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SUBJECT DIFFICULTY AND QUESTION DIFFICULTY 

Subject difficulty – the analogy with question difficulty
Tom Bramley Assistant Director, Research Division, Assessment Research & Development

Introduction

Concerns about differences in the difficulty of examination subjects are

not new. Moreover, there have been considerable differences in opinion

over i) how subject difficulty should be defined; ii) whether and how it

should be measured (represented numerically); and iii) whether individual

results in examination subjects should be adjusted to ‘allow’ for

differences in difficulty as defined and measured in some particular way.

See Newton (in press) for a review.

The purpose of this article is to explore in some depth one particular

way of defining and measuring subject difficulty – a way that will be

called the ‘IRT approach’. This approach has been investigated in Australia

in the context of university admissions by Tognolini and Andrich (1996)

and in the Netherlands by Korobko, Glas, Bosker, and Luyten (2008), and

has recently been advocated in the UK context by Robert Coe at the 

CEM centre in Durham (Coe 2008, Coe et al., 2008).

This article is structured as follows. First the IRT approach is briefly

described. Then the analogy of using the IRT approach when the ‘items’

are examination subjects is explored. Next the task of defining difficulty

from first principles is considered, starting from the simplest case of

comparing two dichotomous items within a test. The thinking of Louis

Guttman on scales and dimensionality is shown to provide a useful

framework for understanding difficulty, and the link between Guttman

and IRT is described. Finally, an alternative to the IRT approach, based on

producing visual representations of differences in difficulty among just a

few (three or four) examinations, is offered as an idea for future

exploration.

Item Response Theory

Item Response Theory (IRT) is concerned with modelling the scores

obtained on the items1 on a test, rather than scores or grades obtained on

a whole test (or on a composite of several tests). It (IRT) is not limited to

educational tests – for example, it is quite widely applied in psychological

testing more generally and in healthcare, but the educational context is

the only one considered here. An overview of IRT can be found in Yen and

Fitzpatrick (2006).

The organising concept of IRT is that of the ‘latent trait’ or continuum

– an abstract line representing whatever the test concerned is supposed

to be measuring. The most commonly used unidimensional IRT models

contain a single parameter that represents person location on the trait

(usually referred to as their ‘ability’) and one or more parameters

characterising the item. In the simplest IRT model, the 1-parameter IRT

model for dichotomous items, each item is characterised by a single

parameter representing its location on the trait (usually referred to as its

‘difficulty’). The 1-parameter model expresses the probability of a person

with a given ability succeeding on (i.e. answering correctly) an item with

a given difficulty as a function of the difference between ability and

difficulty.

The 2- and 3- parameter IRT models for dichotomous items include

extra parameters that represent ‘discrimination’ and ‘guessing’

respectively. The latter is often used for multiple-choice tests. IRT models

for polytomous (i.e. multiple-mark) items also exist. These contain

parameters representing the thresholds between adjacent score

categories on the trait. In a multidimensional IRT model a person’s ability

is represented as an n-element vector rather than by a single number.

There are many reasons why IRT models are used, but the one of most

relevance to this article is that (when the data fit the model) estimates

of person ability and item difficulty on a common scale can be made

when people have answered different subsets of items. This is the

principle behind item banking and computerised adaptive testing (CAT),

two of the main practical applications of IRT.

It is this feature of IRT that suggests it might have something to offer

to the problem of comparing examination subject difficulty, because in

most examination systems (and in particular for GCSEs and A levels) the

examinees do not all take examinations in the same set of subjects. In

applying the ‘IRT approach’ the different examination subjects have the

role of different items in a test. A pass-fail examination could therefore

be modelled analogously to a dichotomous item, and a graded test

modelled analogously to a polytomous item.

The analogy with item-based IRT

The first issue that potentially weakens this analogy is the lack of clarity

about the meaning of the trait when examination subjects are modelled

with the IRT approach. When individual items are being modelled, as in

‘normal’ IRT, it might be something like ‘maths ability’ (for a maths test).

The items in such a test will have been designed according to a

specification setting out the criteria (e.g. topics and skills tested) that

items must meet in order to be included in the test. In an IRT item

banking/CAT scenario the items will also have been screened to check

that they do in fact fit the model to a satisfactory degree. An important

part of test validation (e.g. Kane, 2006) is to provide evidence of

‘construct validity’ – in other words that the items do conform to the

definition of the trait and that their scores enter into the empirical

relationships predicted by the theory of the trait.

However, there is no such deliberate design and validation in the case

of examination subjects. The set of possible examinations on offer

depends heavily on the cultural and political context of the examination

system. In the case of A levels there are currently around 80 possibilities

including subjects as diverse as Physical Education, English Literature,

Accounting, Chemistry, Latin, Travel and Tourism, Music, and Critical

Thinking. If these subjects can be located along a single unidimensional1 In this report, the terms ‘item’ and ‘question’ are used interchangeably.
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trait it might be called ‘General Academic Ability’ (Coe, 2008). While it 

is a bit optimistic to expect every single subject to be adequately

represented on a single line, explorations of the data might reveal a

subset of subjects that can more reasonably be thus represented. For

example Coe (2008) found that by starting from a group of 37 large-

entry GCSE subjects, removing ten that did not fit the model well, and

then selectively adding in smaller-entry subjects he was able to include

34 subjects in his final model. Coe (ibid) presented a graph showing the

relative difficulty of his set of 34 GCSE subjects: Latin, German, Spanish

and French were the ‘hardest’; Sport/PE, Textiles, Drama and Media

Studies were the ‘easiest’. Somewhat surprisingly (given the greater

choice and fewer examinations taken, see below), Coe et al. (2008) 

found that only one of 33 large-entry A level subjects did not fit a

unidimensional model.

A different approach is to use a multidimensional model splitting 

the subjects into more natural groupings either on an a priori basis 

(e.g. sciences, languages) or on the basis of investigating the statistical

dimensionality of the data. This was tried by Korobko et al. (2008) using

pre-university examinations taken in the Netherlands by 18 year olds (i.e.

at a similar stage to A level students). They found that a unidimensional

model did not fit the data nearly as well as a multidimensional model

(which is not surprising), but more interestingly they found that some

implausible results were obtained from the unidimensional model in

terms of the ‘expected scores’ imputed to examinees for subjects they

had not chosen to take. For example, average scores in French and

German imputed to examinees who had mostly chosen science subjects

were nearly as high as those actually achieved by examinees who had

mostly chosen language subjects, despite the fact that these science

students clearly appeared to have less ‘language ability’ than the

language students on the basis of their scores on the (compulsory)

examinations in Dutch and English. This apparent anomaly disappeared

when a multidimensional model was used. Korobko et al. (ibid) produced

tables showing the estimated grade point averages (GPAs) obtained from

their models – that is, the average grades in each subject that would have

been obtained if all students had taken each subject (interestingly, Latin

came out as the ‘easiest’ subject, whichever model was used!).

Nonetheless, the issue of the meaning of the trait and the interpretation

of the ‘difficulty’ parameter still remains, regardless of how well the data

fit any particular IRT model. This is discussed again later in this article.

A second issue that weakens the analogy with item-based IRT is that

in most applications of IRT where different examinees have taken

different subsets of items they have not had any choice in which items

they take. For example, in a CAT the next item will be chosen by the

computer according to its item selection algorithm, usually taking

account of its current estimate of the examinee’s ability plus any content

coverage requirements. In on-demand testing where tests are

constructed from a calibrated item bank there may be a variety of

different test forms (versions) but no choice for the examinee in which

form they answer. In contrast, for A levels especially, the examinees have

enormous choice open to them in which subjects they take. If these

choices are not independent of ability (and it would seem unrealistic to

expect them to be) then it is not reasonable to assume that the modelled

outcome on not-chosen subjects will be adequately predicted by the

model. In statistics the ‘missing data’ literature (e.g. Rubin, 1976) deals

with the circumstances under which the mechanism producing the

missing data can be ignored. Korobko et al. (2008) tried to incorporate a

model for the subject choice process into their IRT model:
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Since the students can only choose a limited number of subjects, it is

reasonable to assume that the probability of choosing a subject as a

function of the proficiency dimension … is single peaked: Students will

probably choose subjects within a certain region of the proficiency

dimension … and avoid subjects that are too difficult or too easy.

(Korobko et al. 2008, p.144).

This assumption was not supported in a large-scale survey of A level

students (Vidal Rodeiro, 2007) where liking for the subject and

university/career plans were found to be more important than perceived

difficulty as factors influencing subject choice. Nevertheless, it does

represent an attempt to tackle the missing data issue. In fact, Korobko 

et al. (ibid) found that including a model for the missing data mechanism

did not yield substantively different results, once multidimensionality

had been modelled (see above).

A third, perhaps less important, difference between item-based 

IRT and subject-based IRT is that in the former the ability estimate of

examinees will be based on the responses to a relatively large number 

of items – perhaps 60 dichotomous items, or 60 marks-worth of

polytomous items. When a small number of subjects is chosen, in

contrast, the ability estimate will be based on only a few ‘items’

(perhaps three to five in the case of A levels). The number of score

categories per subject depends on the grading scale used – it is currently

seven for A levels since the introduction of the A* category in 2010.

Thus the ‘maximum score’ for an examinee taking three A levels is 21.

Whilst this would not normally be considered a sufficient ‘test length’

for reliably estimating an individual’s ‘ability’ this is perhaps not such a

problem when the focus of the analysis is on estimating the difficulty

parameters for the items (i.e. the subjects).

Definition of difficulty in the IRT approach

One of the reasons why debates about comparability, standards and

subject difficulty have been so protracted and inconclusive is that those

involved have often disagreed about the most appropriate definition of

these and related terms. That there is this disagreement is of course

recognised:

… much debate on the comparability of examination standards is at

cross-purposes, since protagonists use the same words to mean

different things. Within the educational measurement community we

have both variants of this problem: the use of the same term to mean

different things and the use of different terms to mean the same thing.

… There seem to be almost as many terms as commentators.

(Newton, 2010, p.289)

Two recent articles by Newton (ibid) and Coe (2010) give thoughtful

analyses of these definitional problems. Their arguments will not be

repeated here, but one important insight of Newton’s is the importance

of distinguishing between definitions and methods:

An issue that has clouded conceptual analysis of comparability in

England, perhaps the principal issue, is the failure to distinguish

effectively between definitions of comparability and methods for

achieving comparability (or methods for monitoring whether

comparability has been achieved).

(Newton, 2010, p.288)
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The ‘IRT approach’ as described in this article has been used as a method

for monitoring whether comparability has been achieved, by

retrospectively analysing examinations data. How was difficulty defined

by the authors of the articles that have been described previously?

Korobko et al. noted that using GPAs results in

… systematic bias against students enrolled in more rigorous 

curricula … A lower GPA may not necessarily mean that the student

performs less well than students who have higher GPAs; the students

with the lower GPAs may simply be taking courses and studying in

fields with more stringent grading standards.

(Korobko et al., 2008, p.144)

While superficially this sounds very reasonable, without a precisely stated

definition of what is meant by ‘more rigorous’ curricula or ‘performs less

well’ or ‘more stringent grading standards’ there is the suspicion that a

lurking circularity could cloud the interpretation of the findings.

Nonetheless, it is clear from reading their text as a whole that for

Korobko et al.: i) subject difficulty is whatever it is that is represented by

the difficulty parameter in the IRT model, and ii) once scores (grades) on

subjects not taken have been ‘imputed’ to examinees based on the

parameters of the (best fitting) IRT model, the estimated average scores

(grades) in each subject can legitimately be compared. To paraphrase, this

is equivalent to saying that the rank ordering of examination subjects in

terms of difficulty is the rank order by average grade in a hypothetical

scenario where all examinees take all subjects. The IRT model is used to

simulate this hypothetical scenario.

Coe (2007; 2008; 2010) has given far more consideration to the

conceptual issues behind the use of IRT models for comparing

examination subjects. Using the concept ‘construct comparability’ he

argues that examinations can be compared in terms of the amount of

some common construct implied by given grades. For example, when

fitting a 1-parameter IRT (Rasch) model to GCSE subjects, the common

construct is ‘general academic ability’. If subjects are to be compared (for

example on the basis of their difficulty parameters from an IRT model)

then this comparison must be stated in terms of the common construct:

So rather than saying that maths is ‘harder’ than English we must say

that a particular grade in maths indicates a higher level of general

academic ability than would the same grade in English.

(Coe, 2008, p.613)

This approach allows Coe to make interpretations of observed statistical

differences in subject grading outcomes without having to commit either

to a particular definition of difficulty or of general academic ability, since

both emerge from the IRT analysis. It also implicitly assumes that

‘common construct’ is synonymous with ‘latent trait’.

Defining difficulty for items in a test

The previous section considered how difficulty has been defined (or its

definition has been circumvented) by those employing an IRT approach

to investigate difficulty of examination subjects. In this section the issue

is approached from the other end – that is, by considering how difficulty

has been defined at the item level.

Before IRT became widely used, the framework now known as ‘Classical

Test Theory’ (CTT) was used to analyse data from educational tests. In

many contexts CTT is still the preferred choice because in some respects 

it is conceptually more straightforward, and it is often simpler

mathematically, both of which make it easier to explain to non-specialists.

The familiar index of item difficulty in CTT is the ‘facility value’,

defined as the mean mark (score) on a question divided by the maximum

possible mark. If the question is dichotomous, the facility value is also

the proportion of examinees who answered correctly. Therefore, on a test

consisting entirely of compulsory dichotomous items, if question 4 (say)

has a higher facility value than question 7, this means that question 4

was answered correctly by more people than question 7. It seems

completely uncontroversial to say in these circumstances that question 7

was more difficult than question 4. Because we are dealing with CTT,

there is, or seems to be, no need to invoke a latent trait or construct.

The qualifier ‘for these examinees’ might be added, but only in a context

where it makes sense to consider the performance of other examinees

who did not happen to take the test.

But there are complications possible even for this apparently simple

case. First, what can be said if the difference does not hold for identifiable

sub-groups? For example, suppose that more males answered question 7

correctly than question 4, but that the opposite was the case for females.

In this instance it seems natural just to add the qualifier ‘for females, but

not for males’ to the statement ‘question 7 was more difficult than

question 4’. A more interesting example is if the group of examinees is

split into two groups, ‘high scoring’ and ‘low scoring’, on the basis of their

overall test score. Now it is again possible for the order of difficulty of the

two questions to be different in the two groups, but now adding the

qualifier ‘for high scorers on the test overall’ does raise the question of

what the test overall was measuring. This is because if question 4 and

question 7 were included in a test with different items (but the same

examinees) it is conceivable that their relative difficulty with respect to

high and low-scoring groups could change.

A second complication with even this simple case is that it does not

consider the individual patterns of performance on the two questions, as

illustrated by Table 1 below.

Table 1: Question scores for three questions on an imaginary test taken by ten

examinees

Person Q1 Q2 Q3

1 1 1 1

2 1 1 0

3 1 0 0

4 1 1 1

5 1 0 0

6 1 1 0

7 0 0 1

8 0 0 0

9 0 0 0

10 0 0 1

Facility 0.6 0.4 0.4

According to facility values, Table 1 shows that Q1 is easier than both

Q2 and Q3, and that Q2 and Q3 are equally difficult. But there is an

interesting contrast between Q2 and Q3 in terms of their relationship

with Q1. Every person either scored the same or better on Q1 than they

did on Q2, whereas this does not hold for the comparison between Q1

and Q3.

Looking at it another way, if a two-item test were made up of the

items Q1 and Q2 then knowledge of the total score on this test would
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also be knowledge of which items were answered correctly – a person

with a score of 2 out of 2 would have got both right, a person with 1 out

of 2 would have got Q1 right and Q2 wrong, and a person with 0 out of 2

would have got both wrong. In contrast, on a 2-item test made up of Q1

and Q3, knowledge of the total score would not permit knowledge of

which items were answered correctly.

The kind of relationship between Q1 and Q2 was formalised by Louis

Guttman in his work on scalogram analysis (e.g. Guttman, 1944; 1950).

In brief, a set of items forms a scale if the item scores2 are a simple

function of the scale scores. Guttman was well aware that achieving a

‘perfect scale’ was not likely in many practical contexts but found that

90% perfect scales (in terms of the reproducibility of the item scores

from the scale score) were usable as efficient approximations of perfect

scales. (It should be noted that scalogram analysis does not just apply to

dichotomous items).

There are two reasons why Guttman’s work on scalogram analysis is of

interest from the point of view of the present article. The first is that he

considered it to be a method for analysing qualitative data. It has

become so natural for us to think of the data arising from testing as

quantitative that we can sometimes lose sight of the fact that the ‘raw

data’, as it were, usually consists of written answers to written questions.

Where do the numbers come in? The mark scheme can be thought of as

a coding scheme that assigns numerical values (usually integers) to

examinee responses according to a certain rationale. One purpose of

scalogram analysis is to discover whether the item level data (set of

responses across the items) for each examinee can be represented by a

single number. (In most examinations this would be the raw score

obtained by adding up the scores on each item). If the questions form a

scale in the scalogram sense then the scale (total) scores have a definite

interpretation in terms of the item scores.

The second reason is that Guttman’s starting point was definitions of

the universe of attributes (e.g. items) and the population of objects 

(e.g. examinees) to be scaled. The universe of attributes is the concept of

interest whose scalability is being investigated, conceived as the

indefinitely large set of questions that could be asked on that concept.

Items belong to the universe based on their content, not on statistical

criteria. For example, the set of questions testing topics on a particular

maths syllabus might define a universe whose scalability could be

investigated. The population of objects could be examinees who have

studied the appropriate course and prepared for an examination in it.

The question of scalability then becomes a matter of empirical

investigation that can be carried out on a particular sample of items and

examinees. A scalable set of items is by definition unidimensional.

Guttman’s approach, in my view, represents the closest thing to

‘starting from first principles’ in developing definitions of difficulty and

comparability. For dichotomous items, if two items P and Q are from a

scalable universe then item P is more difficult than item Q if some

people (from a defined population) get item Q right and P wrong, but 

no-one gets Q wrong and P right. Unfortunately, extending even this

simple definition to polytomous items runs into problems, as shown in

Tables 2a and 2b.

The data for Q4 and Q5 in Table 2a meet the scale definition in that if

a scale score is made (e.g. by summing the two responses) then the item

scores are perfectly reproducible from the scale scores. Everyone scores

at least as well on Q4 as they do on Q5, so Q4 could be said to be ‘easier’

than Q5.

However, in Table 2b, although the item scores are perfectly

reproducible from the total score it is not the case that everyone scores

at least as well on one item as the other. Perhaps the most that can be

said is that it is easier to score 1 or more on Q6 than Q7, but easier to

score 2 on Q7 than Q6.

This last example makes clear that even the ordering of two items by

facility value is ambiguous for polytomous (multiple-mark) items. With a

different assignment of scores to response categories, the order could

change. For example, in Table 2b if the responses scored ‘2’ were scored

‘2.8’ then Q7 would have a higher facility value than Q6.

To summarise, Guttman’s work on scalogram analysis provides a

definition of unidimensionality and a definition of what it means for one

item to be more difficult than another (for dichotomous items at least).

The link between Guttman and IRT

Unfortunately, item level data from real educational tests never conforms

exactly to Guttman’s pattern. But there is a strong connection between

one particular IRT model, the Rasch model (Rasch, 1960), and Guttman’s

scale pattern (Andrich, 1985). The expected (i.e. modelled) scores from

the Rasch model meet the ordering requirements of the Guttman pattern

in that people with higher ability have higher expected scores on every

item than people with lower ability, and people of all abilities are

expected to score higher on a dichotomous item with a lower difficulty

than on one with a higher difficulty. This is not necessarily true for other

IRT models. It is also noteworthy that Rasch introduced the concept of
2 The item scores need not be numerical – they could represent responses of ‘yes’ or ‘no’ to

attitude questions, for example.

Table 2b: Question scores for two questions on another imaginary test taken by

ten examinees

Person Q6 Q7 Total

1 2 2 4
2 2 2 4
3 1 2 3
4 1 2 3
5 1 1 2
6 1 1 2
7 1 0 1
8 1 0 1
9 1 0 1

10 0 0 0

Facility 0.55 0.5

Table 2a: Question scores for two questions on an imaginary test taken by ten

examinees

Person Q4 Q5 Score

1 2 2 4
2 2 2 4
3 2 1 3
4 2 1 3
5 1 1 2
6 1 1 2
7 1 0 1
8 1 0 1
9 0 0 0

10 0 0 0

Facility 0.6 0.4



‘specific objectivity’, the ‘specific’ part of which emphasised that the

model only held within a specified frame of reference describing the

persons and items, a parallel to Guttman’s stressing the need for

definitions of the universe of attributes and the population of objects

whose scalability was to be investigated.

In fact, Guttman did recognise the concept of a quasi-scale – one

where the item responses are not highly reproducible from the scale score

but where the ‘errors’ occur in a gradient (Guttman, 1950), in a manner

that seems to conform very closely to the pattern of misfit expected from

a Rasch model. The significance of a quasi-scale is that the scale score can

still predict an outside variable as well as any weighted combination of

the individual item scores (as is the case with a perfect scale). The

counterpart of this in Rasch analysis is that the total score is a sufficient

statistic for estimating ability (Andersen, 1977) – this means that when

the data fit the model there is no additional information about ability in

the pattern of item responses. People who have attempted the same

items and received the same total score will get the same ability estimate

regardless of any differences in scores on the individual items.

This suggests that when data fit the Rasch model, it is possible to

define difficulty (for dichotomous items) in a reasonably straightforward

way: one item is more difficult than another if any arbitrarily selected

person has a lower probability3 of success on it than on the other item.

As with facility values, and as with the Guttman scale, there is no way

round the inherent ambiguity of the concept of difficulty for polytomous

items when analysed with a Rasch model. For example, the Rasch partial

credit model (Masters, 1982) estimates difficulty threshold parameters

representing the points on the latent trait where adjacent score

categories are equally probable. There are different possible ways of using

these threshold estimates to come up with a number representing

‘overall difficulty’. For example, the average of the threshold estimates

represents the point on the trait where the lowest and highest score

categories are equally probable. Alternatively, it is possible to find the

point on the latent trait where the expected score is equal to ‘half marks’

on the item. Because these are different definitions of difficulty, it would

be possible for the ordering of two items to differ depending on which

definition was used.

Of course, there is not necessarily any need to produce a number

representing ‘overall difficulty’ – it may be more informative to make

comparisons at each category. This was the approach taken by Coe

(2008) in comparing relative difficulty of GCSE subjects by grade

category. (See Andrich, de Jong and Sheridan, 1997; and Linacre, 2010,

for a discussion of some of the issues involved in interpreting Rasch

threshold parameters).

While the followers of Rasch seem keen to cite Guttman with

approval, essentially regarding the Rasch model as a probabilistic form of

the Guttman scale, it is not clear whether this approval was reciprocated.

Guttman seemed to avoid using the concept of a latent trait. He also

made the following comment about a conventional (CTT) item analysis:

This idea of scale construction is a most comfortable one: it is virtually

guaranteed to succeed for the kinds of data concerned. I know of no

instance in which all items were rejected. In other words, item analysis

does not test any hypothesis of scalability. It assumes that scalability

exists, and that its task is merely to cull out inappropriate items.

(Guttman, 1971, p.343)

Rasch practitioners might feel that this criticism does not apply to

them, because they are very keen to stress the primacy of the model over

the data (e.g. Andrich, 1989;Wright, 1999), but without an a priori

definition of the trait it is probably true in some cases in practice that

misfitting items are culled and the resulting set of items provides the

‘best’ measure of an ill-defined concept. It could be argued that this is

what happens when attempts are made to model subject difficulty with

the Rasch model (e.g. Coe, 2008; Coe et al., 2008).Without starting from a

definition of ‘general academic ability’ it is not clear what the estimated

values of subject difficulty with respect to this variable actually mean.

Spatial representations of subject difficulty

For Guttman, it was clear that the dimensionality of the data was

something to be discovered rather than imposed. If the empirical

evidence showed that two items did not form part of the same

unidimensional scale then ‘not comparable’ was a valid experimental

finding. In the later part of his career he developed some of the methods

that have become part of the field known as ‘multidimensional scaling’ or

MDS (see, for example, van Deun and Delbeke, 2000).Very broadly

speaking, the aim of this kind of analysis is to represent objects in the

lowest dimensional space that preserves certain aspects of empirically

discovered relationships between them. These relationships could be 

(for example) indices of similarity or of monotonicity. The final spatial

representation might attempt to preserve actual differences in terms of

these indices (‘metric MDS’), or just their order (‘non-metric MDS’). For

Guttman, the purpose of these spatial representations was to test

hypotheses (made in advance on non-statistical grounds) about how the

objects would group into regions of the multidimensional space (see, for

example, Schlesinger and Guttman, 1969).

A new direction for investigations of subject difficulty might be to

explore such an approach. Given that two objects can always be

represented in a single dimension, and generally n objects can be

represented in n-1 dimensions, a very simple 2-dimensional example can

be contrived by considering 3 subjects. There are several reasonable

choices for an index of similarity. If there was no need or desire to

maintain any connection with an IRT approach then the difference in

mean grade achieved by examinees common to each pair of subjects

could be used. This is the index of difficulty familiar from subject pairs

analyses (see Coe, 2007, for a description of this and related methods).

However, to stay close to the spirit of Rasch it seems interesting to

explore an index of difference that has a close connection with the Rasch

model for dichotomous items. In this model, one way of estimating item

difficulties is the paired method (Choppin, 1968) where an estimate of

the difference in difficulty between any two items A and B is the

logarithm of the ratio of the number of examinees succeeding on A and

failing on B to the number failing on A and succeeding on B. In the

context of examinations rather than items we could choose to make

them dichotomous by defining success as ‘grade x or above’ and failure

as ‘below grade x’. In the example below the A grade has been chosen as

the grade for x. The data have been invented for the purpose of the

illustration.

Table 3a shows that 300 people got an A in Psychology but not in

Biology, whereas only 50 people got an A in Biology but not in

Psychology. On the index of difficulty we are using, Biology is thus log

(300/50) ≈ 1.8 logits ‘harder’ than Psychology.
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From Table 3b we see that Biology is log (100/20) ≈ 1.6 logits ‘harder’

than English Literature, and from Table 3c we see that English Literature is

log (160/100) ≈ 0.5 logits ‘harder’ than Psychology.

Because these three differences satisfy the ‘triangle inequality’4 in that

the sum of any two differences is larger than the remaining one, it is

possible to represent these results diagrammatically as in Figure 1 below.

Table 3a: Biology and Psychology grade A

Psychology

Biology Below A Grade A Total

Below A 900 300 1200

Grade A 50 200 250

Total 950 500 1450

Table 3b: English Literature and Biology grade A

Biology

English Below A Grade A Total

Below A 400 20 420

Grade A 100 120 220

Total 500 140 640

The length of the arrow represents the logit difference between any

two subjects, and the head of the arrow points to the ‘more difficult’

subject. The closer the three points are to lying on a straight line with

arrowheads pointing in the same direction, the more comparable they are

as a triplet in terms of difficulty, in the sense that the direct comparison

between two subjects is the same as the indirect comparison via a third

subject.

Suppose, however, that instead of (1.8, 1.6, 0.5) the three logit

differences had been (2.0, 1.5, 0.3).Then the triangle inequality would not

have been satisfied and it would not be possible to represent the results as

in Figure 1. An alternative depiction of such a scenario is shown in Figure 2.

Table 3c: English Literature and Psychology grade A

Psychology

English Below A Grade A Total

Below A 1100 160 1260

Grade A 100 200 300

Total 1200 360 1560

As in Figure 1, the lengths of the arrows represent the logit differences

and the heads of the arrows point to the more difficult subjects. (The

curved line is part of a circle arc with the straight part as a chord).

With good graphical software it might be possible to represent

differences between four subjects (i.e. as a 2D projection of the ‘correct’

3D configuration). For higher numbers of dimensions the correct

configuration would not be visualisable without either applying some

data reduction technique to achieve the best lower dimensional solution

according to some criterion, or producing several projections. This is an

area for further research.

Conclusion

Using an IRT approach to investigate differences in difficulty among

examinations relies on an analogy with using the same approach in its

original context – differences in difficulty among items in a test. The

software used for the IRT analysis is of course blind to where its inputs

have come from and in this sense the outputs of the analysis can be

subjected to the usual tests of reliability and model fit.

However, doing this places a greater burden on the analyst to interpret

both the latent dimension of the IRT model and the difficulty parameter

in that model. This article has shown that it is not entirely

straightforward to define difficulty even in the simplest possible case of

two dichotomous items in a test. The complications increase as we move

to scenarios with polytomous items, scenarios with missing (not

presented) items, scenarios with missing (not chosen) items, and finally

to scenarios where whole examination subjects are treated as items and

there is no a priori defined single trait (dimension) or traits.4 http://en.wikipedia.org/wiki/Triangle_inequality Accessed 12/04/11.

Figure 1: Visual representation of differences in difficulty when triangle

inequality is satisfied
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Figure 2: Visual representation of differences in difficulty when triangle

inequality is not satisfied
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This is not to say that an IRT approach is necessarily inadvisable or

misleading – the results just need to be interpreted very carefully. It may

even be one of the better approaches in cases where there is a pragmatic

operational need to produce global rankings of examinees on the basis of

overall attainment (as in Tognolini and Andrich, 1996). However, for

investigations of differences among subjects, I suggest that it might also

be worth going back to the principles first articulated by Guttman, and

building up slowly from ground level, considering differences among just

a few subjects and representing these visually – searching for stable

patterns and always being prepared to accept that ‘not comparable’ is a

reasonable outcome.
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