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Introduction

In order for qualifications to be meaningful they typically need to cover 

a greater range of curriculum material than could reasonably be assessed 

within a single paper. For this reason, all current GCSE and A level 

qualifications consist of multiple assessment components. Candidate 

achievement across these different elements is then combined in order  

to determine the final grade they will be awarded. 

Estimating the reliability of qualifications that are examined through 

a composite of multiple assessments creates some challenges as any 

estimate of reliability must adequately account for the different amounts 

of weight given to different components. Some possible approaches to 

this issue are discussed by He (2009). However, a bigger problem arises 

when candidates have multiple options regarding which assessments will 

count towards their overall qualification grade. Such a situation could arise 

due to candidates working towards the same qualification being able to 

choose between:

● Different tiers

● Different papers covering different optional topics

● Different examination sessions for individual components  

as was possible in unitised assessment schemes

Previous work examining how the reliability of qualifications with 

multiple possible routes may be estimated, such as that by Bramley and 

Dhawan (2013), have addressed this issue by simply focussing on the 

most common set of options chosen by candidates to achieve a given 

qualification. The aim of this article is to demonstrate a relatively simple, 

and highly intuitive method of calculating reliability for such qualifications 

that includes the results of candidates across all possible routes. This 

method is exemplified for a very complicated qualification to show the 

power of the method in circumstances where it would not be feasible to 

derive estimates of composite reliability for each possible route.

The Qualification

This article focusses on OCR Mathematics A level specification 7890 and 

the candidates that certificated for this qualification in June 2012. To 

be awarded an A level, candidates needed to complete four compulsory 

units (Core Mathematics 1 to 4) and two out of a possible six optional 

units (two in each of Mechanics, Probability and Statistics and Decision 

Mathematics). For their optional papers they could either take both papers 

within the same optional subject area (e.g. both Mechanics papers), or the 

first paper in two different subject areas (e.g. Mechanics 1 and Decision 

Mathematics 1). To make matters more complicated they had the option 

to take a version of these papers within any of four examination sessions 

(January 2011, June 2011, January 2012 and June 2012)1.

1. In theory candidates could also take any of these units prior to 2011 but this was rare for those 

candidates that completed the A level in 2012.

Figure 1 illustrates some possible routes through this qualification.  

The 30 rectangles represent 30 of the papers available to candidates 

within this qualification. Note that there were no common questions 

across the 30 papers. The circles illustrate three different possible 

combinations of papers that would lead to completion of the A level. 

Candidate 1 takes the A level in a progressive modular fashion; taking one 

core unit in each available session and one optional unit (in Mechanics) 

each June. In contrast, candidate 2 takes a fully linear approach taking 

all core units and both optional units, this time split across Probability 

and Statistics and Decision Mathematics, in June 2012. Another option is 

illustrated by candidate 3; a modular approach but limited to using the 

June examination sessions2.

As can be seen from Figure 1, there were an enormous number of 

options available to candidates. Even if we assume that all of the (more 

challenging) A2 units were taken towards the end of the course (that is, 

in 2012 rather than 2011), and that at least one of these A2 units was 

taken in June 2012 itself, there remains a total of 3,648 possible different 

combinations of papers that would have led to a Mathematics A level. 

Note that if, instead, all units had been required to be taken in a linear 

fashion in June 2012 then the number of possible routes would have 

reduced substantially, but would still have left six possible combinations 

of papers leading to the same qualification.

Given that each of the possible routes through the A level will lead to 

candidates being awarded the same qualification at the same time, it is 

2. Note that for the purposes of this article resits are not relevant. For the purposes of this article 

we need only consider a candidates best performance within any element of the A level. This 

means that for each candidate we can restrict ourselves to exactly six examination scores.
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4 Technically we tend to be interested in changes in standardised scores rather than raw scores. That 
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standard deviation of scores across all candidates. This value is of more interest as such overall 
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Jan 2011 June 2011 Jan 2012 June 2012

Core Mathematics 1 (AS)

Core Mathematics 2 (AS)

Core Mathematics 3 (A2)

Core Mathematics 4 (A2)

Mechanics 1 (AS)

Mechanics 2 (A2)

Probability and Statistics 1 (AS)

Probability and Statistics 2 (A2)

Decision Mathematics 1 (AS)

Decision Mathematics 2 (A2)

Candidate 1 Candidate 2 Candidate 3

                                                  Jan 2011     June 2011     Jan 2102     June 2012

Core Mathematics 1 (AS)

Core Mathematics 2 (AS)

Core Mathematics 3 (AS)

Core Mathematics 4 (AS)

Mechanics 1 (AS)

Mechanics 2 (AS)

Probability and Statistics 1 (AS)

Probability and Statistics 2 (AS)

Decision Mathematics 1 (AS)

Decision Mathematics 2 (AS)
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of interest to calculate the overall reliability of the qualification. Whilst 

numerous techniques exist for evaluating the reliability of any one of the 

30 papers listed in Figure 1 individually, there is little consensus regarding 

how the reliability of the qualification as a whole should be calculated. 

In order to calculate reliability we first need to define what it means.  

In some senses this is a general problem with any reliability estimate with 

usual decisions including whether we are interested in reliability in terms 

of which questions are included – that is, how much difference the exact 

choice of questions within an assessment has upon the performance 

of candidates – or marking reliability – that is, how much difference 

it would make if the same set of responses from each candidate were 

marked by a different marker. For the purposes of this article we are only 

interested in reliability relating to the choice of questions3. In addition to 

the usual decisions over the definition of reliability there are some that 

are particular to the problem in hand. Specifically, we need to determine 

whether we are interested in:

● how much difference it would make if different questions had been 

used within each paper but that each candidate’s route remained 

constant, 

● or how much difference it would make if candidates had chosen 

a different route through the same qualification and answered 

different questions as a result.

In this article we will concern ourselves with the former of these.  

That is, we are interested in evaluating how much difference it would 

make to results if each candidate’s route through the qualification 

remained constant but a different set of questions were included in 

each of the 30 papers. Putting it another way, we wish to calculate what 

percentage of the variance in candidates’ scores is attributable to their 

underlying mathematical ability as would be demonstrated if they were 

able to answer an infinitely large number of questions covering the skills 

assessed by their chosen route through the qualification. 

The Idea

In order to evaluate the reliability of our qualification we will make  

use of the method of split-halves. Given that the usual definition of 

assessment reliability is “the consistency of…measurements when the 

testing procedure is repeated on a population of individuals” (AERA & 

NCME, 1999), the most intuitive way we might seek to measure 

reliability is to get candidates to take two versions of the same test and 

compare their scores. However, this would require candidates to spend 

additional (and possibly unnecessary) time taking a second version of 

the same test. To circumvent this issue the split-half procedure instead 

splits a single question paper into two halves, and then explores the 

extent to which test scores are ‘repeated’ from one half of the question 

in a test to another4. If all candidates tend to have similar scores across 

both halves of the test then we infer that the exact choice of questions 

has little impact on achievement as the set of questions in one half 

give a similar result to the entirely different set in the other. Thus, we 

can be confident that had we written another version of the test and 

3. Although as discussed by Benton (2013b), because each question must be marked, it is likely 

that such estimates will also account for a proportion of marking unreliability.

4. Technically we tend to be interested in changes in standardised scores rather than raw scores. 

That is, the change in each candidate’s score after accounting for any changes in the overall 

mean and standard deviation of scores across all candidates. This value is of more interest as 

such overall changes to the score distribution are likely to be accounted for within the process of 

grade awarding in any case.

got candidates to take that instead, their results would still be largely 

unaffected. Conversely, a massive difference between scores on different 

halves would indicate that candidates’ performances were highly 

dependent upon the precise choice of questions, so that another version 

of the test may have led to very different results. The formulae used to 

convert comparisons of scores in different halves into an overall reliability 

coefficient rely on the correlation (or covariance) of scores between 

halves, and have been in existence for more than 70 years (see Rulon, 

1939).

A simple example of how a test might be split into halves is shown in 

Figure 2. This figure is based upon the scores for one particular candidate 

taking the Core Mathematics 1 paper in June 2012. In this case their 

total score on 10 questions out of 72 is split into two total scores each 

based on 5 questions and out of 36. Although, this particular candidate 

has raw scores that are similar across the two halves, a full calculation 

of reliability would require separate scores on each half to be calculated 

for each candidate and an estimation of the correlation (or covariance) 

between the two.

The great advantage of the split halves technique in our scenario 

is that it automatically handles the issue of multiple routes through 

a qualification. Note that all of the possible routes through the 

Mathematics A level, as defined by Figure 1, require candidates to take 

exactly six assessments. Thus, if we were to split all 30 assessments into 

halves thus creating 30 half 1s and 30 half 2s, regardless of a candidate’s 

route through the qualification, they will have scores from exactly six half 

1s and six half 2s. Thus if we add up all ‘half 1’ scores to make one total 

and all the ‘half 2’ scores to make another, we can produce two ‘half  

A level’ scores for each candidate. These scores can then be compared in 

the usual way to estimate reliability for the A level as a whole. In applying 

this technique we are only examining the reliability of the scores, 

that is, the extent to which the achieved scores would be replicable if 

different questions were used in each paper. The question of whether all 

possible routes through a qualification are equally valid is not addressed. 

Furthermore, the overall reliability coefficient generated in this way will 

essentially provide an average level of reliability across all the possible 

routes. It does not examine whether particular routes provide a more 

reliable final score than others.

Note that the technique suggested here could equally well be used  

to examine the reliability of scores comprised of results in different 

subjects. For example, we could theoretically apply a similar method to 

examine the reliability of candidates’ UCAS scores that combine  

A level performance across numerous subjects and are used for university 

Figure 2: Example of split half scores for one candidate taking Core  

Mathematics 1 in June 2012
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Ques�on Score Half 1 Half 2
1 (3 marks) 3 3
2 (5 marks) 3 3
3 (5 marks) 4 4
4 (6 marks) 6 6
5 (6 marks) 4 4
6 (7 marks) 5 5
7 (6 marks) 4 4
8 (8 marks) 7 7
9 (11 marks) 8 8
10 (15 marks) 15 15

Total (out of 72) 59 28 31
Totals 
(out of 36)
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applications in the UK. This would address the question of the extent 

to which applicants’ UCAS scores are dependent upon the precise set 

of questions included in their particular examinations. This would not 

address the issue of whether all UCAS scores are equally valid predictors 

of university performance or whether all subjects provide equally reliable 

scores; it would simply provide an average reliability coefficient across the 

different subject choices chosen by candidates.

Which split half?

As can be seen from Figure 2, there are numerous possibilities for how we 

should split a single test into two parts (from now on referred to as  

‘halves’ even though they may not be of equal size). In fact, if we imagine 

that question 1 is always in half 2, then each other question is either in  

the same half as question 1 or the opposite side. Thus there are 29=512 

ways to split this test into halves minus the one split with all questions 

on the same side. In Figure 2 we have focussed on ensuring that the same 

number of items and the same number of marks are available in each half. 

However, although this is intuitively appealing, ensuring similar coverage 

in terms of the curriculum content and skills required by each half is 

probably more important.

If we make the (reasonable) assumption that scores on questions 

measuring the same skills are likely to have stronger associations, then we 

can encourage each half to measure similar skills by looking for the split 

that maximises the association between scores on one half and scores on 

the other. Maximising the association, as measured by covariance rather 

than by correlation, is advantageous in that it will encourage each half 

to have a similar score distribution. This approach has been adopted by 

numerous authors and the resulting reliability coefficient is sometimes 

referred to as Guttman’s λ4 (after Guttman 1945, see Callender & Osburn 

1977; Ten Berg & Socan 2004). 

Compared to Cronbach’s alpha, Guttman’s λ4 is less likely to 

underestimate the reliability of a test (Ten Berg & Socan, 2004). On the 

other hand, there is a danger that, in small samples or with very large 

numbers of available items, it may grossly overestimate reliability (Ten  

Berg & Socan, 2004). That is, because it focusses on finding the best split 

half, it may overestimate the likely similarity between candidates’ scores  

on two real parallel versions of a test. However, this issue was investigated 

further by Benton (2013a) and is unlikely to be a concern in our scenario  

as all of the 30 papers investigated contained ten questions or fewer and  

all but three had sample sizes numbering in the thousands.

Finding the best split half

As explored by Benton (2013a), there are several possible algorithms for 

identifying the best split half. For the purposes of this study we used the 

‘start-then-improve’ algorithm. As suggested by the name, this algorithm 

begins with an initial split of the items into two halves (such as based upon 

an odd and even split) and then examines whether swapping any pair of 

items from opposite sides will improve the strength of association between 

the two sides. In essence this means that items that are found to be more 

strongly associated with the overall score on their own half than the overall 

score on the opposite half are likely to be swapped across. Once a swap has 

been made, the algorithm looks for further swaps that may improve the 

association between scores on opposite sides. This continues until there  

are no remaining swaps that will improve this association any further.

An example of how this algorithm works in practice is shown in Table 1. 

Initially the questions are split such that all the odd numbered questions 

are in half 1 and all the even numbered questions are in half 25. The 

top section of the Table 1 (labelled ‘step 1’) examines the improvement 

in the covariance between scores on the two halves that would result 

from swapping any question in half 1 with any other question in half 

2. For example, swapping question 1 to half 2 and question 2 the other 

way would increase the covariance between halves by 1.27. Note that, 

questions cannot swap with themselves and that questions cannot 

swap from a half if they are not already included in that half. This leads 

to the regular pattern of 0s in the matrix. Note that, the algorithm also 

considers swapping any question to the opposite half without moving 

another question in the opposite direction. This possibility is explored in 

the last row and last column within each step in Table 1.

All swaps that would lead to a positive change are highlighted in blue 

and the swap leading to the greatest improvement (item 1 swapping with 

item 8) is highlighted in green. Once this is done, we can then recalculate 

the improvement in covariance from any subsequent swaps (‘step 2’). 

In fact, only one swap (item 5 with item 4) leads to any improvement. 

Once these items are swapped, there are no possible improvements from 

further swaps (‘step 3’). This means the final split has questions 3, 4, 7, 8 

and 9 in half 1 and questions 1, 2, 5, 6 and 10 in half 2.

Results

The algorithm described above was applied to each of the 30 papers 

detailed in Figure 1. The half scores on each paper were rescaled so that, 

for each candidate, the total of their scores on the two halves equalled 

their total UMS score6 for each paper as a whole rather than their total 

raw score7. This means that, for each candidate, the total of their 12 half-

paper scores equalled their total UMS score for the A level as a whole – 

the score used to determine their final grade.

Rather than simply comparing the total of the scores on all the first 

halves with the total of the scores on all the second halves, we applied a 

best split of best splits method to ensure both halves are representative 

of a full A level. Having applied this method, we finally have scores on 

two ‘half A levels’ each comprising of total scores across a mixture of half 

1 and half 2 scores from different units so as to maximise the association.

Figure 3 compares the scores on each half A level for a random sample 

of 1000 candidates. As can be seen, there is a very strong relationship 

between the two scores with the majority of candidates displaying close 

agreement. Table 2 displays the mean and standard deviation of scores 

for the whole cohort on each half. As can be seen, the distribution of UMS 

scores is fairly similar on each half.

The reliability of Mathematics A level as a whole is estimated via the 

association between the two halves. Overall, there was a very strong 

correlation between halves (0.928). This can be combined with the 

Spearman–Brown formula to generate an overall reliability estimate of 

0.963. An almost identical reliability coefficient can be generated based 

upon the covariance between the two halves and using the formula of 

Rulon (1939); that is, the usual formula for Guttman’s λ4.

5. In practice, more than one initial starting split is used in order to ensure that the optimal split is 

identified.

6. Uniform Mark Scale. See AQA (2009) and Gray and Shaw (2009) for details.

7. In order to achieve this, the each candidate’s total UMS score was divided between the two 

halves according to the proportion of their total raw score that was achieved on each half.



 RESEARCH mAttERS :  issue 18 /  summer 2014   |  51

Table 1: Example of the algorithm used to find the optimal split for Core Mathematics 1 in June 2012

   Question to swap from half 2 
   ——————————————————————————————————————————————————————————
   1 2 3 4 5 6 7 8 9 10 None

  Step 1 1 0 1.27 0 1.80 0 1.94 0 2.19 0 -1.64 -0.84 
   2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 -1.06 0 -0.62 0 1.17 0 1.20 0 1.25 -5.36 
  4 0 0 0 0 0 0 0 0 0 0 0 
  5 0 -0.72 0 0.03 0 1.46 0 1.60 0 0.63 -4.56 
  6 0 0 0 0 0 0 0 0 0 0 0 
  7 0 -2.32 0 -1.65 0 0.80 0 0.58 0 1.38 -7.26 
  8 0 0 0 0 0 0 0 0 0 0 0 
  9 0 -3.90 0 -3.42 0 -0.49 0 -0.50 0 2.12 -9.82 
  10 0 0 0 0 0 0 0 0 0 0 0 
  None 0 1.31 0 1.89 0 1.48 0 1.85 0 -3.18 0 
 —————————————————————————————————————————————————————————————————— 
 Step 2 1 0 0 0 0 0 0 0 0 0 0 0 
  2 0 0 0 0 0 0 0 0 0 0 0 
  3 -0.99 -0.22 0 -0.23 0 -0.78 0 0 0 -5.38 -1.67 
Question  4 0 0 0 0 0 0 0 0 0 0 0 
to swap  5 -0.59 -0.13 0 0.17 0 -0.75 0 0 0 -6.25 -1.13 
from  6 0 0 0 0 0 0 0 0 0 0 0 
half 1  7 -1.61 -0.42 0 -0.19 0 -0.09 0 0 0 -4.18 -2.50 
  8 -2.19 -0.92 0 -0.39 0 -0.25 0 0 0 -3.82 -3.03 
  9 -2.69 -0.90 0 -0.87 0 -0.28 0 0 0 -2.34 -3.97 
  10 0 0 0 0 0 0 0 0 0 0 0 
  None -0.33 -1.55 0 -1.41 0 -4.17 0 0 0 -13.50 0 
 —————————————————————————————————————————————————————————————————— 
 Step 3 1 0 0 0 0 0 0 0 0 0 0 0 
  2 0 0 0 0 0 0 0 0 0 0 0 
  3 -1.16 -0.23 0 0 -0.40 -0.68 0 0 0 -5.17 -1.96 
  4 -0.76 -0.30 0 0 -0.17 -0.91 0 0 0 -6.42 -1.30 
  5 0 0 0 0 0 0 0 0 0 0 0 
  6 0 0 0 0 0 0 0 0 0 0 0 
  7 -2.05 -0.69 0 0 -0.36 -0.26 0 0 0 -4.23 -3.06 
  8 -2.32 -0.89 0 0 -0.56 -0.12 0 0 0 -3.58 -3.28 
  9 -3.10 -1.14 0 0 -1.04 -0.42 0 0 0 -2.37 -4.49 
  10 0 0 0 0 0 0 0 0 0 0 0 
  None -0.22 -1.26 0 0 -1.58 -3.78 0 0 0 -12.99 0

Figure 3: The relationship between scores on overall split halves of a 

Mathematics A level (n=1,000)

Summary

This article has demonstrated how a method of split halves can be used 

to calculate the reliability of a complex qualification. In contrast to some 

approaches to this problem, based upon item response or classical test 

theory, the recommended approach does not start with a pre-conceived 

model for the way in which scores on different items will relate to one 

another. Rather, the underlying model is implicitly built up through the 

search for the most appropriate splits. This allows us to directly examine 

the extent to which scores, possibly representing skills across multiple 

domains, remain consistent across different sets of questions. This same 

method could be used to estimate reliability for any qualification where 

multiple routes are possible, including qualifications with options with 

regard to topic choices. 

In the case of Mathematics A level, the analysis reveals an extremely 

high level of reliability with almost 97% of the variance in scores 

attributable to the underlying mathematical ability of candidates as 

would be demonstrated if they were able to answer an infinitely large 

number of questions covering the skills assessed by their chosen route 

through the qualification. This implies that the impact of the exact 

selection of questions seen by any candidate is extremely small.

Any internal estimate of reliability requires some assumptions. In 

particular, the split-half approach recommended in this paper assumes 

that the skills measured by one half are equivalent to those measured 

Table 2: Descriptive statistics for each “half A-level” (n=11,771) 

Half Mean score (UMS) Standard Deviation

First 225.3 45.0

Second 226.5 45.7
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by the other. This requires that there are no particular skills that are only 

assessed by a single question in any exam paper, as a single question 

can by definition only occur in one half. Thus, although our approach 

is intended to maximise the similarity between halves, we cannot be 

certain that the two halves of any given paper measure exactly the 

same set of skills. In this technical sense, the reliabilities derived via this 

method may be viewed as a lower bound on the true level of reliability. 

Having said this, as demonstrated by Benton (2013b), genuine alternative 

versions of the same test may also be less ‘parallel’ than would be 

desirable in a technical sense. In this way, from a practical perspective,  

it may be more reasonable to view the estimates as accurate, but slightly 

optimistic.

One limitation of the suggested method is that it only works if 

all units, taken within a qualification can be split into parts. This is 

not universally the case, for example, if one unit of the qualification 

comprises of a single, non-dividable mark for coursework. However, 

provided such elements only comprise a minority of the qualification, 

it will still be possible to provide a reasonably accurate estimate of 

reliability by adding the score from this non-dividable element to one of 

the two ‘half A level’ scores derived for the remainder of the qualification 

as described above. This approach would provide a reliability estimate at 

least as good as the classical test theory composite reliability approach 

suggested (amongst other approaches) by Bramley and Dhawan (2013).

As stated earlier, whilst the method suggested here estimates an 

overall reliability coefficient, it does not investigate whether all routes 

provide equally valid, or even equally reliable test scores. However, users 

of test scores such as employers, or university admissions, are unlikely 

to be aware of the route an applicant has taken through a qualification 

and will only see their final result. From their point of view, the ability to 

quantify the general level of reliability for a qualification, and in the case 

of Mathematics A level verify an extremely high level of reliability, may 

be important, even if it does not necessarily apply to every possible route. 

Alongside this is the ongoing duty of qualification providers to ensure 

that all of the individual assessments underlying the different routes 

through a qualification are themselves individually reliable.
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