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Abstract 

The aim of the research reported here was to get some idea of the accuracy of grade boundaries 
(cut-scores) obtained by applying the ‘similar items method’ described in Bramley & Wilson (2016). 
In this method experts identify items on the current version of a test that are sufficiently similar to 
items on previous versions for them to be treated as pseudo-anchor items. It could be useful in any 
international testing context using similar item types and under similar test development constraints 
(no pre-testing and no item re-use) to GCSEs and A levels in England. 
Study 1 aimed to discover: i) the extent to which the equated grade boundary depends on which 
items are identified as similar; and ii) the extent to which it depends on how many items are 
identified as similar. Study 2 attempted a direct comparison with established methods for equating 
tests taken by non-equivalent groups.  This was achieved by constructing a scenario in which all 
the similar items came from the same previous version (which is not the case in the intended 
application of the method).  In this scenario the method can be directly compared with methods 
where common items form an internal anchor test.   
Study 1 found that in the ideal case where the ‘similar’ items were in fact identical, roughly 20% of 
items or marks were enough to give a cut-score that was within 1 score point of the average 
(across different combinations of a fixed number of similar items).  As expected, the fewer similar 
items, the greater the variability.  There was a small amount of bias in the method – some 
inherently arising from using integer cut-scores on different versions of the test, some arising out of 
the equating method used to define equivalent cut-scores.  
Study 2 found that the when the similar items method was applied to the scenario where all items 
came from the same previous test (a standard common-item equating scenario), it gave very 
similar outcomes to IRT true-score equating.  However, when applied in the ‘one item at a time’ 
way intended for real scenarios where similar items might come from different tests it was 
vulnerable to distortions created by outlying items.  This problem can be diagnosed by inspecting 
empirical item characteristic curves and equating functions implied by individual items.  Increasing 
the smoothing of the empirical item characteristic curves improved the accuracy of the equating 
from the similar items method. 

Introduction 

The aim of the research reported here was to get some idea of the accuracy of grade boundaries 
obtained by applying the ‘similar items method’ (SI method1) described in Bramley & Wilson 
(2016). 
The SI method has the following assumptions and requirements: 

− The goal is to set a grade boundary (or boundaries) on a component of an examination for 
which item level data (ILD) for a reasonably large number of candidates is available. 

− The same grade boundaries have been set on one or more previous versions of the same 
component, for which item level data (ILD) for a reasonably large number of candidates is 
also available. 

− We are reasonably confident that the grade boundaries have been set in the correct place 
on the previous versions. 

1 In that work two methods were described: the current paper is based exclusively on the second method. 
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− Empirical item characteristic curves (EICCs) have been produced for every item on the 
current and previous components. These are (tabulations of) smoothed curves plotting the 
mean score on the item for each possible score on the component overall. 

− Experts have identified one or more items on previous versions that they are willing to treat 
as identical to item(s) on the current version for the purposes of linking standards.  These 
pseudo-anchor items are called ‘similar items’ in this paper.  Note that the similar items do 
not all have to come from the same previous version. 

 
The SI method works as follows: 

1. For each similar item, find the expected item score corresponding2 to the grade boundary 
on the previous version. 

2. Find the score on the current (new) component corresponding to that score for each similar 
item. 

3. Take the average of the component scores obtained in step 2 as the estimate of the grade 
boundary on the current component. 

 
Study 1 
Study 1 aimed to discover: i) the extent to which the equated grade boundary depends on which 
items are identified as similar; and ii) the extent to which it depends on how many items (or how 
many marks-worth of items) are identified as similar. 
 
These questions were investigated by a resampling approach: repeatedly applying the SI method 
in circumstances where the ‘correct’ answer was known, and noting the bias and error of the 
method.  Bias is quantified as the extent to which the average boundary across replications differs 
from the correct boundary, and error is quantified as the standard deviation (SD) of the boundary 
across replications. 
 
Data 
An initial dataset was prepared by merging the three components of an OCR A level Chemistry3 
examination taken in June 2017.  
Paper 1 contained 47 items and was out of a total of 100 marks. 
Paper 2 contained 48 items and was out of a total of 100 marks. 
Paper 3 contained 27 items and was out of a total of 70 marks. 
Data was retained for the 18807 candidates who took all three components and scored >0 on all of 
them. 
 
Method 
After converting item scores that were missing to zero, the 122 items were calibrated together on 
the full sample using the Rasch partial credit model (Masters, 1982) and the software RUMM2020 
(Andrich et al, 2003).  The Test Characteristic Curve4 (TCC) for the full test was generated and 
used to find the ability estimates corresponding to the option-level grade A and E boundaries (198 
and 63) set in June 2017. 
 

                                                
2 Corresponding’ here means the point on the y axis of the EICC plot where a vertical line from the grade boundary on 
the x-axis intersects the smoothed EICC.  Likewise in step 2 ‘corresponding’ means the point on the x-axis of the EICC 
plot where a horizontal line from the expected item score (identified in step 1) on the y-axis intersects the smoothed 
EICC. 
3 Specification code H432.  Question papers and mark schemes are available from 
https://www.ocr.org.uk/qualifications/past-papers/  
4 This is a tabulation or plot of expected test score against ability. 

https://www.ocr.org.uk/qualifications/past-papers/
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For the purpose of this study, the items from Paper 3 were treated as the ‘current’ test with an 
unknown boundary that needed to be set.  The TCC for this set of items was generated and the 
raw scores corresponding to the ability estimates obtained above were found to be 47.13 and 
11.06 respectively.  (Note that these differ from the actual Paper 3 boundaries of 46 and 13 used in 
June 2017, which is not too surprising since the components are not operationally aligned by 
Rasch equating, but by other means). 
 
The 122 items were then split randomly into four mutually exclusive groups, to simulate four 
‘previous versions’ of tests containing potential similar items.  All of these groups contained some 
items from Paper 3. 
The full cohort was split into five dummy cohorts, but not at random.  This is because the SI 
method would not be necessary if we were prepared to assume that successive cohorts were 
randomly equivalent – we could just use equipercentile equating (for example) to set boundaries.  
Instead, five approximately equally-sized groups were formed by sorting the data by centre 
number, then selecting the first n1 centres needed to obtain a sample of 18,807/5 ≈ 3,760, then the 
next n2 centres needed, and so on. 
 
Tabulations were prepared of the EICCs of the first four of these dummy cohorts on the four 
previous versions, and of the fifth dummy cohort on the current version (the Paper 3 items) 5. 
Nominal A and E grade boundaries on the four previous versions were derived by calculating the 
‘correct’ boundaries as above using the TCCs for these four tests.  However, as previously, this 
naturally generated non-integer scores.  Since using the SI method in practice would entail using 
integer grade boundaries, these were rounded to the nearest whole number, as shown in Table 1 
below. 
 
Table 1.  Descriptive statistics, un-rounded and rounded grade boundaries on the four previous versions 
(PV) and the Paper 3 items, calculated via Rasch model TCCs. 

Test # Items Out of N Mean SD A E A E 

PV 1 30 66 3755 39.77 13.15 48.40 14.47 48 14 

PV 2 30 63 3756 39.94 11.50 46.62 17.85 47 18 

PV 3 31 71 3698 44.57 12.91 54.61 17.33 55 17 

PV 4 31 70 3819 40.74 13.61 48.37 13.34 48 13 

Paper 3 27 70 3779 39.20 13.94 47.13 11.06 47 11 
 
It is important to note that the unrounded boundaries on the four previous versions sum to the 
correct total boundaries of 198 and 63, whereas the rounded boundaries sum to 198 and 62.  This 
is because the E boundary was rounded down on three of the four previous versions. This shows 
that the SI method can of necessity introduce its own biases, independent of the number of similar 
items that are identified.  The extent to which it will have an impact depends on the relative number 
of similar items coming from rounded-down or rounded-up previous versions. 
 
The SI method was then applied to derive a grade boundary on Paper 3, varying the number of 
similar items used in the equating from 1 to 27.  For 1, 2, 25, 26 or 27 similar items, all the possible 
combinations were considered.  For the rest, a random sample of ≈1000 was taken to avoid 
running out of computer memory.  Figure 1 and Table 2 below show how the Paper 3 boundaries 
varied with number of similar items.  
                                                
5 Some example SAS code for creating a smooth EICC is given in the appendix. 
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Figure 1.  Distribution of (unrounded) grade boundaries on Paper 3 for each number of similar items 
used in the equating. Left – grade A, Right – grade E. Key: Black circles are the mean, bars show min and 
max.  Red/blue dashed lines are the correct values of 47.1 and 11.1. 
 
Table 2. Descriptive statistics for distribution of (unrounded) grade boundaries on Paper 3 for each 
number of similar items used in the equating. 
# Similar items Grade # Combinations Mean SD Min Max 

1 A 27 46.41 1.92 41.34 50.86 

 E 256 12.23 2.53 7.40 16.47 
2 A 351 46.41 1.31 42.48 49.93 

 E 350 12.23 1.84 7.40 16.47 
3 A 992 46.43 1.06 43.08 49.47 

 E 992 12.24 1.42 7.40 16.47 
4 A 1027 46.40 0.86 43.80 48.77 

 E 1027 12.25 1.24 9.01 15.57 
5 A 963 46.41 0.79 44.02 48.45 

 E 963 12.15 1.10 8.97 15.75 
6 A 1002 46.43 0.68 44.42 48.48 

 E 1002 12.23 0.95 9.01 14.95 
7 A 995 46.40 0.65 44.66 48.11 

 E 995 12.24 0.88 9.50 14.90 
8 A 994 46.40 0.57 44.74 47.98 

 E 994 12.23 0.79 9.55 14.54 
9 A 1006 46.43 0.51 44.94 47.94 

 E 1006 12.22 0.72 9.92 14.30 
10 A 951 46.40 0.49 44.96 47.79 

 E 951 12.21 0.65 10.53 14.33 
11 A 1003 46.40 0.44 45.27 47.49 

 E 1003 12.22 0.60 10.44 14.23 
12 A 962 46.41 0.41 45.04 47.60 

 E 962 12.24 0.56 10.69 13.96 
13 A 980 46.40 0.37 45.27 47.46 

 E 980 12.21 0.52 10.54 13.81 
14 A 1038 46.40 0.36 45.37 47.42 

                                                
6 On two of the items at grade E the smoothed EICC did not intersect with the required value for interpolation. 
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# Similar items Grade # Combinations Mean SD Min Max 

 E 1038 12.25 0.51 10.75 13.70 
15 A 958 46.40 0.33 45.42 47.44 

 E 958 12.22 0.44 10.93 13.52 
16 A 1014 46.41 0.31 45.57 47.35 

 E 1014 12.26 0.41 10.89 13.55 
17 A 956 46.41 0.28 45.56 47.16 

 E 956 12.23 0.38 11.13 13.33 
18 A 991 46.40 0.27 45.51 47.11 

 E 991 12.22 0.36 11.21 13.32 
19 A 955 46.40 0.24 45.70 47.19 

 E 955 12.24 0.33 11.12 13.15 
20 A 1049 46.41 0.22 45.74 47.00 

 E 1049 12.24 0.30 11.28 13.13 
21 A 947 46.40 0.20 45.84 47.03 

 E 947 12.24 0.27 11.52 13.16 
22 A 1024 46.41 0.18 45.86 46.97 

 E 1024 12.22 0.24 11.40 12.95 
23 A 954 46.41 0.15 45.94 46.85 

 E 954 12.23 0.21 11.61 12.89 
24 A 1011 46.41 0.13 46.03 46.81 

 E 1011 12.24 0.18 11.74 12.73 
25 A 351 46.41 0.10 46.13 46.72 

 E 351 12.23 0.14 11.89 12.65 
26 A 27 46.41 0.07 46.24 46.60 

 E 27 12.23 0.10 12.05 12.43 
27 A 1 46.41 . 46.41 46.41 

 E 1 12.23 . 12.23 12.23 
 
The figures and table show that, as might be expected, the error (variability) decreases as the 
number of similar items increases, but that the bias (systematic error) remains constant. 
 
The SI method as described in the introduction takes a simple (unweighted) average of the 
boundaries implied by each similar item to arrive at a final estimated boundary.  If the items differ in 
the number of marks they are out of, it might be considered more reasonable to use a weighted 
average – i.e. to give more weight to similar items worth more marks.  The equivalent information 
to Table 2 but using a weighted average is given in Table A1 in the appendix.  The bias was almost 
identical; the error was slightly lower at grade A and slightly higher at grade E. 
 
An alternative way of accounting for the variability in mark tariff is to display the results by number 
of similar marks (rather than number of similar items).  This is shown in Figure 2 below and Table 
A2 in the appendix. 
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Figure 2.  Distribution of (unrounded) grade boundaries on Paper 3 for each number of similar marks 
used in the equating. Left – grade A, Right – grade E. Key: Black circles are the mean, bars show min and 
max.  Red/blue dashed lines are the ‘correct’ values of 47.1 and 11.1. 
 
Considering first the practical impact of the error on the grade boundaries (and for the moment 
ignoring the bias), the table below shows the proportion of replicates where the rounded boundary 
was within ±1 mark of the rounded mean (i.e. 46 at A and 12 at E). 
 
Table 3: Percentage of replicates where the rounded A or E boundaries were within 1 mark of the 
rounded mean A or E boundaries of 46 and 127. 
# Similar items % within 1 (grade A) % within 1 (grade E) 

1 59.26 44.00 
2 74.07 56.29 
3 80.44 68.25 
4 89.19 74.59 
5 90.86 82.87 
6 95.61 87.63 
7 96.28 90.96 
8 97.69 92.66 
9 98.61 95.43 

10 99.05 97.37 
11 100 98.50 
12 100 99.17 
13 100 98.98 
14 100 99.52 
15 100 99.90 
16 100 99.90 
17 100 100 

 
Table 3 shows that there is ‘diminishing returns’ to increasing the number of similar items: with 4/5 
similar items the A boundary was within 1 mark of the mean 90% of the time, and with 7 similar 
items the E boundary was.  In terms of number of similar marks, a randomly chosen 5 items on 
paper 3 were worth 13.1 marks on average (SD=3.1), and a randomly chosen 7 items were worth 
18.3 marks (SD=3.5).  This suggests a ballpark value of 20% for either percentage of similar items 

                                                
7 Note that in Table 3 the boundaries are treated independently – they do not show the proportion of times both A and E 
were simultaneously within 1 mark of the rounded mean. 
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or percentage of similar marks8 could be used in practice as a basis for being reasonably confident 
of getting to within a mark of the boundary that would be obtained by applying the SI method if 
every item had a similar (identical) counterpart on previous tests. 
 
Explaining the bias 
The long-run average of the SI method gave values of 46.4 and 12.2 for the A and E boundaries, 
whereas the correct values according to the Rasch true-score equating were 47.1 and 11.1.  One 
potential contributor to the bias was mentioned above – the fact that the grade boundaries on the 
previous versions were taken as whole numbers (which they would be in practice).  However, any 
bias arising from this should have roughly cancelled out at grade A, and at grade E should have 
worked in the opposite direction to that observed, since it would have led to lower values for 
expected item scores on the three out of four tests that were rounded down, and hence a lower 
value for the grade E boundary than the correct value. 
 
Another possibility is that the bias arose from using the Rasch model to derive the expected scores 
on the previous versions and the target test (Paper 3).  Misfit to the Rasch model could have 
introduced inaccuracies here.  To investigate this, interpolations of smoothed EICCs for the full 
dataset, using the overall A and E boundaries of 198 and 63, were used to generate the expected 
scores instead.  (This is effectively using a non-parametric IRT approach to calibrate the items.)  
Table 4 shows the ‘correct’ boundaries on the previous versions and Paper 3 items by this 
approach compared to the previous Rasch-based approach. 
 
Table 4.  Un-rounded and rounded grade boundaries on the four previous versions and Paper 3 items 
using EICCs from the full cohort on all the items. (PV=previous version). 

  Rasch Rasch rounded EICCs EICCs rounded 
Test # Items A E A E A E A E 

PV 1 30 48.40 14.47 48 14 48.65 15.02 49 15 

PV 2 30 46.62 17.85 47 18 47.34 16.80 47 17 

PV 3 31 54.61 17.33 55 17 53.53 18.84 54 19 

PV 4 31 48.37 13.34 48 13 48.48 12.33 48 12 

Paper 3 27 47.12 11.06 47 11 46.33 12.93 46 13 
 
Table 4 shows that the different approaches did indeed imply different grade boundaries on the 
various sub-sets of items.  Further investigation revealed that this was because there was a slight 
tendency for the higher tariff items to misfit the Rasch model, as shown in the Bland-Altman9 plots 
in Figure 3 below. At grade A the Rasch model predicted a higher score than observed and vice 
versa at grade E on these higher tariff items, particularly on Paper 3. 
 

                                                
8 On components of this length.  But 70 marks is a reasonably typical value for a GCSE or A level written component. 
9 These plot the difference between two measurements against their average (mean), as described in Altman & Bland 
(1983). 
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Figure 3: Plot of difference between EICC and Rasch item expected scores against mean.  Left – grade A, 
right – grade E. 
 
Repeating the previous analysis using the values for the grade boundaries based on the EICC 
values in Table 4 gave the result in Figure 4 below. 
 

 
Figure 4.  Distribution of (unrounded) grade boundaries on Paper 3 for each number of similar items 
used in the equating. Left – grade A, Right – grade E. Key: Black circles are the mean, bars show min and 
max.  Red/blue dashed lines are the new ‘correct’ values of 46.3 and 12.9. 
 
Figure 4 shows that the bias was almost entirely removed at grade A, and reduced at grade E.  
The standard deviations of the replications at each number of similar items were also slightly 
reduced in both cases, for example with 5 similar items from 0.79 to 0.61 at A, and from 1.10 to 
0.99 at E.  (Table A3 in the appendix gives the data underlying Figure 4, analogous to Table 2 
above).  The effect on the proportion of replicates within ±1 mark of the rounded mean (cf Table 3) 
is shown in Table 5. 
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Table 5: Percentage of replicates where the rounded A or E boundaries were within 1 mark of the 
rounded mean A or E boundaries of 46 and 13. 
# Similar items % within 1 (grade A) % within 1 (grade E) 

1 81.48 40.00 
2 83.76 58.00 
3 88.87 69.04 
4 94.50 76.49 
5 99.08 81.55 
6 99.52 85.12 
7 99.69 85.57 
8 100 89.36 
9 100 91.62 

10 100 91.55 
11 100 95.82 
12 100 95.60 
13 100 96.55 
14 100 97.32 
15 100 98.20 
16 100 99.10 
17 100 99.59 
18 100 100 

 
The number of similar items needed to ensure 90% of replicates within ±1 mark of the rounded 
mean was reduced from 5 to 4 at grade A, but increased from 7 to 9 at grade E.  This suggests 
that the ballpark figure of 5 similar items or 20% similar marks suggested previously is reasonable, 
especially when there is plenty of data around the boundary on the previous versions (as at grade 
A here). 
 
 
Study 2 
The aim of study 2 was to compare the SI method with established equating methods, in order to 
see whether its results were broadly similar.  As in study 1, the Paper 3 items were taken as the 
test on which equated scores were needed (‘Test Y’ in standard equating terminology) and the 
items from the artificially created test PV1 (henceforth Test 1) in study 1 were used as the test 
being equated to (‘Test X’ in standard equating terminology).  There were 30 items on Test 1, 
worth 66 marks in total, and 27 items on Paper 3 worth 70 marks in total (see Table 1).  There 
were 6 items in common between the two tests, worth 12 marks in total - around 17-18% of the 
total marks. 
 
The ‘criterion’ equating for comparison purposes was taken as the equipercentile equating 
(unsmoothed, with linear interpolation) of Paper 3 to Test 1 using the entire cohort and a single 
group design.  Thus the criterion equating was based on scores from 18,807 candidates who took 
both tests10.  A second criterion equating (‘criterion2’) was taken also using a single group design 
but restricting to the 7,534 candidates who had been nominally assigned to Test 1 or Paper 3 
(cohorts 1 and 5 in study 1).  Table 6 below shows that these cohorts were of slightly different 
ability based on their scores on the common items. 
 

                                                
10 Of course, these were not actually taken as separate test forms. 
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Table 6: Scores of the two cohorts to be equated on the tests and the common items. 
  Test score Common item score 

Cohort N Mean SD Mean SD 
Test 1 3755 39.77 13.15 8.25 2.60 
Paper 3 3779 39.20 13.94 8.61 2.54 
 
The dataset used for equating contained the scores of these two cohorts on the Test 1 and Paper 
3 items respectively.  The following standard equating methods were used (see Kolen & Brennan 
(2004) for descriptions of these methods): 

− Chained equipercentile equating using the common items as an internal anchor test; 
− Frequency estimation equipercentile equating using the common items as an internal 

anchor test; 
− IRT true score equating based on separate calibration of the items in the two tests using 

the Graded Response IRT model and the Stocking-Lord method of aligning the score 
scales; 

− IRT observed score equating based on separate calibration of the items in the two tests 
using the Graded Response IRT model and the Stocking-Lord method of aligning the score 
scales; 

− Rasch true score equating based on separate calibration of the items in the two tests using 
the Rasch Partial Credit model and the Stocking-Lord method with a fixed slope to align the 
score scales; 

− Rasch observed score equating based on separate calibration of the items in the two tests 
using the Rasch Partial Credit model and the Stocking-Lord method with a fixed slope to 
align the score scales11. 

In addition to these standard methods, three variants of the SI method were used: 
− The SI method but combining (i.e. summing) the EICCs of the common items to a single 

common item12 worth 12 marks; 
− The SI method without weighting; 
− The SI method weighting the equated scores corresponding to each common item by the 

item maximum mark. 
 
Results of study 2 
In the graphs below, the equating methods are compared with each other by plotting the difference 
between the equated Paper 3 score from each method and the criterion equate against the Test 1 
total score.  To avoid cluttering the plots the IRT and Rasch observed score methods and the 
frequency estimation equipercentile method are not included.  It can be seen from Figure A1 in the 
appendix that the IRT and Rasch observed score methods were both similar to their corresponding 
true score method (the similarity was greater for Rasch than IRT). Figure A2 in the appendix shows 
that the frequency estimation method gave similar results to the chained equipercentile method, 
being slightly closer to the criterion at the lower end of the score scale and further away at the 
higher end. 
 

                                                
11 The IRT and Rasch methods used the R packages mirt (Chalmers, 2012) for item calibration and code written 
internally for the Stocking-Lord equating.  Note that the mirt package uses marginal maximum likelihood (MML) for 
estimation whereas RUMM uses conditional maximum likelihood (CML). 
12 This is not possible in the intended application of the SI method, where the similar items will have come from different 
previous versions, but since it was possible here and corresponds more closely in spirit to the IRT/Rasch methods it was 
included. 
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Figure 5: Comparison of different equating methods. (Vertical lines indicate approximate integer 
boundaries on Test 1 (see Table 4). 
 
There are several noteworthy features of Figure 5.  First, the blue line for Criterion2 shows that the 
‘missing’ ~20k candidates from cohorts 2,3, and 4 did not affect the results – the Criterion2 results 
were very close to the criterion at all Test 1 scores. Second, the Rasch method yielded equated 
scores that were consistently lower than the others for low Test 1 scores (<20) and consistently 
higher than the others for high Test 1 scores (>40).  Third, the SI method using the combined 
anchor item (test) gave very similar results to the IRT true score method, though slightly further 
from the criterion for most of the score range.  Most striking however, is the dip in the graph in the 
middle of the score range for the two SI results based on average equatings from each item 
separately, the effect being much more pronounced for the unweighted average. 
 
Further investigation showed that this anomaly was caused by a single common item ‘com1’ worth 
only 1-mark.  The EICCs for this item are shown in Figure 6. 
 

 
Figure 6.  EICCs for common item 1(com1) in Test 1 (left) and Paper 3 (right). 
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This was an easy item on both tests with a flat (or even negatively sloping) EICC in the lower part 
of the score range. The EICC of this item on Test 1 had a negative slope in the range 11-20, but in 
fact this did not matter too much because the corresponding item score on Paper 3 did not 
intersect the EICC at all so the application of the method just yielded missing data here.  The 
problem was mostly caused by the fact that when the item scores from Test 1 did begin to intersect 
the EICC on Paper 3, the equated scores were much lower than those implied by the other 
common items (see Figure 7). The flatness of the Paper 3 EICC in the score range 19-25 meant 
that a small increase in total score on Test 1 at around a score of 37 led to a big jump in the 
equated score on Paper 3, as shown in Figure 7.  It was at this point that the results from the SI 
method started to move back towards those of the other methods (Figure 5). 
 

 
Figure 7.  Equating relationship based on each common item using the SI method. 
 
Figure 8 shows the results of repeating the comparison of equating methods, but not including 
com1 as one of the common items for the item-based methods.  There was a slight improvement 
for the IRT and Rasch methods (see Figure A1 in the appendix), but a big improvement for the 
similar item methods using the items separately (both weighted and unweighted). 
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Figure 8. Comparison of different equating methods, excluding com1 from IRT, Rasch and SI methods. 
 
The above results suggested two further questions: 

− Could the similar items method (as a common-item equating method) be improved by 
increasing the smoothing of the EICCs? 

− Could a standard anchor test equating method be made to work item-by-item? 
 
Effect of increasing the smoothing 
The EICCs for Test 1 and Paper 3 were re-generated, increasing the smoothing parameter in 
PROC TRANSREG from 50 to 70, which ensured that all EICCs were monotonically increasing.  
This did not alter the fact that ‘com1’ was an outlier in the sense of giving a different equating result 
to the other pseudo anchor items, as shown in Figure 9.  However, Figure 10 (cf Figure 8) shows 
that the overall equating with this item excluded was considerably improved for all three variants of 
the similar items method, with the ‘combined’ and ‘weighted’ methods now appearing better than 
all other methods except criterion2. 
 
Equating item-by-item with a standard equating method 
The frequency estimation equipercentile method was applied item by item.  A plot of the equating 
functions implied by each item separately did not identify ‘com1’ as an outlier (see Figure 11), so 
this item was not excluded when calculating the unweighted and weighted averages of the 
equating functions.  Since this method essentially modifies the results of random groups 
equipercentile equating to account for different score distributions on an anchor test/item, it was of 
interest to compare the outcomes with those from random groups equipercentile equating – i.e. not 
using any common items and simply assuming that the Test 1 and Paper 3 groups were of equal 
ability.  Figure 12 shows that all three variations of equipercentile equating that made use of 
information about the common items were an improvement on the random groups equating, but 
that doing it item-by-item was noticeably worse than the usual way of combining the items into a 
single anchor test.  Weighting by maximum mark had no noticeable effect (unlike the SI method). 
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Figure 9.  Equating relationship based on each common item using the SI method with smoother EICCs. 
 
 

 
Figure 10. Comparison of different equating methods, (excluding com1 from IRT, Rasch and SI methods) 
and using smoother EICCs.  
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Figure 11.  Equating relationship based on each common item using the frequency estimation 
equipercentile equating method. 
 
 

 
Figure 12. Comparison of different equipercentile equating methods. 
 
For completeness, Tables 7 and 8 show the results from all the different equating methods that 
were tried in this study.  Table 7 shows the average absolute difference across the score range 
between the equating method and the correct value (as defined by the ‘criterion’ equate).  The left 
columns show the raw average, and the right columns show this average weighted by the score 
distribution on Test 1 (i.e. giving more weight to the parts of the score range where more people 
had scored on Test 1).  Table 8 focuses on the two grade boundaries – the left columns show 
grade A and the right show grade E.  In both tables the equating methods are ordered from best to 
worst. 
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Table 7 shows that the unweighted SI method item by item with no items excluded was the worst 
method, but that excluding the outlying item and increasing the smoothing made a big 
improvement, to the extent that, even item by item, the SI method with a weighted average was 
better than all the standard equating methods (both item- and test-based), being on average less 
than half a score point away from the correct result across the score range.  The relatively low 
position of the random groups equipercentile equate and the Rasch based methods in both Table 7 
and 8 shows that, in this particular dataset at least, common item equating was necessary and that 
the Rasch model was not able to capture all the variability in item response functions. 
 
Table 7: Average absolute difference (across the score range) of each method from the criterion. 

Unweighted  Weighted by Test 1 score distribution 
Method AbsDiff 

 
Method AbsDiff 

Criterion2 0.141 
 
Criterion2 0.165 

SICombined_Smooth_NoCom1 0.268 
 
SICombined_Smooth_NoCom1 0.257 

SISeparateWtd_Smooth_NoCom1 0.313 
 
SISeparateWtd_Smooth_NoCom1 0.277 

SICombined_Smooth 0.360 
 
SICombined_Smooth 0.387 

ChainedEquipNEAT 0.518 
 
ChainedEquipNEAT 0.426 

FeEquipNEAT 0.537 
 
FeEquipNEAT 0.500 

SISeparateWtd_Smooth 0.604 
 
SISeparateWtd_Smooth 0.636 

SISeparate_Smooth_NoCom1 0.713 
 
SISeparate_Smooth_NoCom1 0.649 

IRTObs_NoCom1 0.769 
 
IRTTrue_NoCom1 0.803 

IRTTrue_NoCom1 0.797 
 
IRTObs_NoCom1 0.839 

IRTObs 0.818 
 
IRTTrue 0.910 

IRTTrue 0.821 
 
SICombined_NoCom1 0.938 

SICombined_NoCom1 0.900 
 
IRTObs 0.963 

SICombined 0.902 
 
SICombined 1.040 

FESeparateWtd 0.919 
 
FESeparateWtd 1.074 

FESeparate 0.954 
 
SISeparateWtd_NoCom1 1.097 

SISeparateWtd_NoCom1 1.054 
 
FESeparate 1.125 

SISeparate_NoCom1 1.229 
 
SISeparate_NoCom1 1.294 

SISeparate_Smooth 1.249 
 
SISeparate_Smooth 1.313 

SISeparateWtd 1.258 
 
SISeparateWtd 1.368 

RGequipercentile 1.381 
 
RaschObs_NoCom1 1.400 

RaschObs_NoCom1 1.447 
 
RaschObs 1.402 

RaschTrue_NoCom1 1.449 
 
RaschTrue_NoCom1 1.483 

RaschTrue 1.477 
 
RaschTrue 1.486 

RaschObs 1.478 
 
RGequipercentile 1.627 

SISeparate 1.623 
 
SISeparate 1.816 
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Table 8: Absolute difference (at the grade boundaries) of each method from the criterion. 

Grade A  Grade E 
Method AbsDiff 

 
Method AbsDiff 

ChainedEquipNEAT 0.249 
 
SICombined_Smooth 0.011 

FeEquipNEAT 0.349 
 
Criterion2 0.012 

SISeparateWtd_Smooth_NoCom1 0.372 
 
IRTObs 0.036 

Criterion2 0.384 
 
SISeparateWtd_Smooth 0.282 

SICombined_Smooth_NoCom1 0.391 
 
SISeparateWtd_Smooth_NoCom1 0.282* 

SICombined_Smooth 0.451 
 
SISeparateWtd 0.334 

SISeparateWtd_Smooth 0.466 
 
SISeparateWtd_NoCom1 0.334 

SISeparate_Smooth_NoCom1 0.524 
 
SICombined 0.336 

SISeparate_Smooth 0.686 
 
IRTObs_NoCom1 0.360 

IRTObs_NoCom1 1.042 
 
FeEquipNEAT 0.364 

SICombined 1.052 
 
IRTTrue 0.417 

SISeparate 1.058 
 
SISeparate_Smooth 0.452 

IRTTrue_NoCom1 1.062 
 
SISeparate_Smooth_NoCom1 0.452 

SISeparateWtd 1.098 
 
SICombined_Smooth_NoCom1 0.480 

IRTObs 1.100 
 
SICombined_NoCom1 0.539 

IRTTrue 1.107 
 
ChainedEquipNEAT 0.548 

SICombined_NoCom1 1.118 
 
SISeparate 0.647 

SISeparateWtd_NoCom1 1.186 
 
SISeparate_NoCom1 0.647 

RaschObs 1.240 
 
IRTTrue_NoCom1 0.763 

SISeparate_NoCom1 1.243 
 
FESeparateWtd 0.765 

FESeparateWtd 1.360 
 
FESeparate 0.773 

RaschTrue 1.388 
 
RGequipercentile 1.196 

RaschObs_NoCom1 1.416 
 
RaschTrue_NoCom1 1.588 

FESeparate 1.419 
 
RaschTrue 1.693 

RaschTrue_NoCom1 1.561 
 
RaschObs_NoCom1 1.813 

RGequipercentile 1.922 
 
RaschObs 1.928 

 
*Note that at low scores the excluded common item did not contribute to the equating in the SI 
method so the result is the same. 
 
Conclusions from study 2 
The study has shown that in conditions where the similar items are in fact identical items, 
application of the SI method can give results that are broadly in line with other established equating 
methods.  In the special case where all the similar items come from the same previous version of a 
test and can hence be treated as an internal anchor (the ‘SIcombined’ method), the results were 
very close to those obtained from IRT true score equating.  This is not too surprising, given that the 
SI method essentially uses non-parametric IRT to produce its ICCs, and these curves are more 
likely to be similar to those from the more flexible Graded Response Model than from the more 
restrictive Partial Credit Model. 
However, in its intended application, the similar items would come from different tests and so either 
the unweighted (‘SIseparate’) or the weighted (‘SISeparateWtd’) method would be needed.  This 
study has shown that both these methods can be seriously affected by similar items whose EICCs 
are flat in part of their range, or that give a substantially different equating result to other similar 
items.  This has two implications for use of the method in practice: 
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− It is important to evaluate the contribution of each individual similar item to the equating 
outcome; 

− It is advisable to produce equating functions over the full range of scores (instead of just 
focussing on grade boundaries) because this will help to identify discontinuities and other 
anomalies.  Inspection of plots like Figure 7 will help to identify outliers. 

 
As might be expected, giving more weight to items worth more marks when calculating the average 
improved the accuracy.  Less expected was the finding that increasing the smoothing parameter of 
the EICCs created a substantial improvement in the accuracy of equating (with this particular data).  
Further exploration could investigate whether there is an optimum degree of smoothing beyond 
which results start to deteriorate again, and whether the smoothing parameter needs to be set at 
the level of the item, the test, or the pair of tests to be equated.  It is clearly desirable to have an a 
priori rationale for setting the smoothing parameter – such as the lowest value for which the EICCs 
are strictly increasing – because this reduces the amount of human input required and (perhaps) 
reduces the likelihood of capitalising on chance. 
 
It is worth noting that the aim of this research was not to show that the SI method is better than 
other standard equating methods, merely that it can ‘take its place at the table’ as a legitimate 
means of equating two tests.  It would doubtless have been possible to make tweaks and 
modifications that would have increased the accuracy of some of the other standard equating 
methods that were explored in this study. 
 
Finally it is worth re-iterating that in spirit the SI method is essentially a judgemental method based 
on judgements of similarity. It was intended to be used not in situations where there are two tests 
to be equated (although this research has shown that it can work well here too), but rather in 
situations where there is a single test on which cut-scores are required that maintain the standards 
set on several previous versions of the same test.  Approximate accuracy and usefulness are all 
that can reasonably be aimed for when the items are not actually identical. 
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Appendix 
 
Example SAS code13 used to create a smooth EICC for a single item is given below.  Test1 is a 
SAS dataset containing one row per person and (at least) variables ‘test_tot’ for test total score 
and ‘item1’ for scores on item 1.  ‘Unsmoothed’ is an intermediate SAS dataset containing the raw 
item mean scores for every observed test score and ‘Smoothed’ is the output SAS dataset 
containing the smoothed item mean scores. 
 
*Find the item mean score for each possible test score; 
proc means data=test1; 
 class test_tot; 
 types test_tot; 
 var item1; 
 output out=unsmoothed mean=; 
run; 
 
%let smoothpar=50;  *smoothing parameter between 0 and 100; 
proc transreg data=unsmoothed noprint; 
 model identity(item1) = smooth (test_tot / sm=&smoothpar); 
 output out=smoothed; 
run; 
 
 
Table A1. Descriptive statistics for distribution of (unrounded) grade boundaries (weighted by max mark) 
on Paper 3 for each number of similar items used in the equating. 
# Similar items Grade # Combinations Mean SD Min Max 

1 A 27 46.41 1.92 41.34 50.86 

 E 25 12.23 2.53 7.40 16.47 
2 A 351 46.43 1.21 43.03 50.24 

 E 350 12.28 1.91 7.40 16.47 
3 A 992 46.47 0.97 43.46 49.79 

 E 992 12.29 1.53 7.40 16.47 
4 A 1027 46.44 0.75 44.06 48.67 

 E 1027 12.31 1.33 8.57 15.87 
5 A 963 46.46 0.66 44.09 48.28 

 E 963 12.23 1.21 8.19 15.63 
6 A 1002 46.47 0.58 44.60 48.00 

 E 1002 12.29 1.05 8.67 15.05 
7 A 995 46.43 0.54 44.78 48.00 

 E 995 12.32 0.94 9.61 14.92 
8 A 994 46.45 0.48 45.08 47.83 

 E 994 12.32 0.88 9.42 14.82 
9 A 1006 46.48 0.43 45.13 47.76 

 E 1006 12.29 0.81 9.99 14.56 
10 A 951 46.45 0.40 45.25 47.61 

                                                
13 https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_transreg_sect021.htm 
has more details. 

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm%23statug_transreg_sect021.htm
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# Similar items Grade # Combinations Mean SD Min Max 

 E 951 12.30 0.73 10.33 14.24 
11 A 1003 46.46 0.36 45.46 47.52 

 E 1003 12.31 0.67 10.16 14.23 
12 A 962 46.46 0.34 45.12 47.57 

 E 962 12.32 0.66 10.61 14.29 
13 A 980 46.46 0.31 45.54 47.25 

 E 980 12.28 0.58 10.52 14.19 
14 A 1038 46.45 0.29 45.49 47.30 

 E 1038 12.32 0.57 10.59 13.85 
15 A 958 46.46 0.27 45.64 47.26 

 E 958 12.30 0.50 10.80 13.68 
16 A 1014 46.47 0.25 45.53 47.20 

 E 1014 12.33 0.46 10.96 13.77 
17 A 956 46.46 0.24 45.65 47.05 

 E 956 12.31 0.45 11.05 13.63 
18 A 991 46.46 0.21 45.66 47.00 

 E 991 12.30 0.40 11.13 13.50 
19 A 955 46.46 0.20 45.89 47.10 

 E 955 12.32 0.38 11.08 13.39 
20 A 1049 46.46 0.18 45.82 46.96 

 E 1049 12.32 0.34 11.15 13.34 
21 A 947 46.47 0.16 46.01 46.91 

 E 947 12.32 0.30 11.43 13.24 
22 A 1024 46.47 0.15 45.95 46.88 

 E 1024 12.30 0.27 11.46 13.19 
23 A 954 46.47 0.13 46.11 46.80 

 E 954 12.32 0.24 11.59 13.07 
24 A 1011 46.47 0.10 46.14 46.75 

 E 1011 12.32 0.20 11.65 12.95 
25 A 351 46.47 0.09 46.20 46.68 

 E 351 12.31 0.16 11.80 12.87 
26 A 27 46.47 0.06 46.34 46.60 

 E 27 12.31 0.11 12.02 12.63 
27 A 1 46.47 . 46.47 46.47 

 E 1 12.31 . 12.31 12.31 
 
 
Table A2. Descriptive statistics for distribution of (unrounded) grade boundaries on Paper 3 for each 
number of similar marks used in the equating. 
# Similar marks Grade # Combinations Mean SD Min Max 

1 A 8 46.20 2.58 41.34 49.00 

 E 7 11.46 2.63 7.40 14.66 
2 A 35 46.34 1.72 43.03 50.86 

 E 35 11.82 2.14 7.40 16.47 
3 A 79 46.47 1.51 42.82 49.93 

 E 78 12.29 1.79 8.37 16.47 
4 A 142 46.41 1.35 42.48 49.64 
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# Similar marks Grade # Combinations Mean SD Min Max 

 E 141 12.04 1.63 7.40 16.13 
5 A 210 46.46 1.19 43.37 49.43 

 E 210 12.18 1.65 7.40 16.47 
6 A 263 46.40 1.11 43.08 49.70 

 E 263 12.18 1.50 7.40 16.47 
7 A 280 46.43 1.06 43.63 49.47 

 E 280 12.18 1.41 7.40 15.57 
8 A 312 46.34 0.96 43.92 49.24 

 E 312 12.29 1.39 8.16 15.84 
9 A 350 46.34 0.92 43.80 49.16 

 E 350 12.17 1.23 9.08 15.49 
10 A 364 46.41 0.85 43.65 48.96 

 E 364 12.18 1.24 8.89 15.18 
11 A 371 46.41 0.83 44.27 48.39 

 E 371 12.30 1.18 9.00 15.75 
12 A 374 46.38 0.84 44.13 49.01 

 E 374 12.23 1.13 9.03 15.31 
13 A 373 46.40 0.70 44.33 48.46 

 E 373 12.27 1.08 9.55 14.90 
14 A 373 46.42 0.70 44.09 47.98 

 E 373 12.19 0.97 9.17 15.06 
15 A 390 46.42 0.70 44.65 48.62 

 E 390 12.19 1.01 9.09 14.66 
16 A 382 46.41 0.68 44.42 48.48 

 E 382 12.22 0.97 9.66 14.90 
17 A 415 46.39 0.61 44.78 48.10 

 E 415 12.22 0.96 9.50 14.95 
18 A 389 46.38 0.61 44.81 48.37 

 E 389 12.23 0.84 10.24 14.41 
19 A 410 46.40 0.60 44.66 47.96 

 E 410 12.21 0.89 9.57 14.31 
20 A 346 46.40 0.58 44.80 48.10 

 E 346 12.26 0.79 10.26 14.90 
21 A 398 46.41 0.56 44.98 47.99 

 E 398 12.20 0.77 9.55 14.36 
22 A 381 46.46 0.54 44.85 48.05 

 E 381 12.20 0.81 9.93 14.52 
23 A 397 46.43 0.50 44.84 47.98 

 E 397 12.20 0.71 9.92 14.07 
24 A 399 46.44 0.51 44.98 47.93 

 E 399 12.20 0.68 10.14 14.11 
25 A 393 46.43 0.47 45.25 47.79 

 E 393 12.28 0.69 10.19 14.30 
26 A 340 46.39 0.46 45.04 47.69 

 E 340 12.27 0.65 10.78 13.90 
27 A 361 46.47 0.48 44.96 47.59 

 E 361 12.23 0.66 10.63 14.33 
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# Similar marks Grade # Combinations Mean SD Min Max 
28 A 347 46.39 0.46 45.24 47.55 

 E 347 12.15 0.62 9.94 13.92 
29 A 376 46.41 0.43 45.20 47.79 

 E 376 12.24 0.61 10.71 13.90 
30 A 352 46.42 0.42 45.32 47.47 

 E 352 12.22 0.62 10.76 14.19 
31 A 353 46.39 0.39 45.29 47.49 

 E 353 12.24 0.55 10.80 13.77 
32 A 369 46.43 0.41 45.15 47.73 

 E 369 12.26 0.53 10.78 14.23 
33 A 360 46.36 0.39 45.24 47.40 

 E 360 12.21 0.53 10.54 13.60 
34 A 342 46.40 0.39 45.29 47.54 

 E 342 12.24 0.50 10.84 13.71 
35 A 380 46.40 0.39 45.37 47.36 

 E 380 12.24 0.50 10.75 13.39 
36 A 386 46.41 0.34 45.27 47.42 

 E 386 12.22 0.50 10.93 13.81 
37 A 394 46.41 0.31 45.43 47.36 

 E 394 12.22 0.47 10.76 13.55 
38 A 435 46.37 0.36 45.53 47.60 

 E 435 12.26 0.48 10.81 13.91 
39 A 362 46.43 0.33 45.45 47.44 

 E 362 12.21 0.46 10.94 13.41 
40 A 389 46.41 0.32 45.42 47.16 

 E 389 12.28 0.43 10.84 13.51 
41 A 343 46.42 0.31 45.52 47.31 

 E 343 12.26 0.41 11.16 13.52 
42 A 388 46.41 0.32 45.58 47.32 

 E 388 12.20 0.42 10.89 13.45 
43 A 380 46.41 0.30 45.61 47.22 

 E 380 12.24 0.40 11.09 13.57 
44 A 334 46.43 0.30 45.56 47.10 

 E 334 12.25 0.41 11.13 13.48 
45 A 376 46.42 0.28 45.56 47.35 

 E 376 12.26 0.37 11.28 13.29 
46 A 408 46.40 0.28 45.69 47.15 

 E 408 12.24 0.37 11.24 13.48 
47 A 354 46.40 0.26 45.51 47.16 

 E 354 12.22 0.37 11.21 13.70 
48 A 377 46.41 0.26 45.51 47.11 

 E 377 12.24 0.33 11.33 13.18 
49 A 361 46.40 0.25 45.78 47.19 

 E 361 12.26 0.33 11.38 13.09 
50 A 360 46.41 0.25 45.70 47.14 

 E 360 12.26 0.34 11.12 13.32 
51 A 372 46.41 0.23 45.76 47.11 
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# Similar marks Grade # Combinations Mean SD Min Max 

 E 372 12.19 0.31 11.27 13.15 
52 A 376 46.42 0.23 45.74 47.04 

 E 376 12.21 0.30 11.29 13.09 
53 A 399 46.41 0.22 45.92 46.99 

 E 399 12.25 0.28 11.36 13.15 
54 A 404 46.40 0.20 45.78 46.94 

 E 404 12.23 0.28 11.52 13.17 
55 A 393 46.41 0.21 45.72 46.99 

 E 393 12.26 0.27 11.47 13.06 
56 A 393 46.42 0.20 45.85 46.95 

 E 393 12.25 0.27 11.50 12.93 
57 A 368 46.42 0.18 45.85 46.98 

 E 368 12.26 0.24 11.55 12.88 
58 A 379 46.41 0.18 45.85 46.90 

 E 379 12.25 0.23 11.57 13.16 
59 A 358 46.43 0.17 45.89 47.03 

 E 358 12.24 0.23 11.40 13.07 
60 A 346 46.41 0.16 46.01 46.94 

 E 346 12.23 0.23 11.73 12.95 
61 A 327 46.40 0.16 45.84 46.82 

 E 327 12.23 0.21 11.60 12.89 
62 A 327 46.42 0.15 45.99 46.85 

 E 327 12.22 0.20 11.72 12.80 
63 A 292 46.41 0.14 46.04 46.78 

 E 292 12.23 0.18 11.74 12.73 
64 A 246 46.41 0.14 45.94 46.78 

 E 246 12.24 0.18 11.68 12.67 
65 A 221 46.42 0.14 46.03 46.81 

 E 221 12.25 0.17 11.88 12.68 
66 A 139 46.41 0.14 46.03 46.72 

 E 139 12.23 0.14 11.86 12.59 
67 A 84 46.41 0.13 46.13 46.74 

 E 84 12.25 0.15 11.94 12.58 
68 A 35 46.42 0.12 46.22 46.68 

 E 35 12.27 0.13 12.05 12.58 
69 A 8 46.42 0.10 46.31 46.60 

 E 8 12.26 0.10 12.13 12.43 
70 A 1 46.41 . 46.41 46.41 

 E 1 12.23 . 12.23 12.23 
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Table A3. Descriptive statistics for distribution of (unrounded) grade boundaries on component 3 for each 
number of similar items used in the equating (based on overall EICCs rather than Rasch) 
# Similar items Grade # Combinations Mean SD Min Max 

1 A 27 46.28 1.59 40.33 49.73 

 E 25 12.40 2.33 8.06 15.69 
2 A 351 46.28 1.08 42.48 48.94 

 E 350 12.40 1.70 8.06 15.69 
3 A 943 46.28 0.84 43.60 48.45 

 E 943 12.40 1.35 8.06 15.38 
4 A 1055 46.28 0.73 43.97 47.95 

 E 1055 12.41 1.11 9.19 15.14 
5 A 981 46.33 0.61 44.43 47.78 

 E 981 12.45 0.99 9.57 15.09 
6 A 1048 46.28 0.58 44.63 47.62 

 E 1048 12.42 0.88 9.52 14.73 
7 A 963 46.29 0.53 45.01 47.56 

 E 963 12.38 0.79 9.73 14.73 
8 A 1015 46.28 0.46 44.93 47.40 

 E 1015 12.43 0.72 9.88 14.52 
9 A 1062 46.28 0.43 45.13 47.39 

 E 1062 12.41 0.66 10.64 14.73 
10 A 982 46.29 0.40 45.27 47.17 

 E 982 12.35 0.60 10.59 14.20 
11 A 957 46.28 0.36 45.39 47.13 

 E 957 12.42 0.55 10.49 14.06 
12 A 1001 46.27 0.35 45.27 47.10 

 E 1001 12.40 0.52 10.85 13.91 
13 A 985 46.27 0.32 45.34 47.06 

 E 985 12.39 0.50 10.69 13.87 
14 A 970 46.29 0.30 45.55 46.98 

 E 970 12.41 0.46 11.00 13.95 
15 A 997 46.28 0.27 45.60 47.10 

 E 997 12.41 0.42 11.16 13.76 
16 A 1003 46.29 0.25 45.70 47.00 

 E 1003 12.39 0.38 11.18 13.38 
17 A 971 46.28 0.24 45.65 46.92 

 E 971 12.37 0.35 11.39 13.47 
18 A 1010 46.28 0.22 45.71 46.88 

 E 1010 12.40 0.33 11.53 13.32 
19 A 944 46.29 0.20 45.80 46.91 

 E 944 12.40 0.30 11.46 13.29 
20 A 1028 46.28 0.18 45.84 46.78 

 E 1028 12.41 0.27 11.72 13.36 
21 A 1052 46.28 0.16 45.92 46.79 

 E 1052 12.40 0.25 11.71 13.39 
22 A 997 46.28 0.14 45.97 46.72 

 E 997 12.39 0.23 11.70 13.11 
23 A 982 46.29 0.13 45.96 46.70 
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# Similar items Grade # Combinations Mean SD Min Max 

 E 982 12.40 0.19 11.91 13.13 
24 A 1002 46.29 0.11 46.01 46.65 

 E 1002 12.40 0.16 12.00 12.95 
25 A 351 46.28 0.09 46.07 46.59 

 E 351 12.40 0.13 12.13 12.78 
26 A 27 46.28 0.06 46.15 46.51 

 E 27 12.40 0.09 12.26 12.58 
27 A 1 46.28 . 46.28 46.28 

 E 1 12.40 . 12.40 12.40 
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Figure A1. Comparison of IRT/Rasch true score equating with observed score equating, including com1 
(left) and excluding com1 (right). 
 
 

 
Figure A2.  Comparison of frequency estimation equipercentile equating with chained equipercentile 
equating.  
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