An exploration of self-confidence and insight into marking accuracy among GCSE maths and physics markers

Rita Nádas and Dr Irenka Suto Research Division

Background

Introduction

A considerable volume of literature in education and occupational research investigates issues in self-confidence and insight, ranging from college students' post-diction self-assessment (e.g. Maki, 1998; Koch, 2001) to work-related self-assessment (Dunning, Heath and Suls, 2004). However, GCSE markers' perceptions of their marking performance and their metacognition have not, to our knowledge, been examined.

Exploring markers' perceptions is important for several reasons. First, if markers' estimates of their own performance prove to be accurate, then this information could be used by Awarding Bodies in standardisation procedures1 to identify and discuss examination questions that markers have difficulties with. If, however, markers' insight proves to be unreliable and unrelated to their actual marking accuracy, then their feedback on 'problem areas' could be misleading; for example, when conducting standardisation procedures, Principal Examiners might find themselves focussing on the 'wrong' questions. Secondly, investigating whether self-confidence and insight change or become more accurate with more marking practice or more feedback could inform the marker training process were investigated. The term 'self-confidence' here denotes markers' post-marking estimates of how accurately they thought they had marked a sample of questions; 'insight' refers to the relationship between markers' actual marking accuracy and estimated accuracy, indicating how precise their estimates were.

Theories of insight and self-confidence

Insight into performance results in enhanced test performance (Koch, 2001; Dunning, Johnson, Ehrlinger and Kruger, 2003).

In this article we present the aims and findings of research which explored GCSE markers' perception of their own marking performance, namely, marking accuracy. Markers' levels of self-confidence and insight and possible changes in these measures over the course of the marking process were investigated. The term 'self-confidence' here denotes markers' post-marking estimates of how accurately they thought they had marked a sample of questions; 'insight' refers to the relationship between markers' actual marking accuracy and estimated accuracy, indicating how precise their estimates were.

1 For regulations on standardisation procedures, see Qualifications and Curriculum Authority, 2006

Suto, W.M.I & Greatorex, J. (in press, b). A quantitative analysis of cognitive strategy usage in the marking of two GCSE examinations. Assessment in Education: Principles, Policies and Practice. Findings from this paper were also presented at the annual conference of the Association for Educational Assessment - Europe, November 2005, Dublin, Ireland.

Research into metacognition may also explain why poor insight arises. Metacognition has been widely researched since John Flavell first wrote about it in the 1970s (Flavell, 1979). Cognitive skills are seen to be used to solve a problem or task, whereas metacognition is needed to understand how a task was solved (Schraw, 1998). A review of the literature reveals that researchers disagree on the nature of the relationship between metacognition and general cognition; some argue that the same cognitive processes are in the background of both problem solving (for example, marking a script) and also of assessing one’s own performance in the given task (Davidson and Stemberg, 1998). This would explain why people with lower cognitive abilities tend to overestimate their test performances (Dunning et al., 2003). Others (Borkowski, 2000) describe metacognition as a qualitatively distinct executive process which directs other cognitive processes.

Schraw’s theory of metacognition (Schraw, 1998) provides a framework which yields alternative explanations for the findings described earlier, and also a background against which markers’ experiences, the marking process, providing self-assessment and receiving feedback can all be comfortably placed. Arguably it is the most comprehensive, therefore, our hypotheses and discussion will be based mainly on this theory. According to Schraw (1998), metacognition is said to have two components: knowledge of cognition and regulation of cognition. Knowledge of cognition includes three different types of metacognitive awareness: declarative awareness, i.e. knowing about things; procedural awareness, i.e. knowing how; and conditional awareness, i.e. knowing when. Regulation of cognition consists of planning, monitoring and evaluation (Schraw, 1998). These are also the features of metacognition that might differentiate between experts and non-experts in any field.

Arguably, experienced (e.g. ‘expert’) and inexperienced (‘graduate’) markers are very different in metacognitive terms. Experts should have extensive declarative awareness (subject knowledge) as they have relevant degrees and normally teach the subjects they mark. Research suggests they use different cognitive marking strategies for different types of candidate responses (Creatorex and Suto, 2005; Suto and Creatorex, in press), therefore, expert markers should have procedural knowledge with extensive conditional knowledge as well. Inexperienced graduate markers, by definition, must also have appropriate declarative awareness (subject knowledge). However, they may lack sufficient procedural knowledge (for lack of opportunity to develop and use efficient marking strategies, for example) and therefore are likely to lack conditional metacognitive awareness as well. Apart from their disadvantage in their lack of knowledge of cognition, inexperienced markers may also lack practice in the regulation of cognition, simply because they have never been involved in the planning, monitoring and evaluation features of the marking process. Therefore, inexperienced markers are likely to have considerably weaker metacognitive skills overall, and it could therefore be expected that they will show less insight into their marking.

However, just like any other cognitive skill, metacognition can be enhanced, among other things, by practice, and this in turn can improve performance (in this case, marking accuracy) (Koch, 2001; Dunning et al., 2003).

The ‘Marking Expertise’ research project

The research explained in this article was originally embedded in a major project on marking expertise (Suto and Nádas, 2007a, b, in press). The project examined how expertise and various other factors influence the accuracy of marking previous GCSE papers in maths and physics. The main aim was to investigate possible differences in marking accuracy in two types of markers: experts and graduates. For both subjects, the research involved one Principal Examiner, six experienced (‘expert’) examiners with both teaching and marking experience and six graduates with extensive subject knowledge but lacking marking and teaching experience. All participants were paid to perform question-by-question marking of the same selections of examination questions collated from previous GCSE papers. The experimental maths paper consisted of 20 questions, the physics paper had 13 questions. Stratified sampling methods were used to select candidate responses for each question, which were photocopied and cleaned of ‘live’ marks. Two response samples were designed for both subjects; a 15-response ‘practice’ sample and a 50-response ‘main’ sample for each question. The marking process for each subject was the following: all markers marked the practice
sample at home, using mark schemes. They then obtained feedback at a single standardisation meeting led by the appropriate Principal Examiner. The main samples were then distributed and were marked from home, and no feedback was given to markers on the last sample.

The marks of the Principal Examiners were taken as ‘correct’ or ‘true’ marks and were the basis for data analysis. Three accuracy measures were used: P_0 (the overall proportion of raw agreement between the Principal Examiner and the marker); Mean Actual Difference (MAcD, indicating whether a marker is on average more lenient or more stringent than his or her Principal Examiner); and Mean Absolute Difference (MAbD, an indication of the average magnitude of mark differences between the marker and the Principal Examiner) (for a discussion of accuracy measures, see Bramley, 2007).

Surprisingly, expert and graduate markers were found to be very similar in their marking accuracy both on the practice sample and on the main sample, according to all three accuracy measures. For maths, out of 20 questions in the practice sample, only three showed significant differences between the two types of markers. On the main sample, a significant difference was found on only one question, where graduates were slightly more lenient than the Principal Examiner and experts. For physics, significant differences arose on three questions (out of 13) on the practice sample and on two questions on the main sample. It is worth noting that despite the significant differences, the graduates also produced high levels of accuracy on all questions. There was some improvement in accuracy from the practice sample to the main sample. As further data analysis showed, the standardisation meeting and marking practice had a beneficial effect on both groups, benefiting graduates more than experts in both subjects.

Aims and hypotheses of the present study

In a further study within our marking expertise research, which is the focus of the present article, we investigated how markers perceived their own marking performance. Our study of insight and self-confidence entailed administering questionnaires at three points during the marking process, and had multiple aims:

Aim 1: To explore experts’ and graduates’ self-confidence in their marking accuracy before the standardisation meeting.

According to metacognitive theory, and given that graduates are often assumed to be generally less accurate than experts, two hypotheses are plausible; (1) graduates are aware of their lack of metacognitive skills compared with the experts, and they therefore report a lower level of self-confidence after marking the practice sample; and (2) graduates are not aware of their disadvantage, and all participants’ self-confidence levels are very similar after marking the practice sample. The first of these hypotheses would seem most probable, as the graduates were informed at the start of the study that expert markers would also be taking part.

Aim 2: To explore changes in experts’ and graduates’ self-confidence throughout the marking process.

Metacognitive theory would predict that experts’ self-confidence would be high throughout the marking process, and might even show a slight improvement, because more marking practice and feedback on the specific exam questions might develop their metacognitive skills as well. It seems reasonable to hypothesise that graduate markers will report rising levels of self-confidence because they should gain marking experience during the process. Therefore, graduates should report increasing self-confidence on each consecutive questionnaire, even to the extent where their self-confidence level reaches that of the experts.

Alternatively, metacognition theory would suggest that graduates’ self-confidence levels will drop on the second questionnaire (after the standardisation meeting), for two reasons; first, graduates’ judgements might be influenced by the presence of expert examiners at the standardisation meeting, and although they had known about their involvement in the study, expert examiners might have presented a new frame of reference to which to compare their lack of expertise; secondly, they had just received feedback on the Principal Examiner’s ‘true’ or ‘correct’ marks, and might have had to reconsider their accuracy on the practice sample regardless of the presence of others. This also predicts that graduates’ and experts’ self-confidence would be the highest on the main sample, and it will be very similar for the two groups.

Aim 3: To explore the initial pattern of insight of experts and graduates, and see whether there are any significant differences between the groups.

Metacognitive theory would predict that only graduates will show poor insight because they lack procedural and conditional metacognitive awareness, while experts should utilise their previous experience in marking and receiving feedback on their accuracy.

Aim 4: To explore whether participants’ insight improves through the marking process.

Metacognitive theory would suggest that all participants, but especially graduates should improve their insight with each consecutive questionnaire, because by that time they will have practised marking as well as received feedback (at the standardisation meeting), and will have practised metacognitive skills by giving account of their insight in our questionnaires.

As mentioned earlier, the literature suggests that some researchers see metacognitive abilities as utilising the very same cognitive processes which are used for the problem-solving task itself; others see it as a superior, organising process of other cognitive processes. Since in the first study in our marking expertise project graduates and expert markers were found to be very similar in their performance of marking accuracy (Suto and Nádas, in press), we can assume that it is not their basic cognitive abilities which will discriminate between the metacognitive abilities of the two groups (if we find that these differences indeed exist). If this argument is true, then any difference found in the metacognition of the two types of markers could account for differences in the above-mentioned processes (procedural awareness, knowing how; and regulation of cognition, i.e. planning, monitoring and evaluating), rather than for differences in cognitive skills; this could indicate that metacognition and other cognitive processes are not essentially the same phenomena.

Method

Participants

As mentioned previously, 26 markers were recruited: for each subject, six expert markers (with subject knowledge, experience of marking at least one tier of the selected examination paper, and teaching experience), six graduate markers (with subject knowledge but no marking or teaching experience) and one highly experienced Principal Examiner took part in the study.
Procedure

All markers received a letter at the start of the study, informing them that both expert and graduate markers would be participating in the study, and that all markers would mark the same ‘practice’ and ‘main’ samples of candidate responses, on a question-by-question basis.

Markers filled in questionnaires on three occasions: (1) at the start of the standardisation meeting, after having marked the practice sample (15 responses) at home; (2) after having attended the standardisation meeting; and finally (3) after marking the main sample (50 responses) at home.

In questionnaires 1 (at the start of the standardisation meeting) and 2 (at the end of the standardisation meeting) each marker was asked:

How accurately do you feel you have marked the first batch [the practice sample] of candidates’ responses?

In questionnaire 3 (after having marked the main sample), each marker was asked:

How accurately do you feel you have marked the second batch [the main sample] of candidates’ responses?

To each of these questions, the marker had to circle one of the following answers:
1. Very inaccurately
2. Inaccurately
3. No idea
4. Accurately
5. Very accurately

Results

After checking the distributions of the data, mean self-confidence ratings were calculated and t-tests and Mann-Whitney U-tests were used to analyse possible differences between the two types of markers. Pearson’s and Spearman’s correlation coefficients were calculated to explore whether there were any relationships between actual marking accuracy and the relevant data on self-confidence.

Analysis of self-confidence of expert and graduate markers

Figure 1 shows the mean self-confidence ratings of expert and graduate maths markers on the three occasions when the questionnaires were administered. According to t-tests, graduates and experts differed significantly in their self-confidence ratings of the practice sample in questionnaires 1 (t = 4.02, p < 0.01) and 2 (t = 2.87, p < 0.05), where graduates showed significantly lower confidence in their marking accuracy. This difference disappeared in questionnaire 3 (t = 1.86, p > 0.05); the two marker groups were similar in their estimations of how accurately they had marked the main sample. Change in self-confidence was only found for the graduates, whose self-confidence improved significantly from the first to the third questionnaire (t = -3.83, p < 0.05).

Figure 2 shows the mean self-confidence ratings of the physics markers. The ratings of experts and graduates were compared. In contrast with maths, no significant differences were identified between the two marker groups on any of the three questionnaires.

Analysis of insight of expert and graduate markers

In order to ascertain whether markers had any insight into their own marking performances, we attempted to correlate the self-confidence data of the two types of markers with their three mean marking accuracy measures (P0, MACD, and MAbD) for the practice and main samples.

For maths, Pearson correlation coefficients revealed that neither expert nor graduate markers had real insight into their marking accuracy on either sample; their self-confidence ratings were not significantly related to any of their accuracy measures. The coefficients were the following: for experts; r = -0.46, p = 0.36 on questionnaire 1; r = -0.29, p = 0.58 on questionnaire 2; and r = -0.47, p = 0.34 on questionnaire 3; for graduates: r = 0.43, p = 0.40 on questionnaire 1; r = 0.02, p = 0.97 on questionnaire 2; and r = 0.46, p = 0.35 on questionnaire 3.

For physics, Spearman’s and Pearson’s correlation coefficients indicated some significant correlations. A significant positive correlation was found for experts’ self-confidence after marking the main sample (questionnaire 3) and their mean P0 values on the main sample (r = 0.83, p < 0.05) and there was a strong negative correlation with their mean MAbD (r = -0.86 p < 0.05). Conversely, graduates’ self-confidence was significantly negatively correlated to their mean P0 values (r = -0.81, p < 0.05) and was positively correlated to mean MAbD values (r = 0.86, p < 0.05) after the standardisation meeting (on questionnaire 2).

Both these correlations indicate that the more accurately the experts marked the main sample, the higher level of self-confidence they reported. Thus, they displayed insight into their own marking accuracies on the main sample. However, the opposite is the case with graduates on the practice sample: the higher self-confidence ratings they gave, the more inaccurate (on two measures) they proved to be. Table 1 summarises the findings.
Discussion

Overall, our results are mixed: our hypotheses were only partially supported by the data, and we found very different patterns of self-confidence and insight for maths and physics markers.

Our first aim was to explore experts’ and graduates’ self-confidence before the standardisation meeting. All expert markers showed high levels of initial self-confidence; the maths experts’ mean level was slightly higher than that of those of both groups of physics markers. It seems that our two hypotheses, namely, that graduates will either report the same level of self-confidence as experts do, or that they will show less self-confidence than that of the experts on the practice sample, applied to one of the graduate groups each: maths graduates showed significantly lower self-confidence than experts, which might reflect expectations of lacking metacognitive and marking skills. Physics graduates, however, showed no difference in their self-confidence from that of experts; in the metacognitive framework this could mean that they did not attempt to account for their lack of experience. However, when these physics graduates’ high levels of accuracy are taken into account, their high levels of self-confidence seem only to reflect the expectation of this performance. Finally, it remains a mystery why maths and physics graduates reported different patterns of confidence on the practice sample.

Our second aim was to explore changes in graduates’ and experts’ self-confidence during the marking process. Metacognitive theory can account for the finding that experts’ levels of self-confidence were consistently high; however, no rise was found in their levels of self-confidence over the course of the marking process. Although metacognitive theory would have predicted a small rise, the amount of marking entailed in the study may not have been enough to develop metacognitive skills further. Alternatively, the experts’ metacognitive skills may already have been at ceiling level at the start of the research.

As hypothesised, maths graduates were found to report improving levels of self-confidence, up to the point where the significant difference between experts and graduates that had been found previously on the first and second questionnaires disappeared after the main sample had been marked. However, physics graduates were just as confident as experienced examiners were throughout the marking. This is surprising given that graduates, when estimating their own performance, should have taken into consideration their lack of previous marking experience (which they seem to have failed to do on the practice sample already). Nevertheless, they were almost as accurate as experts were, so arguably the equal level of confidence is appropriate but unexpected, as is their high level of marking accuracy.

The data did not support our further hypothesis; the graduates’ self-confidence level did not drop after the standardisation meeting in either subject. It seems that the new social reference (expected to be brought about by the presence of experts) or the feedback process did not influence graduates’ self-confidence in either subject. However, we did find that all graduates’ self-confidence reached the highest level after having marked the main sample, when all previous differences from the experts (if any) diminished.

The third aim was to explore participants’ initial insight into their marking accuracy, as indicated by potential correlations between self-confidence and accuracy. Surprisingly, no markers showed any insight on the practice sample before getting feedback at the standardisation meeting. This is especially interesting in the case of expert markers, because metacognitive theory predicts the contrary, counting on their previous experience in evaluating their own marking accuracy. It seems that previous experience in marking different exam questions and in reflecting on one’s marking might not generalise to marking new items and to evaluating recent marking accuracy.

Lastly, we explored possible changes in insight in the four marker groups over the course of the marking process. Metacognitive theory would predict that all groups, but especially graduates of both subjects, would improve their insights with each consecutive questionnaire. For maths, surprisingly, neither group showed an improvement in their metacognitive performance with more practice, as neither showed insight on either the practice sample after the meeting, or on the main sample. Data from maths markers, therefore, do not support the metacognitive hypothesis.

For physics, our predictions were, again, only partially supported: experienced markers did show some insight into their marking but only on the main sample. In this case, it seems, the argument that metacognition can be improved by practice was supported by data. Surprisingly, a significant negative correlation was found between physics graduates’ estimates and their performance on the practice sample; this, however, seems to support the self-serving bias theory, which predicted this exaggerated optimism. However, the theory predicted the same for all groups, which was not supported by our data.

It has to be noted that because marking was remarkably accurate on the main sample for both experienced and graduate physics markers, we cannot conclude that the difference between their metacognitive abilities is due to different cognitive abilities. Indeed, it may well be that it is the lack of regulation of cognition and procedural knowledge that accounts for different abilities in metacognition. This also sheds light on the nature of the relationship between cognition and metacognition; as graduate physics markers performed similarly to experts on a cognitively
demanding task, but they showed a different pattern of metacognition, this suggests that the two processes might not be essentially the very same phenomena. Of course, further empirical research is needed to examine this point in detail.

Limitations

Just as with all research, our study had some limitations. One of the most obvious ones is that the study involved small groups of participants, which did not allow for the detailed analysis of possible age and gender differences in self-confidence and insight. Participants differed from one another on multiple variables; expert markers had both teaching and marking experience, whereas graduate markers were all young professionals. Also, many of the graduates had attended the University of Cambridge, which might have an effect of its own; for example, Cambridge graduates might be more academically focussed; or more or less conscientious or self-assured than graduates from other institutions. A wider variety of expertise and backgrounds of markers is needed for further research.

A further limitation is that the study involved just two examination papers, which were similar in nature. Using other subjects might have produced different outcomes. Another cause for concern is that there is no way of knowing how seriously markers took our questionnaires; whether they took the time and thought about their confidence in their accuracy overall, or whether they just entered a figure without much self-reflection. This uncertainty also stems from the use of an ‘experimental’ examination process, created for research purposes only, and the marks given had no effect on any candidate’s life chances. Had it been ‘live’ marking, we might have found different levels of self-confidence and insight. And finally, another source of limitation is that marking practice and metacognitive tasks were always performed at the same time, thus the design of the study did not allow for a separate evaluation of effects; a further study would need the separation of these tasks.

Conclusions and further research

Markers of different subjects show very different patterns of self-confidence and insight. Graduate maths markers showed significantly lower self-confidence than maths experts on the practice sample, but not on the main sample. Physics graduates were as confident as expert markers were throughout the marking process. Generally, markers reported constant levels of self-confidence throughout the marking process; only maths graduates improved their self-confidence from the initial marking of the practice sample to the main sample.

Some markers showed some insight into their marking, but this was not consistent, and even experts’ insight was not always accurate. Maths markers showed no insight into their accuracies on either the practice or the main sample. Physics experts showed correct insight on the main sample; graduates showed a significant negative correlation between their performance estimates and their actual marking accuracy on the practice sample.

Because of the mixed results, no one theory fully explains all our data; however, it seems that most, but not all of our results can be interpreted in the framework of the theory of metacognition. Thus, this study also serves as an empirical investigation into the nature of the relationship between cognition and metacognition. Differences in insight between experienced and graduate physics markers did not reflect their overall similarity in accuracy; therefore, differences in metacognitive abilities should reflect differences in procedural and conditional awareness, not cognitive abilities. This suggests that cognition and metacognition may entail qualitatively different processes. It is unclear why maths and physics markers showed such different patterns of self-confidence and insight.

As mentioned in the introduction, one practical implication of this study is for standardisation meetings, where the Principal Examiners and their teams discuss questions on which examiners think they were inaccurate. However, the present study has shown that, especially for maths markers, examiners do not have insight into their own accuracy, therefore they cannot tell which questions should be discussed at the meeting. This could be resolved by on-screen marking, where standardisation procedures can entail immediate feedback on marking accuracy, thereby improving markers’ insight; or by conducting qualitative studies (using the Kelly’s Repertory Grid technique, for example) which invite Principal Examiners as participants to generate further information on what features of a question make it more difficult to mark than others (see Suto and Nádas, 2007b).

Inquiry into markers’ metacognition has been extended in an ongoing follow-up study, where several of the limitations of the first study have been eliminated by a more sophisticated research design. In this experimental marking study, we are looking at how over eighty participants with different background experiences mark business studies GCSE and biology International GCSE (IGCSE) examination papers. Markers’ metacognition and aspects of their personalities are being investigated using extended questionnaires. The data analysis of this study is currently under way. We are planning to share our results in 2008.

References

The influence of performance data on awarders’ estimates in Angoff awarding meetings

Nadežda Novaković Research Division

Background

A variety of standard-setting methods are used in criterion-referenced assessment to decide upon pass scores which separate competent from not yet competent examinees. During the past few decades, these methods have come under close scrutiny not only from the research and academic community, but also from a wider community of stakeholders who have a vested interest in assuring that these methods are the most accurate and fair means of determining performance standards.

The Angoff method (Angoff, 1971) is one of the most widely used procedures for computing cut scores in both the vocational and general education settings. In the Angoff standard setting procedure, a panel of judges with subject expertise are asked to individually estimate, for each test item, the percentage of judges with subject expertise are asked to individually estimate, for each education setting. In the Angoff standard setting procedure, a panel of procedures for computing cut scores in both the vocational and general accurate and fair means of determining performance standards.

2 A minimally competent or a borderline candidate is a candidate with sufficient skills to only just achieve a pass.