

A Level

Physics A

Session:	2010 June
Туре:	Mark scheme
Code:	H158-H558
Units:	G481; G482; G484; G485

© UCLES

GCE

Physics A

Advanced GCE G481

Mechanics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Convention used when marking scripts

WRONG PHYSICS OR EQUATION - indicate by ? on scoris

No credit is given for correct substitution, or subsequent arithmetic, in a physically incorrect equation.

ERROR CARRIED FORWARD – indicate by ECF on scoris

Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers.

$\label{eq:arithmetic error} \textbf{ARITHMETIC ERROR} - \textbf{indicate by AE} \text{ on scoris}$

Deduct 1 mark for the error and then follow through the working/calculation giving full credit for subsequent marks if there are no further errors. The ruling also includes power of ten (POT).

$\label{eq:transformation} \textbf{TRANSCRIPTION ERROR} - indicate by \ \ on \ scoris$

This error is when there is incorrect transcription of data from the question, formulae booklet or previous answer. For example 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Deduct the relevant mark and then follow through the working giving full credit for subsequent marks.

$\label{eq:significant figures} SIGNIFICANT FIGURES - indicate by SF on scoris$

Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. An error in significant figures is penalised only once per paper.

BENEFIT OF DOUBT - indicate by BOD on scoris

This mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.

RUBRIC INFRINGEMENT

If the candidate crosses out an answer but does not make any other attempt, then the work that is crossed out should be marked and the marks awarded without penalty.

CONTRADICTION - indicate by CON on scoris

No mark can be awarded if the candidate contradicts himself or herself in the same response. For example, '... the mass of the particle increases and decreases.'

Q 1	Expected Answers	Marks	Additional Guidance
а	10^{6}	B1	Allow: 1000 000
	nano (n)	B1	Allow: nano / n / nano (N) as BOD
	10^{12}	B1	Allow: 1000 000 000 000
b	Circled quantities: density and volume	B1	
С	$1.5 \times 10^{11} = 3.0 \times 10^8 \times t$	C1	Allow: Any subject
	1.5×10^{11} (500 ()		
	time = $\frac{3.0 \times 10^8}{3.0 \times 10^8}$ / 500 (s)		
	time = 8.33 (min) \approx 8.3 (min)	. 1	
		AI	Note: Baid 500 (s) scores 1 mark
	7.110		Allow: $2 \text{ marks for a bald answer of 8.5}$
			Allow: Answer as a fraction $= 25/5$ (finit) / 8 finit 20 s
d(i)	Montion of weight on drog	D1	Allow: 1 mark 10f $(500/3000 =) 0.139$
a(I)	Mention of weight of drag	DI	Not: 'aravity' for 'weight' but 'force of gravity' is fine
			Not: gravity for weight but force of gravity is fine
	Net / total / resultant force (on drop) is zero	B1	Not: 'acceleration -0 ' since question requires answer in terms
	'upward force = downward force' /	DI	of forces
	'weight = drag' / 'weight balances drag'		Not: 'All forces are equal'
	worghe drug / worghe surances drug		Note: 'weight = drag' / 'weight balances drag' scores 2 marks
d(ii)1	A downward line / arrow (from the raindrop) leaning	B1	Note: Answer must be on Fig. 1.2
. ,	to the right		Judge by eye – the angle is not important
d(ii)2	$v^2 = 1.5^2 + 4.0^2$	C1	
	velocity = 4.27 (m s ⁻¹) \approx 4.3 (m s ⁻¹)	A1	Allow: 2 marks for a scale drawing with value in the range 4.1
			to 4.5. If value in the range 4.0 to 4.1 or 4.5 to 4.6 then give 1
			mark
			Allow: 2 marks for a bald answer of 4.3 (m s ⁻¹)
	Total	11	

Q 2	Expected Answers	Marks	Additional Guidance
а			Must use ticks on Scoris to show where the marks are awarded
	'heavy' and 'light' objects / different weights / different masses dropped (from leaning tower of Pisa) / rolled down incline plane	B1	Not : 'dropping feather' / 'vacuum' / 'experiment on the Moon' for this first B1 mark but can score subsequent B1 marks
	Objects have the same <u>acceleration</u> (of free fall)	B1	Not : 'fall at the same rate / accelerates at the same rate / same speed'
	Objects hit ground at same time	B1	ives &
b(i)			Note : There are no marks for just an answer, since this is a 'show' question
	$s = ut + \frac{1}{2}at^2$ and $u = 0 / 0.600 = \frac{1}{2} \times a \times (0.356)^2$	C1	itado
	$a = \frac{2 \times 0.600}{0.356^2}$	C1	Allow: 2 marks for correct substitution with 'a' the subject or 1
	$a = 9.47 \text{ (m s}^{-2})$	A0	$0.600 = \frac{1}{2} \times a \times (0.356)^2$ followed by $a = 9.469$ (more than 3 sf) Note: Using ' $v = .600/0.356$ ' followed by $a = \Delta v / \Delta t = 4.73$ scores zero. (Watch out for $4.734 \times 2 = 9.47$)
b(ii)	Air resistance or drag / residual magnetism or 'sticky' electromagnet / trapdoor takes time to open	B1	Not : 'Experiment is not done in a vacuum' / 'friction/resistance'
	sticky checkonagnet, hapaoor takes time to open		
b(iii)	A 'parabola shape' / graph of increasing positive gradient starting from <u>origin</u> and going through 0.356,0.6	B1	Judge the shape of the graph by eye. A horizontal line from 0.6 must cut the graph within the 'vertical zone provided by 0.356 s ' on the time axis
	Total	7	

Q 3	Expected Answers	Marks	Additional Guidance
а	The (net) force (is a newton) when a 1 kg mass has	B1	Not: $1 \text{ N} = 1 \text{ kg m s}^{-2}$ because this is too brief for a definition
	acceleration of 1 m s^{-2}		
D(I)	weight = $1.9 \times 10^{\circ} \times 9.81$		Allow: 9.8 (m s ²) for g but not 10 (m s ²)
	weight = 1.86×10^7 (N)	B1	Allow : A bald answer of 1.9×10^7 N, but not if 10 (m s ⁻²) is seen
b(ii)	net force = 1.24×10^7 (N) or 1.2×10^7 (N)	C1	Allow : The C1 mark for "(net force) = $(3.1 - 1.86) \times 10^7$ (N)"
	$a = \frac{F}{m} = \frac{1.24 \times 10^7}{1.9 \times 10^6}$	h	ives &
	acceleration = $6.53 \text{ (m s}^{-2}) \text{ or } 6.5 \text{ (m s}^{-2})$	A1	Allow: 2 marks for a bald answer Allow: Answer of 6.3 (m s ⁻²) if 1.9×10^7 (N) is used for weight
			of net force of 1.2 × 10 (N) is used Allow: 1 mork for '2.1 × $10^7/1.0 \times 10^6 - 16.2$ '
			Anow. I mark for $5.1 \times 10/1.9 \times 10 = 10.5$ Not: '1.86 $\times 10^{7}/1.0 \times 10^{6} = 0.8^{2}$
			1101. $1.00 \times 10/1.9 \times 10 = 9.0$
b(iii)	The mass / weight (of spaceship) decreases (as it loses fuel)	B1	Allow: 'g' / acceleration of free fall / gravitational field strength decreases (but not gravity decreases) Not: 'less drag / air resistance'
	Total	5	

Q 4	Expected Answers	Marks	Additional Guidance
а	work done = force × distance <u>moved</u> / <u>travelled</u> (in direction of force)	B1	Note : Must have reference to 'distance moved / travelled' Allow : 'work done = force × displacement'
	The term <i>distance / displacement</i> to be included and spelled correctly to gain mark		Must use tick or cross on Scoris to show if the mark is awarded
b(i)	gravitational potential	B1	Not: 'potential' on its own
	kinetic ACC	B1	Note: Ignore any reference to sound
	The term <i>kinetic</i> to be included and spelled correctly to gain the second B1 mark		Must use ticks on Scoris to show where the marks are awarded
b(ii)	(GPE =) $4000 \times 9.81 \times 110$ / (GPE =) 4.32×10^{6} or (KE =) $\frac{1}{2} \times 4000 \times 20^{2}$ / (KE =) 8.0×10^{5}	C1	itage
	Work done = $(4000 \times 9.81 \times 110) - (\frac{1}{2} \times 4000 \times 20^2)$	C1	Allow : 2 marks if second line is written or $3.5(16) \times 10^6$ (J) is quoted
	force = $\frac{3.516 \times 10^6}{510}$ force = 6.9×10^3 (N)	A1	Allow : 3 marks for a bald answer of 6.9×10^3 (N)
	Total	6	

Q 5	Expected Answers	Marks	Additional Guidance
а	The distance travelled (by the car) whilst the brakes are applied and the car stops (wtte)	B1	Note: The answer must have reference to car stopping
b	Any <u>two</u> factors from: mass, brakes, tyres / tread, road (surface) and 'slope' of road	B1×2	Must use ticks on Scoris to show where the marks are awarded
	 Correct description for each factor; see below: Greater mass increases distance / distance ∞ mass Worn brakes increases distance Bald tyres increases distance (when wet) Wet / icy /gravel road increases distance An uphill road will decrease the distance (ora) 	B1×2	 Allow: Reference to just 'distance' since 'braking distance' is in the question Note: For point 3, allow 'less tread increases (braking) distance (when wet)'.
C	 Any <u>three</u> from: 1. Prevent collision with steering wheel / windscreen /dashboard 2. Time for stopping is more / distance for stopping is more / seat belt 'stretches' 3. Smaller deceleration / acceleration (of person) 4. Reference to '<i>KE</i> = <i>Fs</i> ' or '¹/₂<i>mv</i>² = <i>Fs</i> ' 	B1×3	Must use ticks on Scoris to show where the marks are awarded Allow: Smaller 'rate of change of momentum' for the third B1 point Not: Less pressure (on driver because of larger area of belt)

Q 5	Expected Answers	Marks	Additional Guidance
d(i)1	thinking distance = 0.50×20		
	thinking distance = 10 (m)	B1	
d(i)2	braking distance -30 (m)	<u>C1</u>	
G(1)2	braking distance – 50 (iii)	CI	
	stopping distance = $(30 + 10 =) 40$ (m)	A1	Allow: 2 marks for a bald answer of 40 (m)
			Allow: 1 mark for 'answer to (d)(i)1 + candidate's braking
			distance' if braking distance $\neq 30$ (m)
	Arc		Possible ecf from (d)(i)1
d(ii)	z 20	C1	Allow For the C1 any other aquivalant and correct substitution
u(11)	$\frac{s}{22^2} = \frac{30}{20^2}$ / 'k = 0.075' / 'k = 13.3'	CI	into similar equation
	32 20		
	(distance =) 77 (m)	A1	Allow: An answer in the range 76 - 78. Note bald answer in
			this range can score 2 marks
	Or		0
	At speed of 16 $(m s^{-1})$ distance - 10 (m)	C1	Allow: distance in the range 19 to 19.5 (m)
	At speed of 10 ($\ln s$), distance = 19 (\ln)		Possible ecf
	(distance = $2^2 \times 19 =$) 76 (m)	A1	
	Total	13	

Q 6	Expected Answers	Marks	Additional Guidance
a(i)	torque = 4.0×0.03	C1	
	torque = 0.12 (N m)	A1	Note: An answer of 12 scores 1 mark (because cm not converted into m) Allow: Full marks for if the centi prefix added; that is 12 N <u>cm</u> Allow: 2 marks for a bald 0.12 (N m)
a(ii)	(total moment =) $(x + 0.03) \times 4.0 - 4.0x$ (total) moment = 0.12 (N m)	M1 A1	Condone the use of 'N cm' in a(ii) Allow : Equation with <i>x</i> value of 0.06 (m) or 6 cm Special case : 1 mark for (anticlockwise moment =) $4.0x$ or (clockwise moment =) $[x + 0.03] \times 4.0$ seen anywhere on the script
	It is the same as the torque (of the couple) / same as (a)(i)	B1	Not : '0.12 (N m)'
b	Net / total / resultant force = 0	B1	Not : 'forces are balanced' or 'force up = force down'
	Net / total torque / moment = 0	B1	Allow : clockwise moment(s) = anticlockwise moment(s)
c(i)	$\rho = \frac{M}{V}$ / density = $\frac{45}{0.600 \times 0.600 \times 0.050}$	C1	Allow: 2 marks for a hald answer of 2.5 \times 10 ³ (kg m ⁻³)
o(ii)	$\frac{\text{density} = 2.5 \times 10^6 \text{ (kg m^2)}}{10^6 \text{ (kg m^2)}}$	<u> </u>	
C(II)	or (weight =) 45×9.81 / (weight =) 441.45	CI	
	$(45 \times 9.81) \times 0.150 = F \times 0.600$	C1	
	F = 110 (N)	A1	Allow: 3 marks for a bald 110 (N) Allow: 2 marks for 11.25 – mass of 45 kg not changed to N
	Total	12	

Q 7	Expected Answers	Marks	Additional Guidance		
а	X Y ✓ ✓	B1	All 3 ticks correctly placed for 1 mark		
b(i)	Material is permanently deformed / longer when stress / force is removed (wtte)	B1	Note: The answer must make reference to stress or forces <u>removed</u>		
b(ii)1	(stress = force/area) force = $3.00 \times 10^9 \times 1.02 \times 10^{-7}$	C1	Allow: Any subject		
	force = 306 (N) or 310 (N)	A1	Allow: 2 marks for a bald 306 (N) or 310 (N)		
b(ii)2	(E = stress/strain) strain = $\frac{1.20 \times 10^9}{1.30 \times 10^{11}}$ / strain = 9.23×10^{-3} extension = $9.23 \times 10^{-3} \times 0.500$	C1	llage		
	extension = $4.6(15) \times 10^{-3}$ (m)	A1	Allow: 4.6×10^{-3} , 4.61×10^{-3} , 4.62×10^{-3} Allow: 2 marks for a bald $4.6(15) \times 10^{-3}$ (m) Allow: 1 mark for using breaking stress of 3.0×10^9 Pa; this gives an extension of 0.0115 (m)		
	Total	6	Alternative answer: $x = (1.20 \times 10^9 \times 0.500)/1.30 \times 10^{11}$ C1 (Any subject) extension = 4.6(15) × 10 ⁻³ (m) A1		
	Iotai	0			

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Physics A

Advanced Subsidiary GCE G482/01

Electrons, Waves and Photons

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

C	Question		Expected Answers		Additional Guidance
1					
	а		current moves from + to – (of battery in circuit) and electrons move from – to +	B1	
	b		$C s^{-1} V \Omega^{-1}$	B1	2 correct 2 marks; 1 correct 1 mark, withhold a
				B1	mark for each additional answer given
	C	i	statement of Kirchhoff's first law or conservation of charge	B1	accept wires are in <u>series</u> or current is the same (at every point) in a <u>series</u> circuit/AW not current in = current out
		ii1	$R = \rho I/A$	B1	accept R α I and R α 1/A or similar
			calculation to justify R = 72 Ω	A1	method/argument must be convincing accept $3/\frac{1}{2}$ x12 but not 3 x 2 x 12
		ii2	R = sum of Rs	C1	accept Rs in series
			R = 84 Ω	A1	ecf (c)(ii)1
		iii	select I = nAev	B1	allow v α 1/A
			$v = 4.0 \times 10^{-5} (m s^{-1})$	B1	accept 4 x 10 ⁻⁵ (m s ⁻¹) no SF error
			Total question 1	10	U

G482/01

Q	Question		Expected Answers		Additional Guidance
2					
	а	i	When connected/using/AW to the 230 V supply	B1	accept when working normally/AW not 230 V (going) through/into lamp/AW
			the <u>power/energy per second</u> from supply/output/dissipated/AW is <u>25 W</u>	B1	accept transferred from electrical (into other) form(s) is 25 W
		ii	$25 = 230^2$ /R	C1	accept I = 25/230 = 0.11 A
			R = 2100 Ω or 2.1 kΩ	A1	R = 230/0.11 = 2100 Ω (2116 Ω)
		iii	Using the equation in the form P = VI, for larger P need larger I	M1	accept P = V^2/R , for larger P need smaller R so
			so 60 W	A1	larger I; do not allow any argument using 880
			Archive		Ω unless this value is calculated here
		iv1	1/R = 1/2100 + 1/880	C1	substitution into formula for Rs in parallel
			R = 620 Ω	A1	ecf (a)(ii)
		iv2	I = 230/620	C1	ecf (a)(iv)1 using 1/R gives 143 kA
			I = 0.37 (A)	A1	accept total P = 85 W so I = 85/230 ;= 0.37 (A)
	b		the resistivity/resistance (of a metal) increases with temperature or R is greater when hot(ter)	B1	ora less when colder
			at 6V/low I little heating effect or at 230 V/high I large heating effect	A1	QWC mark : explanation linked to observations
	С	i	(a unit of) energy equal to 3.6 MJ or 1 kW for 1 h/AW	B1	eg 1000 W for 3600 s or similar
		ii	0.06 x 8 = 0.48 (kWh) or 60 x 8 = 480 (Wh)	C1	no marks for using s instead of h
			0.48 x 21 = 10(.1) p	A1	POT error e.g. 100 or 10000 p
			Total question 2	15	

Q	Question		Expected Answers		Additional Guidance
3					
	а	i	correct symbols	B1	variable R and voltmeter needed
			(variable) R in series with ammeter and cell	B1	ecf variable resistor symbol
			voltmeter correctly in parallel with variable R	B1	accept voltmeter in parallel with cell
		ii1	V decreases as I increases	B1	max 3 marks with 2 marks for first two or
			caused by R decreasing	B1	second two marking points or three numbers
					and 1 mark for reference to r
			V is large when R is large or V is small when R is small		allow as R increases (decreases) V increases
			V = e.m.f. when R is infinite/open circuit or $V = 0$ when R = 0		(decreases) for 1 mark but not as V increases
			Archive		R increases; award 0/2 if reason given as
			3.14 Ω at A; 0.88 Ω at B and 0.19 Ω at C		V α R or I is constant
			any correct reference to internal resistance of cell	B1	
		ii2	at A I is small or V is much bigger than I/AW	B1	accept numerical answers, e.g. 0.39 W at A,
			at C V is small or I is much bigger than V/AW	B1	0.33 W at C
			product of V. and I is largest when the values of both quantities		0.56 W at B for 2 marks
			are about equal/half of the maximum value	B1	comment on values for third mark
		ii3	1.4 (V)	B1	
		ii4	appreciating V against I is a straight line graph with gradient –r;	C1	accept using V = E – Ir not just quoting
			giving $r = 0.88 \pm 0.02 \Omega$	A1	formula
					allow 0.8 ± 0.02 for calculation using any point
					on line N.B. can also have ecf(ii)3
	b	i	intensity is the (incident) energy per unit area per second	B1	accept power per unit area or power per m ² or
					(total) power/(surface) area
		ii	efficiency = power out/power in	C1	not energy out/energy in
			$= 0.25/(800 \times 2.5 \times 10^{-3})$	C1	
			= 0.125 or 12.5%	A1	accept 13%
			Total question 3	16	

Qı	iestio	n	Expected Answers	Μ	Additional Guidance
4					
	а		resistance decreases with increase in light intensity	B1	ora
	b	i	3.0 (V)	B1	accept 3 V, no SF error
		ii	$3.0 = 1.1.2 \times 10^3$ giving	C1	accept 6 = (R/ R + 1.2 k).9
			$I = 2.5 \times 10^{-3} A$	C1	2R + 2.4 k = 3R or similar
			$6.0 / 2.5 \ 10^{-3} = R = 2400 \ \Omega$ 2.4 k Ω	A1	R = 2.4 k ; give 2 with POT error
					accept ratio of resistors 6/3 x 1.2
					good candidates can do this by inspection with
			A rebiy		no working – full marks
			AICHIVE		allow 2400 written on answer line rather than
					2.4 if 2400 Ω within body of text
		iii	49 or 50 (W m ⁻²)	B1	ecf (b)(ii) if on R within graph range
	C	i	2.2 (kΩ)	B1	allow any value from 2.1 to 2.2
		ii	large(r) <u>changes in</u> R at low light intensities	B1	allow greater sensitivity of LDR at low light or
			HARITS	- 1 0	steeper gradient/AW
			relating change in R to change in V	B1	e.g. bigger change in I so in V
					or use of V = $R/(R + 1200) V_s$
	_				or bigger change in V ratio across Rs
	d		V across 1.2 kΩ falls	B1	alternative l increases
			so V across LDR rises	B1	because <u>total</u> R is less
			because ratio of Rs changes in favour of LDR/ potential divider	B1	so V across LDR rises
			argument or total V is constant		do not award B marks where there is CON e.g.
					V across 1.2 k rises so V across LDR rises
	е		continuous record for very long time scale of observation	B1	allow any two sensible suggestions which fall
			can record very short time scale signals (at intervals)	B1	within the 4 categories listed for 2 marks
			automatic recording/remote sensing		
			data can be red directly to computer (for analysis)	-	
			Total question 4	14	

Q	Question		Expected Answers	М	Additional Guidance
5					
	а	i	travel through a vacuum	B1	allow travel at c (in a vacuum)
	b	ii	A gamma; C uv;	B3	allow 1 mark for A radio; C ir;
			F microwave		F X-ray
	С	i	$3.0 \times 10^8 = 1.0 \times 10^9 \lambda$	C1	
			$\lambda = 0.30 \text{ m}$	A1	allow 0.3 no SF error
		ii	aerial length = $\lambda/2$ = 0.15 m	A1	ecf (c)(i)
		iii	emitted wave is (plane) polarised	B1	allow max signal initially/at 0°
			detecting aerial will receive weaker signal/cos θ component		0
			when it is rotated (through angle θ)/AW	B1	
			signal falls to zero at 90°	B1	
			and then rises to max again at 180°		max 3 marks from 4 marking points
	d	i	UV-A causes tanning or skin ageing ; most of (99%) uv light;	B1	accept values within ranges with tolerance of
			400-315 nm		20 nm allow $\lambda_A > \lambda_B > \lambda_C$ for 1 mark
			UV-B causes damage or sunburn or skin cancer; 315-260 nm	B1	
			UV-C is filtered out by atmosphere/ozone layer; 260-100 nm	B1	max 3 marks from 7 marking points
		ii	filters out/blocks/reflects/absorbs UV(-B)	B1	allow chemicals prevent sunburn/skin cancer
					not stops UV penetrating skin
	е		energy of the infra-red photon is less than	B1	accept frequency and threshold frequency or
			the work function of the metal surface	B1	wavelength and threshold wavelength used
					correctly in place of energy and work function
					1 mark only: energy of the uv photon greater
					than work function with no mention of ir
			Total question 5	16	

Q	uestio	n	Expected Answers	Μ	Additional Guidance
6					
	а		oscillation/vibration of particles/medium in direction of travel of the	B1	allow direction of energy transfer of the wave
			wave	B1	not direction of wave motion
			example: sound wave, etc.		
			oscillation/vibration of <u>particles/medium</u> (in the plane) at right	B1	allow direction of energy transfer of the wave
			angles to direction of travel of the wave	B1	allow RE mark for weaker descriptions with
			example: surface water waves, string, electromagnetic, etc		same omissions as in longitudinal wave
	b		the incident wave is reflected at the end of the pipe	B1	
			reflected wave interferes/superposes with the incident wave		QWC mark
			to produce (a resultant wave with) nodes and/or antinodes	B1	accept resultant wave with no energy transfer
	С	i	at 0 oscillation with max amplitude	B1	not displacement (penalise only once)
			along tube	B1	
at 0.2 m			at 0.2 m (oscillation along tube with) smaller amplitude		
			at 0.6 m no motion/node		all 4 correct for 2 marks; 2 correct for 1 mark
		ii	oscillation at 3 times the frequency of c(i)	B1	
			at 0 (oscillation with) max amplitude (along tube)/antinode	B1	
			at 0.2 m no motion/node		
			at 0.4 m motion as at 0 (but in antiphase/opposite direction)		3 correct for 2 marks; 2 correct for 1 mark
	d	i	λ/2 sketch	M1	accept 1 or 2 lines, solid or dotted
			with zero at 0.3 m	A1	
		ii	2f ₀	B1	no ecf from d(i)
			Total question 6	14	

Qu	estio	n	Expected Answers	Μ	Additional Guidance
7					
	а	i	light emitted from (excited isolated) atoms produces a line spectrum	B1	max 2 marks from 3 marking points
			a series of (sharp/bright/coloured) lines	B1	
			against a dark background		
		ii	in an absorption spectrum a series of <u>dark</u> lines (appears against a		
			bright background/within a continuous spectrum)	B1	accept black
	b	i	$\epsilon = hc/\lambda$	C1	apply SF error if all numbers not to 3+ figures
			$= 6.63 \times 10^{-34} \times 3.00 \times 10^8 / 436 \times 10^{-9}$	C1	
			$= 4.56 \times 10^{-19} (J)$	A1	4.54 if use 6.6
		ii	3.64 x 10 ⁻¹⁹ (J)	A1	allow mark if repeated error from b(i)
	С	i	correct vertical lines;	B1	1 mark for 1 vertical line + correct label
			correct labels	B1	
			arrow(s) downwards	B1	
		ii	$-8.86 + 4.56 = -4.3 \times 10^{-19}$ (J)	B1	ecf b(i)
			$-7.94 + 3.64 = -4.3 \times 10^{-19} (J)$	B1	do calculation for one line only correctly scores
					2 marks; give answer as 4.3×10^{-19} or -4.3
					scores 1 mark
					do calculation for both lines and give answer
					as 4.3 x 10 ⁻¹⁹ or -4.3 scores both marks
N.B.	Bef	fore	marking 7d check pages 18, 19 and 20 for additional answers by	scrol	ling down. Extra answers MUST be
anno	otate	ed to	o show that they have been seen and credited back in the relevant	t ques	stion when appropriate.
√ =	1 ext	tra r	nark		
X = İ	ncor	rec	t; scores 0		
NBC)D =	no	added value or no further action needed; scores 0		
CON	l = 11	t ret	erence is made to the additional answer in the main text and this	answ	er contradicts the other then deduct the
orig	inal	mar	k; = if NO reference is made to the additional answer in the main	text a	ind this answer contradicts the other then do
NOT	cha	inge			
	a		$(0 \sin \theta = \Lambda)$ $3.3 \times 10^{\circ} \sin \theta = 546 \times 10^{\circ}$		
			$\sin \theta = 0.105$		
			Ø = 9.5°	A1	
			Total question 7	15	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Physics A

Advanced GCE G484

The Newtonian World

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Question	Expected Answers	Marks	Additional guidance
1 (a)	The magnitude of the impulse on each object is the same	B1	For 3 or 4 ticks mark and deduct
	Total energy is conserved	B1	1 mark for each error.
(b) (i)	Correct use of 1/2 mv ²	C1	0.27 J scores 1 st mark
	Loss of KE = 0.03(144-81) = 1.9 (or 1.89) J	A1	Do not allow 1.8
(b) (ii)	Change in momentum = $(0.06x12)+(0.06x9) = 1.26$ (Ns)	C1	Award 1 mark for 1.2 N
	Average force=rate of change of momentum = 1.26/0.15 = 8.4 (or 8) N	A1	ignore minus signs
(b) (iii)	8.4 N (or - 8.4)	B1	Allow ecf from (ii)
(c) (i)	ANY 3 of the following		Allow
	particles move with rapid, random motion (WTTE)	B1	" gravitational force on
	elastic collisions	B1	molecules is negligible"
	negligible (or zero) volume of atoms (compared with volume of container)	B1	Do not allow a bare
	no intermolecular forces (except during collisions)/all internal energy is KE		"large number of particles".
	collision time negligible (compared to time between collision).		
(c) (ii)	molecules make collisions with walls/surface (WTTE)	B1	Do not allow a bare "molecules
	(hence) exerts a force on the wall (or each collision has a change of		collide with each other"
	momentum)	B1	
	Pressure = force/area	B1	
	Total	13	

Question	Expected Answers	Marks	Additional guidance
2 (a) (i)	Horizontal <u>component</u> of L provides the centripetal force (WTTE)	B1	
	Vertical <u>component</u> of L balances the weight (WTTE)	B1	
(a) (ii)	$F = mv^2/r$ correct rearranged into $v = \sqrt{(Fr/m)}$	C1	Allow correct substitution of
	$v = \sqrt{(1.8 \times 10^6 \times 2000/1.2 \times 10^5)} = 173 \text{ m s}^{-1} \text{ (or 170)}$	A1	values into $F = mv^2/r$ for C1 mark
(b)	$mv^2/r = GMm/r^2$	B1	Do not allow a bare $v^2 = GM/r$ for
	$T = 2\pi r/v \qquad \qquad A_{\pi^2} r^3$	M1	the first mark – we need to see
	Correct manipulation of equations to give $T^2 = \frac{4\pi T}{GM}$	A1	where this has come from.
(c) (i)	Equatorial orbit (WTTE) (QWC mark)	B1	QWC equatorial or equator must
	Period is 24h/1day/same as Earth OR moves from West to East (WTTE)	B1	be spelled correctly
(c) (ii)	Correct rearrangement of $T^2 = (4\pi^2 r^3/GM)$ to give $r^3 = T^2GM/4\pi^2$	C1	$(1 \text{ day} = 8.64 \text{ x} 10^4 \text{ s is given on})$
	correct sub. $r^3 = \{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (8.64 \times 10^4)^2\}/4\pi^2 = 7.57 \times 10^{22}$	C1	the data sheet).
	$r = 4.23 \times 10^7 m$ (or 4.2 or 4.3 x 10 ⁷)	A1	For those who use $g = GM/r^2$
			with $g = 9.81$ award 1 mark
			for r= 6.4×10^6 m.
	Total	12	

Question	Expected Answers	Marks	Additional guidance
3 (a)	Acceleration is (directly) proportional to the	B1	Allow "fixed point" or "point"
	displacement/distance (from the equilibrium position/central pt)		Allow acc. is in opposite direction to
		B1	displacement (WTTE)
	Acceleration is always directed towards the equilibrium		If formula is used: allow a ∞ -x for 1 st mark
	position/central point.		and 2 nd mark if x is stated as displacement.
(b) (i)	Curve symmetrical about energy axis with maximum at 18	B1	Ignore points where graphs cross
	zero at +0.04 and - 0.04	B1	Give bod if not labelled K but correct
(b) (ii)	Horizontal straight line passing 18	B1	Give bod if not labelled T but correct
(c) (i)	0.04 m	B1	
(c) (ii)	$\frac{1}{2}m(v_{max})^2 = 0.018$	C1	Many will use 18 instead of 0.018. This
	$v_{max} = \sqrt{(2x0.018/0.12)} = 0.55 \text{ ms}^{-1} (0.548)$	A1	results in 17.3 and scores 1 mark.
			Allow ecf for cand's value of max KE.
			Do not allow 0.54 for second mark.
(c) (iii)	correct use of $v_{max} = 2\pi fA$	C1	Allow ecf for cand's values from (c)(i)
	Llowita		and/or (c) (ii). E.g for $17.3 f = 68.8 Hz$. This
	$f = (0.55/0.04x2\pi) = 2.2$ (or 2.19 or 2.18)Hz	A1	scores 2 marks e.c.f.
())		-	Do not allow 2.1
(d)	Award first mark for stating the 'driver' of the oscillations	B1	No marks to be awarded for a bare
	and the second mark for stating what is 'driven' i.e. oscillating	B1	statement of the example e.g MRI.
	useful applications: e.g.		Disconstant and the surely descented
	Cooking: micro waves cause water molecules to resonate		Please allow any other valid examples.
	woodwind: reed causes <u>air column</u> to resonate		
	MDL radio waves (in a magnetic field) serves nuclei/proten to		
	MRI. <u>radio waves</u> (in a magnetic field) cause <u>nuclei/proton</u> to		
	Redios: radio waves cause electrons/current to resonate		
	Person on swing: intermittent nusbes cause swing to		
	resonate		
	problem:	B1	
	Bridges: wind/walkers causes bridge to resonate	В1	
	Vehicles: engine vibrations cause panels/mirrors to		
	resonate Earthquakes: ground vibrating causes buildings to		
		4.4	
	l otal	14	

G484	Mark Scheme		June 2010
Question	Expected Answers	Marks	Additional guidance
4 (a) (i)	Brownian (motion) (QWC mark)	B1	QWC Brownian spelled correctly
(a) (ii)	ANY two from the following three:		Answers that refer to smoke particles only
	air molecules are moving in different directions/randomly	B1	cannot score the marks.
	with different speeds	B1	
	mass/size of air molecules is smaller than smoke particles		
(b) (i)	$vol = (4/3) \pi r^3 = 5.58 \times 10^{-3}$	C1	Allow ecf for wrong volume
	correct sub into $pV = nRT$ i.e. with T as 290K	C1	Allow use of $pV = NkT$ and $n = N/N_A$
	$n = (2.6 \times 10^5 \times 5.58 \times 10^{-3})/8.31 \times 290 = 0.602$ moles	A1	Allow ecf for cand's value for n
	mass = n x 0.028 = 0.0169 kg (0.016856)	A1	If 17° C used allow maximum of 2 marks
			for n = 10.3 moles and m = 0.29 kg
(b) (ii) 1	no net heat flow between objects (WTTE)	B1	Allow "they are at the same temp."
(b) (ii) 2	correct use of P/T = constant: e.g. P = $(273/290) \times 2.6 \times 10^5$	C1	Allow correct use of pV=nRT
	$P = 2.45 \times 10^5$ (or 2.4 x 10 ⁵ or 2.5 x 10 ⁵)Pa	A1	
	Total	10	

Question	Expected Answers	Marks	Additional guidance
5 (a) (i)	Initial KE of car = $0.5x970x27^2$ = 3.5 x 10⁵ J (353565J)	B1	ž
(a) (ii)	Work done = Av Force x distance moved Av Force = $3.5 \times 10^5 \text{ J}/40 = 8.8 \times 10^3 \text{ N}$ (or 8750 N) (or 353565/40 = 8836.7 N)	C1 A1	If $v^2 = u^2 + 2as$ is used. accept a = 0-27 ² /(2x40) = 9.113 ms ⁻² C1 F = ma = 970x9.11 = 8.84 x 10 ³ N A1
	Assumption: no air resistance	B1	Allow air friction or drag
(b) (i)	correct use of E = mc $\Delta\theta$: 3.5 x 10 ⁵ /4 = 1.2x520x $\Delta\theta$ $\Delta\theta$ = 140^oC (if 353565 is used $\Delta\theta$ = 142 ^o C)	C1 A1	If cand. forgets to divide by 4 allow any value between 560 and 570 for 1 mark.
(b) (ii)	<u>Air resistance</u> will be acting (slowing down the car) (hence) <u>reducing the KE of the car</u> (WTTE) The <u>discs are hotter</u> than the surroundings	M1 A1 B1	Do not allow sound since only a tiny proportion of energy is lost in this way. Allow other valid comments as alternative ways of scoring one or both of the 'B' marks:
	(hence) <u>energy/heat</u> will be lost from <u>discs/brakes</u> (WTTE)	B1	e.g. 'hot spots' on discs; discs are different. Try to credit a well argued case based upon correct physics- e.g. wheels locking.
(b) (iii)	Any valid suggestion: e.g. use a material with a higher s.h.c use a disc with a higher heat capacity Use discs of greater mass put holes in the discs (to increase air flow)	B1	Confusion between shc and heat capacity should not be penalised.
	Total	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

GCE

Physics A

Advanced GCE G485

Fields, Particles and Frontiers of Physics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.
- A marks: These are accuracy or <u>answer marks</u>, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Convention used when marking scripts

WRONG PHYSICS OR EQUATION - indicate by ? on scoris

No credit is given for correct substitution, or subsequent arithmetic, in a physically incorrect equation.

ERROR CARRIED FORWARD - indicate by ECF on scoris

Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers.

ARITHMETIC ERROR – indicate by AE on scoris

Deduct 1 mark for the error and then follow through the working/calculation giving full credit for subsequent marks if there are no further errors. The ruling also includes power of ten (POT).

TRANSCRIPTION ERROR - indicate by ^ on scoris

This error is when there is incorrect transcription of data from the question, formulae booklet or previous answer. For example 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Deduct the relevant mark and then follow through the working giving full credit for subsequent marks.

SIGNIFICANT FIGURES - indicate by SF on scoris

Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. An error in significant figures is penalised only once per paper.

BENEFIT OF DOUBT - indicate by BOD on scoris

This mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.

RUBRIC INFRINGEMENT

If the candidate crosses out an answer but does not make any other attempt, then the work that is crossed out should be marked and the marks awarded without penalty.

CONTRADICTION – indicate by **CON** on scoris No mark can be awarded if the candidate contradicts himself or herself in the same response. For example, '... the mass of the particle increases and decreases.'

Qı	lest	tion	Expected Answers	Marks	Additional Guidance
1	а		Capacitance = charge per (unit) potential difference	B1	Allow: capacitance = charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow 'over' instead of per
	b	(i)	Q = CV = $4.5 \ \mu \ x \ 6.3 = 28.(35) \ (\mu C)$	B1	Allow: 28 (≥ 2 sf)
		(ii)	E = $\frac{1}{2}$ CV ² = 0.5 x 4.5 x μ x (6.3) ² = 8.9(3) x 10 ⁻⁵ (J) / 89.3 μ (J)	C1 A1	Allow use of E = $\frac{1}{2}$ QV and the Q value from (b)(i) Q=28 E= 8.82 and Q=28.4 E=8.946 Allow ecf from (b)(i) penalise power of ten error (-1)
	С	(i)	Electrons / they move in an anticlockwise direction	B1	Alternatives for anticlockwise: from / lower plate around the circuit, from / lower plate through the resistor to top plate implied
			Charge on plates decreases / electrons neutralise positive charge	B1	Capacitor discharges / loses charge
			p.d. decreases <u>exponentially</u>	B1	0
		(ii)	(dissipated as heat) in the resistor / wires	B1	
	d	(i)	Total capacitance = $1.5 + 4.5 = 6(.0)$ (µF)	A1	Allow one SF
		(ii)	Original charge on 4.5 μ F capacitor is conserved (28.35 μ C)	C1	ecf from (b)(i) and (d)(i)
			V = $(28.35 \ \mu) / (1.5 + 4.5) \ \mu = 4.7 \ (V)$ Total	A1 [11]	

Qı	Question		Expected Answers	Marks	Additional Guidance
2	а		static / homogeneous	B1	Uniform (density)
			infinite / infinite number of stars	B1	Do not allow isotropic or fixed
	b	(i)	gradient of graph = H_0	C1	
	c	(ii) (i)	$\frac{\text{value H}_0 = 66 \pm 4 \qquad (\text{km s}^{-1} \text{ Mpc}^{-1})}{\text{age} = 1 / H_0 \qquad (\text{H}_0 = 2.1 \times 10^{-18} \text{ s}^{-1})}$ $= (1 / 66 \times 3.2 \times 10^{-20} \times 3.2 \times 10^7)$ $= 1.5 \times 10^{10} (1.48 \times 10^{10}) \qquad (\text{year})$ $\rho_c = 3H_0^2 / 8\pi \text{G}$	A1 C1 C1 A1	ecf from H_0 value Or correct age in seconds (4.7 x 10^{17} s) Answer will depend on H_0 value in (b)(i) Minus one if Mega or kilo omitted
		()	$= [3 \times (2.1 \times 10^{-18})^{2}] / (8 \times \pi \times 6.67 \times 10^{-11})$ $= 7.9 \times 10^{-27} \qquad (\text{kg m}^{-3})$	C1 A1	If units of H ₀ not converted or converted incorrectly then maximum one out of two ecf from H ₀ value in (b)(i)
		(ii)	if average density of the Universe is less than critical then it will be too small to stop it expanding / it goes on forever if the average density of the Universe is greater than the critical value it will cause the contraction (and produce a big crunch)	B1 B1	do not allow answers open, closed and flat
			expands that will go towards a limit / expands at an ever decreasing rate asymptotic	B1	

Mark Scheme

2	d	galaxies are moving apart / universe is expanding if galaxies have always been moving apart then	(B1)	Allow stars for galaxies
		at some stage they must have been closer together / or started from a point	(B1)	
		evidence in red shift either optical / microwave	(B1)	allow statement that red shift is observed or that blue light becomes red or gamma from big bang has become microwave
		recession	(B1)	IVes &
		the existence of a (2.7 K) microwave background radiation	(B1)	
		there is more helium in the universe than expected	(B1)	itage
		MAX 4	B4	
		Total	[16]	

Q	Question		Expected Answers	Marks	Additional Guidance
3	а	(i)	uniformly spaced, vertical parallel lines must		ignore any edge effects
			begin and end on the plates with a minimum of		
			three lines	B1	
			arrow in the correct direction down		
		(!!)		B1	
		(11)	$E = V/d$ $E = 60/5 \times 10^{\circ}$		
		(1)	- 12000 (V III)	A1	
	b	(i)	Use of energy qV and kinetic energy = $\frac{1}{2}$ mv ²	M1	ivoc 9
			AIG		IVES OC
			$v = [(2\alpha)/)/m]^{1/2}$		
			$v = [(2 \times 3.2 \times 10^{-19} \times 400)/6.6 \times 10^{-27}]^{1/2}$	М1	
					11200
			v = 1.97 x 10 ⁵ (m s ⁻¹)	A0	ILAYE
			-		
		(ii)	a = F / m a = Eq / m	C1	Both required for the mark
			(10000 0 0 10 10 10 0 0 10 27)		
			$a = (12000 \times 3.2 \times 10^{10}) / 6.6 \times 10^{-27})$		
			$- 5.02 \times 10^{11} (m e^{-2})$		
		/:::)	$= 5.82 \times 10^{-10} (\text{III S})$	A1	Answer will depend on number of of yead by condidate
		(111)	$1 = (10 \times 10) / 2 \times 10$	IVIT	Answer will depend on number of si used by candidate.
			$= 8 \times 10^{-8}$ (s)	۵0	
			2 s = $\frac{1}{2}$ a x t ² = $\frac{1}{2}$ [5.82 x10 ¹¹ x (8 x 10 ⁻⁸) ²]	C1	Using $\mu = 2 \times 10^5$ scores $0/2$
			= 1.86 x 10 ⁻³ (m)	A1	Allow slight variation in answers that follow from the candidates
					working

G485

С	Eq = Bqv	C1	
	$B = E / v = 12000 / 2 \times 10^5$	C1	
	= 0.060 (T)	A1	Allow one sf unless answer is 0.061 when using v =1.97 x 10^5
d	velocity (produced by p.d / 400 V) is less	B1	
	force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects <u>down</u>	B1	Allow the resultant force is downward Allow towards the lower plate
	Total	[15]	ITage

Q	Question		Expected Answers	Marks	Additional Guidance
4	а		magnetic flux = magnetic flux density x area (perpendicular to field direction)	B1	Allow equation with the symbols identified correctly Do not allow magnetic field or magnetic field strength
	b		Φ = NBA = 500 x 0.035 x 2.5 x 10 ⁻³	C1	
			= 0.044 (0.04375)	A1	[allow for one mark 8.75 x 10^{-5} (Wb) i.e. B x A]
			unit: Wb	B1	Allow: Wb turns and T m ² and V s
	С	(i)	The component of B perpendicular to the area changes / the idea that the area changes relative to the field direction	B1	Allow the idea that the direction of the field relative to the area of the coil varies with the orientation of the coil Do not allow reference to cutting of the flux by the coil
			detail of how it varies / depends on cos θ / maximum when field is perpendicular to B / zero when area is parallel to B	B1	tage
		(ii)	Induced / e.m.f is proportional / to the rate of change of (magnetic) flux	B1	Allow the emf produced is equal to the rate of change of flux or flux cutting
		(iii)	e.m.f. max when ϕ is zero or at 0.005 /0.015 /0.025	(B1)	
			s e.m.f zero when φ is a max or at 0.0 / 0.01/ 0.02 s	(B1)	
			e.m.f. and ϕ have the same frequency	(B1)	
			allow e.m.f and ϕ out of phase by $\pi/2$ / emf follows a sin curve	(B1)	
			emf is the gradient of the graph MAX 3	(B1) B3	

4	(iv)	ϵ = (change in flux linkage) / time		
		= 0.04375 / 0.005 (8.8 x 10 ⁻⁵ x 500) / 0.005 = 8.75 (V)	C1 A1	[if N omitted then give one mark ($\epsilon = 0.0175$)] [if 10^{-5} omitted then minus 1] [reading error from graph is penalised -1 (should be 8.8 and not 8.4)]
	(v)	Max e.m.f. is twice the original value as the rate of flux change is twice the original	B1 B1	Do not allow just larger Allow: the change in magnetic flux occurs in half the time Allow the max gradient will double
		Total	[14]	

Mark Scheme

Que	Question		Expected Answers	Marks	Additional Guidance
5	а		Magnetic resonance: some <u>nuclei</u> behave as small magnets / certain <u>nuclei</u> possess a net spin / <u>nuclei</u> line up in the magnetic field	B1	Allow protons instead of nuclei in the context of hydrogen nuclei or a single proton instead of nuclei
			Need for a strong magnetic field	B1	
			the frequency of precession is known as Lamor frequency (1)		and a maximum of THREE extra marks (1)
			Application of RF pulses	B1	Maximum of 8 marks
			produces resonance / flip energy states (1)		Do not allow 'atoms' for nuclei but penalise once only
			RF pulse turned off nuclei relax / flip back (and emit RF signal)	B1	Please annotate scripts as follows:
			RF detected (by coil receiver) and processed (1)		Essential marks: ✓(ticks) on left hand side of candidate's work
			Use of non-uniform field / gradient field (1)		Extra marks: ✓(ticks) on right hand side of candidate's work
			To locate position of nuclei in body (1)		
			QWC mark: difference in the relaxation times for hydrogen in different tissues / materials MAX (3) MAX 8	B1	
				MAX B8	

5	b	Advantage: not ionising radiation (as with X-rays) / better soft tissue contrast	B1	Accept can view soft tissue in brain / skull
		Disadvantage: heating effect of metal objects /effect on cardiac pacemakers / takes a long time to perform MRI scan	B1	Do not allow no side effects
		Total	[10]	EX.

Q	Question		Expected Answers	Marks	Additional Guidance
6	а	(i)	$A = \lambda N_0 = 4.5 \times 10^{23} \times 0.693 / (12 \times 3600)$	C1	allow one mark if the 12 hours is not converted into seconds.
			= 7.22 x 10 ¹⁸ (s ⁻¹)	A1	Answer is 2.6 x10 ²² Allow one mark if the 12 hours is converted into minutes Answer 4.33 x 10^{20}
		(ii)	3 half lives $N = 5.6 \times 10^{22}$	A1	
		(iii)	N = N ₀ e ^{-λt} = 4.5 x 10 ²³ x e ^{-(0.693 x 50/12)} or	C1	use of 2 ⁿ
			use of 2^{n} = 2.5 x 10^{22}	A1	50/12 half lives
	b		material with large λ / short half life have initial high activity	(B1)	
			disposal OR	(B1)	itage
			material with small λ / long half life activity will last for a long period hence need for long term disposal	(B1)	
			MAX 2	(B1)	
				B2	
			Total	[7]	

Question		tion	Expected Answers	Marks	Additional Guidance
7	а	(i)	e: 0 and –1 N: 15 and 7 + (antineutrino)	B1	
		(ii)	e: 0 and +1 Si: 30 and 14 + (neutrino)	B1	Allow 1 for +1
			correct 'neutrino' <u>in each case</u>	B1	Correct symbols required for the neutrinos: ν and (Allow ν_e and ($_e$
	b	(i)	uud \rightarrow udd	B1	Allow $u \rightarrow d$
					IV/AC Y
		(ii)	$udd \rightarrow uud$	B1	Allow $d \rightarrow u$
	С		weak(nuclear force)	B1	
			Total	[6]	0

Q	Question		Expected Answers	Marks	Additional Guidance
8	а	(i)	mass of uranium is greater than (the sum of) the mass of the products	M1	
			$E = \Delta mc^2$	A1	
			OR		
			binding energy of the products is greater than that of uranium	M1	ives &
			energy available is the difference between the binding energies of uranium and the sum of the products	A1	itage
		(ii)	kinetic energy	B1	0
	b	(i)	the neutron is a single nucleon / cannot be split further / no binding has occurred	B1	The neutron is not bound to anything
		(ii)	binding energy of uranium = $235 \times 7.6 = 1786$ binding energy of products = $141 \times 8.3 + 92 \times 8.7$ = $1170.3 + 800.4$	C1	An answer of 9.4 (not using the number of nucleons) scores zero
			energy available = 184.7 (MeV)	A1	Allow ≥ 2 sf (180, 185, 184.7) Penalise 184 as an AE
			Total	[0]	

Q	Question		Expected Answers	Marks	Additional Guidance
9	а		$F = Q_1 Q_2 / 4\pi\epsilon_0 r^2$ = (1.6 x 10 ⁻¹⁹ x 1.6 x 10 ⁻¹⁹) / $4\pi\epsilon_0 (2x 10^{-15})^2$	C1	Allow use of 9 x 10 ⁹ instead of 1 / $4\pi\epsilon_0$ (using this gives 57.6) Allow $\ge 2sf$ (58)
			= 57.5 (N)	A1	
					If correct formula quoted and then AE (e.g. not squaring r <u>or</u> not squaring Q) then allow ecf in final answer for 2/3
	b		attractive strong (nuclear force)	B1	Do not it holds them together
	С		as the proton travels towards the stationary proton it experiences a repulsive force that slows it down.	B1	IVES GC
			(It needs a high velocity) to get close enough (to the proton) / for the (attractive) <u>short range</u> force to have any effect	er	ritage
				B1	
			Total	[5]	

Question		ion	Expected Answers	Marks	Additional Guidance
10	а		ANY ONE from X-rays interact with matter by: the photoelectric effect where an (orbital) electron is ejected from atom / atom is ionised	(B2)	Allow electrons ejected from metal surface if reference is made to <u>free</u> electrons
			Compton scattering where X-ray scattered by the interaction with (orbital) electron Pair production where X-ray photon interacts with the nucleus / atom and an electron and positron are produced	(B2) (B2)	Allow: X-ray diffraction B1 X-ray passes through the 'slits' / atomic gap formed by the atoms B1
			[allow one mark for statement and one for explanation] Max 2	B2	itage

	b		$I = I_0 e^{-\mu x}$ $0.1 = e^{-\mu 3}$	C1	Calculation of µ =0.768 C1
			$0.5 = e^{-\mu x}$ In 0.5 / In0.1 = x/3	C1	Substitution into second equation C1
			x = 0.903 (mm)	A1	Allow 0.9 (1sf)
			Arc		If question misread and 0.9 used for change μ = 0.035 and x = 19.7 (allow 20) give 2/3
10	С	(i)	Absorption of X-rays by (silver halide molecules) by a photographic film	(B1)	itage
			Uses of fluorescent / scintillator/ phosphor	(B1)	
			Photon releases electron (that is accelerated onto a fluorescent screen)	(B1)	
			number of electrons increased /multiplied	(B1)	
			MAX B2	B2	
			QWC: Phosphor / Intensifier/ it converts X-ray photon into increased number of 'visible' photons		
				B1	

(ii)	Different <u>soft</u> body <u>tissue</u> produce little difference in contrast/attenuation (Contrast media with) high atomic number / Z used / iodine or barium (used to give greater contrast)	(B1) (B1)	This method produces good contrast for soft tissue /for similar Z values
	areas / or examples of such	(B1) B2	ives &
	Total	[10]	itado

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

