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Abstract 
As markers trade their pens for computers, new opportunities for monitoring and 
controlling marking quality are created.  Item-level data may be collected and 
analysed throughout marking.  The results can be used to alert marking supervisors 
to possible quality issues earlier than is currently possible, enabling investigations 
and interventions to be made in a more timely and efficient way.  Such a quality 
control system requires a mathematical model that is robust enough to provide useful 
information with initially relatively sparse data, yet simple enough to be easily 
understood, easily implemented in software and computationally efficient – this last is 
important given the very large numbers of candidates assessed by Cambridge 
Assessment and the need for rapid analysis during marking.  In the present paper we 
describe the models we have considered and give the results of an investigation into 
their utility using simulated data. 

Introduction 
New technologies are facilitating new ways of working with examination scripts.  
Paper scripts can be scanned and the images transmitted via a secure Internet 
connection to markers working on a computer at home.  Once this move from paper 
to digital scripts has been made, marking procedures with the following features can 
be more easily implemented: 

• Random allocation: each marker marks a random sample of candidates; 

• Item level marking: Scripts are split by item – or by groups of related items – 
for independent marking by different markers; 

• Near-live analysis of item-level marks:  item marks can be automatically 
collected and collated centrally for analysis as marking proceeds. 

Features such as these open the possibility of analysing item marks during marking 
and thereby alerting supervisors to possibly aberrant marking earlier than would 
otherwise be possible.   
In the present paper we consider the following types of aberrancy, although the 
models and methods we discuss could be applied to other forms of marker 
aberrancy: 

• Overall severity:  the marker is more severe or less severe (i.e. lenient) than 
he or she should be over all items; 

• Item-specific severity / leniency:   the marker’s severity varies by item, e.g. the 
marker might be lenient on one item but severe on another; 

• Erraticism:  the marker marks erratically, perhaps due to carelessness; this is 
a random error that might apply to a marker’s marking of one or more 
particular items or across all items. 

We consider two numerical models, a three facet, partial credit Rasch model (See 
Linacre, 1989, for technical details), and a simpler model based on generalizability 
theory (see Shavelson & Webb, 1991) that we refer to for convenience as our ‘means 
model’. 
The reader may wonder why we developed a simple model if a Rasch model could 
be used.  Our reasons relate to the environment in which we propose the model be 
used:  near-live, repeated analyses of many datasets that are initially sparse but can 
become very large indeed.  In these circumstances, the drawbacks of a partial credit, 
multi-facet Rasch model include: 
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• The amount of computationally intensive, iterative processing needed; 

• The difficulty and cost of implementing such a relatively complex model in a 
reliable ‘back office’ examination processing system suitable for routine use in 
a high volume, high stakes, high pressure environment; 

• The lack of a body of evidence on which to rest assumptions concerning the 
validity of the Rasch model when applied to many of the question papers 
used by Cambridge Assessment, which typically intersperse items of many 
different types and numbers of marks, and where reverse thresholds are often 
encountered; 

• The difficulty of explaining the model to stakeholders with little or no technical 
knowledge; 

• The fact that the estimation of Rasch parameters is an iterative process, and 
different convergence limits might need to be set for different data sets.  This 
could affect the residuals, which in turn affect whether a particular piece of 
marking is flagged as potentially aberrant. 

We therefore decided to develop a much simpler model, and compare its 
performance with that of a multi-facet, partial credit Rasch model, using a range of 
simulated data.  

The Data Simulator 
Two overriding considerations led to our use of simulated data: the ability to produce 
large volumes of data at will, and the ability to control the types and degree of 
aberrance and thus facilitate systematic investigation of the models to an extent not 
possible with real data.   
The data are generated from a 3-facet model: 
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where: 
Pnijk is the probability that marker j gives candidate n a mark of k on item i 
Pnijk-1 is the probability that marker j gives candidate n a mark of k-1 on item i 
Bn is the ‘ability’ of candidate n 
Di is the ‘difficulty’ of item i 
Sij is the ‘severity’ of marker j on item i 
Fik is the threshold marking the transition from score category k-1 to score 
category k on item i. 

B, D, S and F can all be considered as locations on a single latent trait or dimension.  
This model is therefore a unidimensional model.  The fact that the term for the 
marker facet (Sij) contains both the item and the marker allows the simulation of 
markers whose severity varies depending on the item.  This interaction means that 
the above model is not a Rasch model, which would require the contribution of each 
facet on the right-hand side of the equation to be additive (i.e. without any interaction 
terms).  However, the generator can still simulate data according to the Rasch model 
by fixing the severity of each marker across all items which they are eligible to mark. 
Rather than generating a full set of thresholds (Fk) for each item, we use the solution 
of Andrich & Luo (2003) and generate just the first four principal components (mean, 
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standard deviation, skew and kurtosis) of the distribution of thresholds, and derive 
the individual thresholds from these components.  A full mathematical treatment of 
this approach is beyond the scope of this paper, but the reader can consult Andrich & 
Luo (2003) for details. 
The configuration options governing the generation of candidate ability parameters, 
marker severity parameters and item difficulties are as follows. 

Candidates:  This is the simplest part of the generator.  We specify the 
number of candidates N, and the mean M and standard deviation S of their 
ability distribution (in logits – the log-odds unit of the Rasch model). 
A total of N candidate ability parameters (B) are then generated from a 
normal distribution with mean M and standard deviation S. 
I.e. B ~ Normal (M,S) 
Markers:  We specify the severity in logits of each marker on each item.  A 
value of zero means neither severe nor lenient, positive values indicate 
increasing severity and negative values indicate increasing leniency (a 
missing value indicates that we do not wish to generate data for that marker 
on that item, i.e. the marker ‘did not mark’ that item).   
We also specify the erraticism in marks of each marker on each item.  This 
number specifies the standard deviation of a normal distribution with mean 
zero from which an error value for that marker on that item will be drawn at 
random.  This value is then rounded to whole marks.  If the marker is not 
‘erratic’ on that item then the value will be zero. 
Items:  This is the most complex part of the data generator.  The problem is 
to generate items which vary realistically in both overall difficulty and in the 
distribution of marks across the item, given that the generator needs to be 
capable of producing output for items with widely varying numbers of marks. 
For each item on the test, the generator takes as its input: 

• A unique item ID; 

• The serial position of the item in the test; 

• The maximum number of marks available, and 

• The ‘item group’ it is in.  This last feature allows for several items to be 
grouped together as a block which becomes the smallest unit for 
allocation to markers. 

The method we used for generating the item parameters made use of a 
database containing more than 900 items from many subjects, their principal 
components compiled from past Rasch analyses of real data.  Given an item 
worth m marks, a set of component parameters was obtained by sampling 
once at random from the subset of items in the database worth m marks.  
This ensured that the four parameters were ‘realistic’ in that they have been 
obtained in the past. 
In fact, analysis of the database suggests that the first component (item 
difficulty) is relatively independent of the other components so in the data 
generator this component is obtained by random sampling from the normal 
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distribution1, and the other three components are obtained as a set by 
sampling from the database2. 

Having obtained our sets of simulated candidate, item and marker parameters, the 
final stage is to simulate the marks.  First each candidate is randomly allocated a 
marker on each item, subject to any constraints specified for item grouping and 
marker eligibility.  Next the simulated marks are generated for each candidate on 
each item using the equation for the 3-facet model as follows.  First of all, the set of 
cumulative probabilities for each possible mark on an item for a given candidate’s 
ability is generated (i.e. for each possible mark on the item [0,1, …, max], the 
probability of the candidate getting that mark or lower is calculated).  Next a number 
between 0 and 1 is drawn at random from a flat distribution and this random number 
is compared with the cumulative probabilities.  The simulated mark x for the given 
candidate on the given item is the mark where the random number lies between the 
cumulative probability for that mark and the cumulative probability for the mark 
above.  The procedure is repeated for all candidates over all items. 
Here is an example for a four mark item: 

Cumulative probabilities 
for cand. n on item i marked by marker j 

Random number Simulated mark  
(before erraticism applied) 

P(0) P(1) P(2) P(3) P(4) r x 

0.1 0.3 0.4 0.9 1.0 0.4256782 2 

 
Finally, marker erraticism is applied.  A number is drawn at random from a normal 
distribution with mean 0 and the specified standard deviation.  This number is added 
to the simulated mark and the total rounded to the nearest whole mark or, if this 
would result in a mark beyond the permitted range, to zero or full marks as 
appropriate. 

The means model 
Our simple model is not a rigorous statistical model.  Its intended purpose is to flag 
markers whose marking patterns deviate in some way from the majority of markers, 
suggesting – but not proving – a degree of aberrancy on the part of the marker.  In 
this way senior examiners’ checks on marking quality might be prioritised so that they 
first review the marking most likely to be aberrant, thereby cutting the time taken to 
detect, diagnose and remedy aberrant marking. 
This is still a work in progress and the model has not been finalised.  We use 
generalizability theory to partition candidates’ marks into a series of effects -- see 
Shavelson & Webb, 1991, for technical details. 

The examination we used in our investigations 
We chose a Leisure and Tourism examination because this examination contained a 
wide range of types of item, and because it is likely to be marked on screen in the 
near future and so real data will be available against which our simulated data may 
be compared.   

                                                
1 The available evidence suggests that difficulties are noticeably more spread out for 1 and 2-mark items so the data 
generator takes this into account. 
2 The database does not yet contain a significant number of items worth more than 7 marks.  Therefore all four 
principal components of the distribution of thresholds are generated randomly for items worth more than 7 marks, 
though the range of each component is based on the range found in the database. 
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The examination consists of four questions, each of which contains four parts, a, b, c 
and d, worth 4, 6, 6 and 9 marks respectively.   
The part (a) items are essentially objective, for example asking candidates to select 
four pieces of information matching a given criterion from a larger list of given 
information.  Markers do not need domain-specific knowledge to mark these items. 
Part (b) items are more open ended, for example asking candidates to explain three 
things and giving, for each one, the first mark for a reason and the second for an 
explanation.  Markers need some domain-specific knowledge to mark these items. 
Part (c) and (d) items required candidates to write more extended answers, which are 
marked holistically against ‘levels of response’ criteria, the mark scheme containing a 
brief description of each level of response.  Again, markers need domain-specific 
knowledge for these items. 

How realistic are the simulated data? 
For our first, baseline simulation, we simulated Leisure and Tourism data for 3200 
candidates.  Their mean ability was set to zero logits, and the standard deviation of 
their abilities was set to 0.69 logits.  The simulation contained no marker severity or 
erraticism, only random error.  Apart from the (c) and (d) items within each question, 
which were kept together in an item-group, scripts were simulated to have been split 
by item and the answers distributed to markers at random.  That is, each of the four 
questions was split into three item-groups, (a), (b) and (c,d), making twelve item 
groups in total.  Answers to these item-groups were distributed to markers at random. 
The resulting distribution of simulated total marks is shown in Figure 1.  The mean 
mark was 51.0 and the standard deviation was 15.7. 
Figure 1: Distribution of total marks, simulation 1 
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Classical item statistics calculated from the simulated data are given in Table 1.  We 
do not currently collect real item level data for Leisure and Tourism, so the simulated 
data cannot be compared with real data.  However, experience from other 
examinations suggests the items have a fairly realistic range of facility values, and 
the later questions are more difficult than the earlier questions, as is often the 
intention.  The items are all discriminating well, and Cronbach’s alpha (internal 
consistency reliability) is high. 
 
Table 1:  Item analysis for simulation 1 
Item Item label Max mark Item mean Item SD Facility Discrimination 

1 Q1a 4 3.34 0.90 0.83 0.45 
2 Q1b 6 4.46 1.37 0.74 0.56 
3 Q1c 6 3.81 1.41 0.64 0.57 
4 Q1d 9 4.28 2.69 0.48 0.71 
5 Q2a 4 2.20 1.19 0.55 0.53 
6 Q2b 6 3.46 1.50 0.58 0.60 
7 Q2c 6 2.31 1.46 0.38 0.60 
8 Q2d 9 7.05 1.72 0.78 0.55 
9 Q3a 4 2.28 1.18 0.57 0.54 

10 Q3b 6 2.77 1.51 0.46 0.61 
11 Q3c 6 2.80 1.93 0.47 0.65 
12 Q3d 9 4.60 1.40 0.51 0.58 
13 Q4a 4 1.31 1.01 0.33 0.49 
14 Q4b 6 1.96 1.53 0.33 0.61 
15 Q4c 6 1.26 1.57 0.21 0.56 
16 Q4d 9 3.13 1.66 0.35 0.59 

Chronbach’s alpha=  0.90 
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Detecting overall marker severity / leniency 
We simulated the effects of adding overall marker severity to the baseline.  Sixteen 
markers were simulated, all of whom marked all items.  Each marker was simulated 
to have the same severity on all items, and the markers ranged in severity from -0.40 
logits to 0.40 logits in intervals of 0.05 logits.  Each marker was also simulated to 
have an erraticism of 0.2 logits on all items3 
Overall marker leniencies were estimated using the means model – we have referred 
to the effect as ‘leniency’ because higher values mean higher marks.  The overall 
marker severities were also estimated using the partial credit, three facet Rasch 
model.  The results are shown in Figures 2 and 3 respectively.  Each cross 
represents a marker, and the dotted line represents the situation where the estimated 
severities are perfectly reproduced, i.e. ignoring the added component of random 
error in the simulated data.  Note that the means model estimates leniency in marks, 
a non-linear scale, whereas the Rasch model estimates severity on a linear logit 
scale.  The Rasch model has done a good job in recovering the simulated severities, 
with all markers in the correct rank order.  The means model has done almost as 
well, however, with only a few small ‘mistakes’ in rank order near the middle of the 
range – for the purposes of flagging potentially aberrant marking for investigation this 
is of negligible importance. 
 
 
Figure 2:  Means model - estimated leniency as 
a function of simulated severity 
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Figure 3:  Rasch model: estimated severity as a 
function of simulated severity 
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3 For this simulation, erraticism was added to a marker’s severity in logits before a mark was simulated for an 
answer.  The figure of 0.2 specified the standard deviation of a normal distribution from which an error value for that 
marker for that answer was drawn at random and added to the marker’s severity.  This approach to adding marker 
erraticism was replaced in later simulations by the method outlined on page 4 under ‘marker’ because the erraticism 
achieved depended on item difficulty. 
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Detecting item-specific severity 
Sometimes a marker may consistently mark a particular item or items more severely 
or leniently than other items.  This can be detected as marker-item bias.  Observed 
biases may be the result of several causes.  For example, if a marker marks a 
mixture of high judgement and low judgement items, any severity or leniency might 
only be apparent on the high judgement items.  Alternatively, if the marker 
misunderstands the mark scheme for a low judgement item, he or she may 
consistently give too many or too few marks to every answer that fits his or her 
misunderstanding.  Both these sources of bias can be simulated by considering 
markers to have item-specific severities.  Another, more subtle source of marker-item 
bias occurs only for difficult or easy items, when an erratic marker might appear 
biased since his or her errors cannot result in a mark more than an item’s maximum 
mark or less than zero. 
We investigated the effects of adding some item-specific severities to our simulation.  
We divided our markers into two groups, following a realistic divide: the essentially 
objective part (a) items were marked by six General Markers; the other items, which 
required markers to have domain specific knowledge, were marked by twelve Expert 
Markers.  All the General Markers’ severities were simulated to be zero for all their 
items.  Each Expert Marker was simulated to be severe or lenient by 0.5 logits on 
one item.  All markers were simulated to have an erraticism of 0.1 marks on all items. 
Marker-item biases were estimated from the means model, and the partial credit, 
three facet Rasch model.  The results are shown for Expert Markers only in Figures 4 
and 5 respectively.  A triangle denotes a marker who was simulated to be severe by 
0.5 logits on an item, a circle denotes a marker simulated to be 0.5 logits lenient on 
an item, and a cross denotes markers whose simulated item-specific severities were 
zero.  It can be seen that both the means model and the Rasch model clearly 
distinguished the aberrant marker in each case. 
 
Figure 4:  Means model - marker-item bias 
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Figure 5:  Rasch model - marker-item bias 
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Detecting erraticism 
In a simulated data set for 3200 candidates with no severe or lenient markers, one 
marker was made erratic on each item (parameter = 0.5; see page 4 under 
‘markers’).  As before, the part (a) items were marked by six General Markers, and 
the other items were marked by twelve (different) Expert Markers.  Each question 
was split into three item-groups as before and the answers to these item-groups were 
distributed at random to eligible markers. 
For our experiments in detecting erraticism, we took the simplest possible approach, 
and just compared the markers’ variances on each item.  The hypothesis was that 
erratic markers would have larger variances.  Figures 6 to 9 summarise the results – 
the deviation of each marker from the mean variance for the item in question is 
plotted.  Triangles denote the marker with the simulated erraticism.  It can be seen 
that for the (a) and (b) items, the erratic marker had the largest variance in each case 
– though not always by much.  For the (c) and (d) items, there is no clear picture.  
From this evidence it would seem that relative variances might be useful for flagging 
potentially erratic markers of low tariff items, but that the situation is more complex 
for higher tariff items. 
 

Figure 6:  Relative variances - general markers 
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Figure 7:  Relative variances - expert markers 
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Figure 8:  Relative variances - expert markers 
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Figure 9:  Relative variances - expert markers 
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Conclusion 
Despite its computational simplicity, the means model has in these simulations 
proven itself capable of identifying severe and lenient markers, both ones that were 
severe or lenient across the board, and ones that were severe or lenient on particular 
items.  When severities and leniencies were spread across a wide range, the means 
model was able to accurately rank order markers in terms of their severity and 
leniency, especially toward the extremes of the scales, where it matters most.  The 
more complex and computationally demanding partial credit, multi-facet Rasch model 
that we used as a comparator offered little practical advantage in terms of the 
accuracy of the estimates it produced, especially when the purpose of the analysis is 
to prioritise marking for checking by a senior examiner.  
On this basis, the means model seems very promising, and we are doing further 
work to validate the model with real data. 
The simplest possible approach to detecting marker erraticism, namely distributing 
answers at random to eligible markers and comparing markers’ variances, had mixed 
results.  It would appear to be of some use for low tariff items, but of little use for 
higher tariff ones.  A more fruitful approach might be to compare the variances of the 
residuals from the means model, and we will do further work to investigate this. 
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