 + 8 = 10	10	M1	Working column substantially	
		1	1	2	3 + 7 = 10	10		correct for stage 1(at most 1 error)	
			2	2	8 + 7 = 15	15	A1	Suboptimal minima (11, 10, 15)	[2]
				0	6 + 11 = 17	17		correct for stage 1 (cao)	
		0	0	1	8 + 10 = 18				
				2	3 + 15 = 18			C 0	
						$\mathbf{H}\mathbf{V}$			
		Minimu	m route	e = (0;0)	- (1;0) - (2;1)	-(3;0)-(4;0)		2	
		Weight	= 17				B1	Correct route from $(0; 0)$ to $(4; 0)$	[2]
							B1	17 cao (written down, not just	
								implied from table)	
	(11)	G	.1 1	C .1	. 11 . (0 0			00	
	(ii)				e table at (0; 0 mes from action				
				cts to (1;		on o,	M1	Start at (0; 0), action 0 or value 11	
					es from actior	n 1	1011	(theirs), hence (1; 0)	
				cts to (2;		,		(), nenee (1, 0)	
					es from action	n 0	A1	(1; 0), action 1 (theirs), hence (2; 1)	
		so (2; 1)	conne	cts to (3;	0) and hence	to (4; 0)		Clearly relating <u>action</u> to state for	[2]
								stage above	
<u> </u>								-	
								Total =	11

4	(i)	In each game, whatever combination of strategies is chosen, the total number of points won is zero	B1	Points won by Euan equals points lost by Wai Mai, and vice versa, in every case	[1]
	(ii)	-2	B1	Loses 2	[1]
	(iii)	Z is dominated by Y	M1	Idea of dominance by <i>Y</i>	
		In each row she loses more by choosing Z than Y $-3 < 5$, $-4 < 3$, $-2 < 5$ and $1 < 2$ (or equivalent)	A1	Four valid comparisons <u>and</u> a convincing explanation (or equivalent in words)	[2]
	(iv)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Determining row minima and column maxima, or equivalent (may be implied from both <i>D</i> and <i>Y</i> stated)	
		Play-safe for Euan is <i>D</i> Play-safe for Wai Mai is <i>Y</i>	A1 A1	D, stated (not just identified in table) Y, stated (not just identified in table)	
		Game is stable, since row maximin = col minimax, -2 = -2	B1	Stable, with a valid reason attempted (numerical or in words) (www)	[4]
	(v)	A: $-2p + 5(1-p) = 5 - 7p$ B: $p + 3(1-p) = 3 - 2p$ C: $-3p + 5(1-p) = 5 - 8p$ D: $5p + 2(1-p) = 2 + 3p$ (note: leaving DX as 3 gives D: $2 - 5p = M1A0A0$)	M1 A1 A1	Any one correct (or negative of correct), simplified or not All four correct (or negative of correct) and simplified All four correct and simplified	[3]
	(vi)	5 4 3 2 1 1 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 2 2 3 3 4 5 5	M1 A1	Graph paper used with sensible scales Their equations plotted correctly	[2]
		$2 + 3p = 3 - 2p$ $\Rightarrow p = 0.2$	M1 A1	Solving correct pair, or from graph 0.2, cao, from correct equations used (algebraically or from graph) (www)	[2]
				Total =	15

ANSWERED ON INSERT

			11110	WERED ON INSERT	
5	(i)	21+36 +7 +18	M1	Evidence of using the correct cut (eg $21 (\pm 23) + 36 + 7 + 18$ seen)	
		= 82	A1	82	[2]
	(ii)	At most 17 can leave C so there cannot be as much as 20 or 18 entering it	B1	17 < both 20 and 18 (NOT 17 < 38)	
		At most 17 can enter E so there cannot be $7 + 18 = 25$ leaving it	B1	17 < 7 + 18	[2]
		Maximum that can flow in arc HT is 33	B1	33	
		Flow along arc $HG = 0$	B1	0	[2]
	(iii)	A diagram showing a flow of 58 in which amount in equals amount out at each vertex, apart from <i>S</i> and <i>T</i>	M1	Assume that "blanks" mean 0 or full to capacity, provided consistent	
		Arcs CE, FH and GT are saturated and other arc capacities are not exceeded	A1	00 9.	
		Cut $X = \{S, A, B, C, D, F, G\}, Y = \{E, H, T\}$ Or cut through GT , GH , FH , EF and CE	B1	This cut presented in any form (accept it drawn on diagram)	[3]
	(iv)	Substantially correct attempt in which excess capacities and potential backflows marked correctly on arcs <i>CE</i> , <i>FH</i> and <i>GT</i>	M1	Assume that blanks mean 0 Accept <u>all</u> directions swapped	
		Their excess capacities and potential backflows marked correctly on arcs out of S and arcs into T and on HG	A1	Check directions on <u>HG</u> carefully If no flow in (iii), or ambiguous, then any valid flow > 0 labelled correctly gets M1, but must also be a flow of 58 to get A1	[2]
	(v)	Feasible route(s) written that send an additional 2 through system (or more on follow through)	M1	Routes must be written out properly eg route <i>SBFGHT</i> by 2	
		All route(s) valid with an additional 2 along GH	A1		[2]
	(vi)	Their flow from part (iii) augmented by their routes in part (v)	M1	Follow through if possible	
		No more can flow across the cut $X = \{S, C\}, Y = \{A, B, D, E, F, G, H, T\}$	A1	Any reasonable explanation	[2]
				Total =	15

PARTS (i), (ii) AND (iii) ANSWERED ON INSERT

6	(i)), (ii) AND (iii) ANSWERED ON INSE 	
	. ,	Activity Duration Predecessors			
		A 6 -			
		B 5 -			
		C 3 A, B			
		D 9 A			
		E 4 A, B F 2 A, B	B1	Predecessors correct for A to F	
		F 2 A, B G 2 E, H		(entries for A and B may be blank)	
		H 3 C, F			
		I S D, G	M1	Substantially correct attempt at	
		J 6 E, H		predecessors for other activities	
		K 10 C, F		(at most 2 errors)	
		L 4 I	A1	Predecessors all correct for G to N	
		M 12 I	AI	riedecessors an correct for G to W	
		N 6 J, K, L			[3]
				52,62	[-]
	(ii)	Dummy is needed between 2 and 3 so that C , E		0	
		and F follow both A and B but D follows A only	B1	D does not follow B	
				(D follows A only)	
		Dummy is needed between $\boxed{4}$ and $\boxed{5}$ so that C and	B1	Identifying C and E appropriately	
		F do not share both a common start and a common	DI	Identifying C and F appropriately	[2]
		finish			[2]
	(iii)	LAN		200	
	, ,	1 2 3 4 5 6 7 8 9 10	B1	Early event times correct, in table	
		0 6 6 9 9 12 15 20 24 32	M1	Substantially correct backwards pass	
		0 6 7 10 10 13 15 20 26 32		(at most 2 errors in total)	
			A1	Late event times correct, in table	
		Minimum project completion time = 32 minutes	B1	32, cao	
		Critical activities: <i>A</i> , <i>D</i> , <i>I</i> and <i>M</i>	B1	A, D, I, M and no others, cao	[5]
	(iv)	Early event time at 9 becomes the larger of 24 and	M1	9+x	
	(IV)	Early event time at 9 becomes the larger of 24 and $9+x$	A1	Larger of 24 and $9+x$	
) ia	711	Earger of 21 and 31%	
		Early event time at 10 becomes the larger of 32 and	1		
		15+x, which then also becomes the late event time	M1	Considering the event times at 10	
		at 10		_	
		Late event time at 9 then becomes 26 or $9+x$	A1	Correct consideration of 26 and $9+x$	
					[4]
	(v)	x = 17	B1	17	[1]
				Total =	15
	l			10tal =	13

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

