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Introduction 

In the context of examinations, the phrase “maintaining standards” usually refers to any activity 
designed to ensure that it is no easier (or harder) to achieve a given grade or above in one year 
than in another. Various methods by which comparative judgement (CJ) can be used in standard 
maintaining have been suggested over the years. In England, particular attention has been paid 
to a method suggested by Bramley (2005), which uses the Bradley-Terry model to analyse the 
results of a CJ study using scripts from two different test versions. The results of this method 
produces a measure of performance (a CJ “measure”) for each script based on which other 
scripts it was deemed superior to, and which it was deemed inferior to, over a number of 
pairwise comparisons1. Crucially, these CJ measures are located on the same scale for each of 
the two different tests, thus providing a mechanism to map the original (non-CJ) scores from one 
test on to equivalent scores on the other. This mapping process has been used primarily for the 
purpose of identifying scores on new versions of a test that can be deemed equivalent to the 
grade boundary scores (or cut-scores) that have been set on the previous version of the test. A 
large-scale trial of this method has been run by Ofqual, and is described fully in Curcin et al. 
(2019).  

Building on this earlier CJ work, Benton (2019) recently proposed a method now referred to as 
simplified pairs that allows us to map scores between test versions, but without the intermediary 
step of fitting a Bradley-Terry model. The removal of this intermediary step brings with it the 
notable benefit of eliminating the need for each script to be included in several comparisons. 
Indeed, such a need is central to previous methods, like that of Bramley (2005), where, in order 
for the method to be employed effectively, it is essential that each script be included in enough 
comparisons to allow the calculation of reliable CJ-based measures of scripts quality. According 
to Verhavert et al (2019), this is likely to require at least 10 comparisons per script. In contrast to 
this, by allowing that each script can be included in only a single comparison, the simplified pairs 
method offers a significant practical advance on these previous CJ methods: it enables us to 
include a substantially larger number of scripts in the study – thus increasing the scope of the 
study to generate accurate results – without imposing any additional time burden upon the 
judges who are taking part. Indeed, Benton (2019) suggested we may halve the amount of time 
required from judges whilst achieving the same level of accuracy as previous CJ approaches. 

While the simplified pairs method thus has clear potential to improve the CJ process, its 
accuracy needs to be established. Accordingly, the primary aim of the research reported here 
was to evaluate its accuracy experimentally in a context where the relative difficulty of the two 
test forms being equated was known in advance from statistical equating. However, before 
presenting the results of this experiment we first provide a detailed description of how a 
simplified pairs study and associated statistical analysis is conducted. 
 
  

1 For Bramley’s study, judgements were collected as ranks and converted to pairs for analysis. 
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1. The method of simplified pairs 
The aim of any simplified pairs study is to calibrate the scores2 (that is, the marks) from two 
assessments onto the same scale. To simplify the subsequent description, we will call these two 
assessments form A and form B. Furthermore, throughout our description we will assume we 
want to identify the scores on form B that are equivalent to some existing grade boundaries (or 
cut scores) on form A. 
 
Designing a simplified pairs study 
 
The data from a simplified pairs study consists of the decisions from a number of judgements 
about which of a pair of scripts is superior allowing for the difficulty of the tasks they were each 
responding to. In every case the pair should consist of one script from form A and one from form 
B. Each decision is made by an expert judge (e.g. a subject expert) reviewing the two scripts 
side by side. 
 
Our aim throughout analysis will be to explore the relationship between the scores awarded to 
the scripts from each form in a pair and the probability of form B being judged superior to form A. 
More specifically, we will want to answer the following key question: 
 

Suppose a script on form A has been awarded a score of xA. How 
many marks would a script from form B need in order to have a 50% 
chance of being judged superior? 

 
We denote the answer to the above question as xB. For example, if xA is the grade boundary on 
form A, then xB would be the estimated grade boundary on form B. 
 
Since our aim is to relate the scores on the two test forms to the probability of the script from 
form B being judged superior, we should design the study such that a range of scores from both 
test forms are included. However, in common with other applications of CJ to standard 
maintaining we exclude scripts with scores of zero as if two candidates have answered nothing 
correctly then there is no basis for judging between them. Similarly, we exclude scripts with 
scores equal to the maximum available as if candidates have answered everything correctly then 
there is no obvious basis for judging between them. To date, most CJ studies relating to 
standard maintaining tend to restrict attention to scripts where between 15 and 95 per cent of the 
maximum available score has been achieved. 
 
It is also important to ensure that a wide range of score differences between the form A and form 
B scripts are included across different pairs. Typically, we would ensure that the score 
differences between form A and form B scripts in the same pair range from at least -20 to +20 
per cent of the maximum available score. Pairs with very different scores are not compared as 
this is (usually) a waste of effort (we’re confident of what the result would be without getting 
expert judges to spend their energy on the matter). However, it is important to include a 
sufficiently wide range to accurately estimate the relationship between mark differences and the 
probability of a script from one version being judged superior to a script from another. 
 
Whereas CJ standard maintaining studies involving construction of a latent scale usually use 
around 40 scripts from each test form, a simplified pairs study can include several hundred 

2 Throughout this article, by “scores” we mean the raw total of the item scores across a whole 
assessment. 
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scripts from each test form. An idealised simplified pairs study will use each script just once. This 
represents the best use of judge time as we get the maximum amount of new information from 
every judgement they make. Nonetheless, the simplified pairs methodology presented here can 
be used even if we need to repeatedly reuse the same scripts across different pairs. However, in 
reusing scripts, the efficiency gains of using simplified pairs over other approaches to using CJ 
for standard maintaining will be much reduced. 
 
Similarly, note that although the data is analysed in pairs it need not be collected this way. As 
demonstrated by Bramley (2005), we may instead ask judges to rank order a number of scripts 
within a pack and convert these rankings back into pairs. The methodology presented below is 
largely unaffected by this alternative data collection method except requiring a small adjustment 
to the way in which confidence intervals are calculated. This will be discussed later. 
 
Figure 1 shows the full details of an example data set from a simplified pairs study. Form A and 
form B were two Sociology assessments with a maximum available score of 75. A total of 289 
pairs were judged by 5 separate judges. The design of the study ensured a reasonably even 
spread of scores within the score range from 15 to 68 within each form. The total scores of the 
scripts within a pair differed by up to 15 in either direction. As can be seen, broadly speaking, the 
Form B script was more likely to be chosen in pairs where it had the higher score. 
 

 
Figure 1: Example data from a simplified pairs study. All scores were whole numbers but some 
jitter has been added to the plot to allow all the pairs in the data set to be seen. Dashed line 
represents line of equality. 
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Estimating the overall difference in the difficulty of two tests 
 
The main aim of analysis is to find, for each score on form A (denoted xA), a score on form B 
(denoted xB) representing an equivalent level of performance. The simplest model to approach 
this question is to assume that there is a fixed difference in the difficulty of the two tests such 
that for any xA: 
 
 𝑥𝑥𝐵𝐵 = 𝑥𝑥𝐴𝐴 + 𝑑𝑑 (1) 
 
Thus, in this simplest form of simplified pairs analysis, the goal reduces to finding the value of d. 
That is, the number of additional score points needed on a form B script for it to have at least a 
50% chance of being considered superior to a form A script. Note that d can be either positive 
(suggesting form B is easier than form A) or negative (suggesting form B is harder than form A). 
The idea of a fixed difference between equivalent score points is also used in the method of 
mean equating used in formal test equating (Kolen & Brennan, 2004). 
 
From equation (1) it can easily be seen that 𝑑𝑑 =  𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴. Thus, the analysis can focus entirely 
on the difference in the marks. A simple way to approach this is shown in Table 1. The table 
shows the number of pairs in the study with each score difference, the number where form A 
was judged superior and the number where form B was judged superior. Cells are highlighted in 
red to highlight score differences where the form A script was judged superior more often than 
not, and cells in blue highlight score differences where the form B script was usually judged 
superior. Viewing the data in this way immediately suggests that form B was roughly 2 marks 
harder than form A; at most score differences greater than -2 form B was usually chosen, 
whereas at most score differences below -2 form A was usually chosen.  
 
Table 1: Numbers of pairs where form A and form B judged superior at different score 
differences 
Score 
difference 
(B-A) -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Number 
of pairs 10 8 8 7 8 9 11 18 8 10 8 10 9 6 8 9 7 11 9 10 10 9 10 16 11 10 10 7 7 8 7 
Number 
where 
form A 
judged 
superior 9 7 4 4 5 8 5 11 3 9 3 8 5 3 3 3 5 4 4 3 0 3 2 8 2 0 3 1 1 3 0 
Number 
where 
form B 
judged 
superior 1 1 4 3 3 1 6 7 5 1 5 2 4 3 5 6 2 7 5 7 10 6 8 8 9 10 7 6 6 5 7 
 
A more formal method of analysing this data is to use logistic regression. For the ith pair of 
scripts judged by the jth judge we denote the difference between the score awarded to the form 
B script and that awarded to the form A script as 𝑑𝑑𝑖𝑖𝑖𝑖. We set 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 if the judge selects the form 
A script as superior and 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 if they select the form B script. The relationship between 𝑦𝑦𝑖𝑖𝑖𝑖 and 
𝑑𝑑𝑖𝑖𝑖𝑖 is then modelled using the usual logistic regression equation: 
 
 

𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖 = 1) = �1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝛽𝛽0 + 𝛽𝛽1𝑑𝑑𝑖𝑖𝑖𝑖))�−1 
(2) 
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Now we need to find the value of 𝑑𝑑𝑖𝑖𝑖𝑖 where 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1� = 0.5. That is, the score difference 
associated with a 50% chance of the form B script being judged superior. If we denote the 
estimated coefficients of the logistic regression model as 𝛽𝛽0� and 𝛽𝛽1� then by setting the left hand 
side of equation (2) to 0.5 and rearranging, the estimated difference in difficulty is given as: 
 

𝑑̂𝑑 =
−𝛽𝛽0�

𝛽𝛽1�
 

(3) 
 

The standard error of 𝑑̂𝑑 can be easily derived using the multivariate delta method. Specifically, 
we define the above as a function of the parameters: 
 
 

𝑑̂𝑑(𝛽𝛽0�,𝛽𝛽1�) =
−𝛽𝛽0�

𝛽𝛽1�
 

(4) 
 
Then the gradient G of this function is given by: 
 
 

𝐺𝐺 =
𝑑𝑑𝑑̂𝑑(𝛽𝛽0�,𝛽𝛽1�)

𝑑𝑑𝜷𝜷
=

⎝

⎜⎜
⎛

−1
𝛽𝛽1�

𝛽𝛽0�

𝛽𝛽1�
2
⎠

⎟⎟
⎞

 

(5) 
 
Then, using the delta method, the standard error of 𝑑̂𝑑 is given by 
 

𝑆𝑆𝑆𝑆(𝑑̂𝑑) = �𝐺𝐺𝑇𝑇𝑽𝑽(𝜷𝜷)𝐺𝐺 (6) 
 
Where 𝑽𝑽(𝜷𝜷) is the 2x2 parameter covariance matrix from the original logistic regression3. 
 
A graphical illustration of this process is shown in Figure 2 below. The x-axis in this chart 
represents a score difference between form A and form B. The blue line and points capture the 
proportion of observations at each score difference where the form B script was judged as being 
superior to the form A script it was compared to. As such, this line is simply another way of 
representing the data in Table 1. The solid red line shows how a smooth curve can be fitted 
through the jagged set of observations from individual score differences using logistic 
regression. The score difference where this line intersects with a probability of 0.5 of the form B 
script being judged superior provides our estimate of d. In the example presented here, the 
estimate of d is -2.6; indicating that form B is just under 3 marks harder than form A on average. 
The vertical solid purple line is used to mark this point on the horizontal axis. 
 
The dashed red lines show the 95 per cent confidence interval for the fitted logistic regression. 
Looking at where these confidence intervals intersect with a probability of 0.5 would provide one 
way of putting a confidence interval around the estimated difference. In an extreme example, if 
the estimated relationship (the solid red line) is very weak it is possible that either (or both) of 
these confidence intervals will never intersect with 0.5. We refer to this situation as “flatlining” 

3 All standard statistical software packages will produce this matrix as part of the output of logistic 
regression. The square roots of the diagonals of this matrix provide the standard errors of the regression 
parameters. 
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and this would indicate a complete failure of the CJ method in the sense that we would not 
produce any reliable confidence interval for the estimated difference in difficulty. Traditional 
approaches to using CJ in awarding can also “go wrong” in some sense in that the CJ measures 
of script quality can be found to either have low reliability or a low correlation with script marks 
(Bramley & Gill, 2010). However, some judgement is required to determine what is meant by 
“low”, and in either of these cases the analysis within the traditional approach can still be run and 
will produce a finite confidence interval for results. In contrast, within simplified pairs, the 
possibility of flatlining gives a clearer answer to the question of when the relationship between 
awarded marks and CJ outcomes is too weak to be of any use at all.  
 
Although using the confidence intervals from the logistic regression provides one way of 
generating confidence intervals for this estimate, the delta method tends to identify a confidence 
interval with a narrower range. As such, this latter method is more efficient. The dashed purple 
lines in Figure 2 shows the confidence intervals derived using the delta method. In this example, 
they are very close to where the logistic regression confidence intervals intersect with a 
probability of 0.5; though this needn’t always be the case. 
 

 
Figure 2: An illustration of the overall simplified pairs method. 
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Judge Fit 
 
An important step in any CJ exercise of this nature is to check whether the decisions from 
individual judges look plausible. This is intended as a way of identifying any judges who may 
potentially have struggled with the task, misunderstood the instructions, or not taken sufficient 
care in their judgements. The judgements from any judges where the above risks are an issue 
may be removed from analysis. 
 
In previous uses of CJ in standard maintaining (e.g. Curcin et al, 2019), judge fit is determined 
with regard to how well their judgements agree with what would be expected given the CJ 
measures of each script derived from the Bradley-Terry model. In particular, values of INFIT and 
OUTFIT (Wright and Masters, 1990) are calculated, and judges with values much greater than 1 
may be removed and the data re-analysed without their judgements.  
 
In contrast to this, within simplified pairs we focus purely on how the relationship between CJ 
decisions and the differences in the scores awarded to scripts within a pair varies across judges. 
As such, the method of exploring judge fit is more closely aligned with the way in which results 
will be used. 
 
Table 2 shows a range of judge fit statistics from the example simplified pairs study. The table 
includes the INFIT and OUTFIT statistics common to other CJ studies. However, in this case 
they show the fit of each individual judge to the main logistic regression model (Figure 2) rather 
than to a Bradley-Terry model. The values are all reasonably close to 1 and so do not suggest 
any reason for concern about any of the judges. In reality, there is no particular reason why 
judges should all “fit” the same logistic regression model. The task they are engaged in involves 
making a decision about which of two students is superior based on reviewing performances on 
completely distinct assessments. As such, it requires a judgement from each of them about the 
relative difficulty of the tasks students have been set. There is usually no pre-defined “correct” 
answer about the level of difference in difficulty. It is a matter of each judge’s opinion – indeed 
our interest in this opinion is the whole purpose of the exercise. Some of this difference of 
opinion is shown in Table 2. As can be seen, although pairs of scripts were randomly assigned 
to judges, one judge (judge 4) chose the form B script as superior more than two thirds of the 
time, whereas another (judge 1) selected the form B script less than half the time. 
 
With the above in mind, rather than focus on the exact “fit” of each judge, it may be beneficial to 
simply focus on whether the relationships between mark differences are in the correct direction. 
That is, the more positive the difference in the scores awarded to the two scripts (i.e. the form B 
score minus the form A score), the higher we expect the probability of the form B script being 
selected to be. The strength of this association can be measured by the point biserial correlation. 
The values of this metric for each judge are shown in Table 2. The correlation coefficients range 
from 0.24 to 0.53. Given that we have just under 60 observations then this range of results is not 
unexpected. This can be confirmed by calculating confidence intervals for these correlations, for 
example using Fisher’s R to Z transformation, to get a more precise idea of whether differences 
between judges are unusually high4. 
  

4 In this instance this was done using the tool to calculate confidence intervals for correlations from 
https://www.psychometrica.de/correlation.html#confidence and using the average correlation from Table 2 
of 0.39 and an n of 58. 

10 

 

                                                

https://www.psychometrica.de/correlation.html%23confidence


 

 
Table 2: Example fit statistics for a simplified pairs study 

Judge 
Number of 

pairs judged 
Proportion of pairs where 

form B chosen INFIT OUTFIT 
Point biserial 

correlation 
1 58 0.45 1.02 1.00 0.41 
2 58 0.53 0.93 0.92 0.49 
3 58 0.60 1.11 1.16 0.24 
4 58 0.67 1.07 1.08 0.27 
5 57 0.51 0.86 0.83 0.53 
 
Another way to assess judge fit is the visual approach illustrated in Figure 3, The lines represent 
the results of fitting separate logistic regressions for each judge. These lines reveal some 
difference in opinion about the relative difficulty of the two assessments. More reassuringly, they 
show a positive relationship between mark differences and the probability of form B being 
selected for each judge. Judges 3 and 4 display the flattest curves which reflects the slightly 
lower point biserial correlations for these judges in Table 2. In the instance where any judges 
displayed completely horizontal or negative sloping lines, they could immediately be identified as 
not having undertaken the exercise as expected and could be removed from analysis. 
 

 
Figure 3: A visual exploration of judge fit using simplified pairs 
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Finding equivalencies across the entire score range 
So far, the method of analysis we have described only identifies a single value estimating the 
relative difficulty of the two test forms. In many situations, we would like to ascertain far more 
detail about the relative difficulty of the two tests across the score range. For example, it’s 
possible that two test forms may be of similar difficulty for low ability candidates, but that one test 
may be harder for candidates at the higher end of the ability range. We now briefly describe how 
we can explore this kind of detail using data from a simplified pairs study. 
 
The simplest extension to equation 1 would be to look for linear mappings between scores of 
form A and scores on form B using an equation such as 
 
 𝑥𝑥𝐵𝐵 = 𝑐𝑐𝑥𝑥𝐴𝐴 + 𝑑𝑑 (7) 
 
In the above equation the parameter d would now refer to an intercept denoting the score on 
form B equivalent to a form A score of zero. The parameter c would indicate the number of 
marks on form B that are equivalent to each additional mark on form A. 
 
The trouble with the above formulation is that, in practice, it may yield implausible results, 
particularly at the extreme ends of the score distribution. For example, negative values of d 
would indicate some scores on form A relating to negative scores on form B – an impossibility. In 
practice, the above approach to mapping often also leads to the confidence intervals around 𝑥𝑥𝐵𝐵 
being unhelpfully wide at each end of the range. 
 
To overcome this issue, we apply a simple transformation to the scores: 
 
 𝑥𝑥𝐵𝐵∗ = 𝑙𝑙𝑙𝑙 �

𝑥𝑥𝐵𝐵
𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵 − 𝑥𝑥𝐵𝐵

� (8) 

 
 𝑥𝑥𝐴𝐴∗ = 𝑙𝑙𝑙𝑙 �

𝑥𝑥𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴 − 𝑥𝑥𝐴𝐴

� (9) 

 
Where 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴 and 𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵 are the maximum available scores on form A and form B respectively. 
The transformation in equations 8 and 9 are similar to the log-odds transformations familiar from 
logistic regression and transform the score range from being from zero to the maximum 
available score to being from minus to plus infinity. The above transformations can easily be 
used in the context of simplified pairs because scripts with scores of either zero or the maximum 
are not included in the data. The above transformation could not be used in the context of 
equating more generally. 
 
Note that to get from transformed scores back to scores on the raw scale we simply use the 
transformation: 
 
 
 

𝑥𝑥𝐵𝐵 =
𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵exp (𝑥𝑥𝐵𝐵∗ )
1 + exp (𝑥𝑥𝐵𝐵∗ )

 
(10) 

 
 
With the above transformation in place, we now seek for a mapping between (transformed) form 
A scores and (transformed) form B scores of the following type. 
 
 𝑥𝑥𝐵𝐵∗ = 𝑐𝑐𝑥𝑥𝐴𝐴∗ + 𝑑𝑑 (11) 
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Note that equation 11 implies that scores of zero on form A will map to scores of zero on form B 
and that scores equal to the maximum on form A will map to scores equal to the maximum on 
form B. This assumption is familiar within equating methods such as true score IRT equating and 
circle-arc equating (Kolen & Brennan, 2004, Livingston & Kim, 2009). 
 
To estimate the parameters of the equation 11 in practice we again use a logistic regression 
equation. Specifically, we now model the probability of form B being selected using the equation 
 
 
 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖 = 1) = �1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴∗ + 𝛽𝛽2𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵∗ ))�−1 (12) 
 
Where 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴∗  and 𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵∗  are the (transformed) form A and form B scores for the ith pair of scripts 
seen by the jth judge. For each possible value of 𝑥𝑥𝐴𝐴∗ we wish to find the value of 𝑥𝑥𝐵𝐵∗  such that 
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖 = 1) = 0.5. This is given by the following formula 
 
 
 
 

𝑥𝑥𝐵𝐵∗� =
−𝛽𝛽0� − 𝛽𝛽1�𝑥𝑥𝐴𝐴∗

𝛽𝛽2�
 

(13) 

 
The standard error of 𝑥𝑥𝐵𝐵∗� can again be derived using the multivariate delta method. Specifically, 
we define the above as a function of the parameters and the fixed value of 𝑥𝑥𝐴𝐴∗: 
 
 

𝑥𝑥𝐵𝐵∗�(𝛽𝛽0�,𝛽𝛽1�,𝛽𝛽2,� 𝑥𝑥𝐴𝐴∗) =
−𝛽𝛽0� − 𝛽𝛽1�𝑥𝑥𝐴𝐴∗

𝛽𝛽2�
 

(14) 
 
Then the gradient of this function with respect to the model parameters is given by: 
 
 

𝐺𝐺 =
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(15) 
 
Then, using the delta method, the standard error of 𝑑̂𝑑 is given by 
 

𝑆𝑆𝑆𝑆(𝑥𝑥𝐵𝐵∗�) = �𝐺𝐺𝑇𝑇𝑽𝑽(𝜷𝜷)𝐺𝐺 (16) 
 
Where 𝑽𝑽(𝜷𝜷) is the 3x3 parameter covariance matrix from the logistic regression defined in 
equation 12.  
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Using the above formulae, we can derive a confidence interval for 𝑥𝑥𝐵𝐵∗  at every possible score 
value on form A. The transformation in equation 10 converts this confidence interval to a score 
range on form B itself. A plot showing how the form A scores relate to scores on form B for the 
example data set is shown in Figure 4. As can be seen, this more detailed analysis suggests 
that form B may be harder than form A at the lower end of ability whilst being of relatively similar 
difficulty towards the top of the range. Having said this, the confidence intervals also suggest 
that a flat difference in difficulty of around 3 marks (as suggested by the earlier analysis and 
displayed by the thick (double) red line in Figure 4) is plausible across the vast majority of the 
score range. Specifically, except at the very top and bottom of the score range, a constant 
difference of 3 marks sits within the confidence bands for the non-linear method. 
 

 
Figure 4: Mapping scores across the full range using simplified pairs. The faint grey line 
represents a line of equality. The thick (double) red line represents a constant difference of 3 
marks between the two test forms. 
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Finally, for interest, we compare the grade boundaries that were actually set for form B in 
practice to those that would have been set based on the simplified pairs method alone. The 
results are shown in Table 3. As can be seen, the estimated grade boundary at grade A was 
very similar to that set in practice. At grade E the estimated grade boundary is a little lower than 
that used in practice, however, the estimate confirms that form B was harder than form A at this 
grade, and the confidence interval overlaps with the grade boundary that was set in practice. 
 
Table 3: Comparing grade boundaries for form B from the simplified pairs method to those used 
in practice 

Grade 
Actual form A 
grade boundary  

Actual form B 
grade boundary 

Form B grade boundary from 
simplified pairs 

(95% confidence interval) 
E 32 30 27.3 (22.9, 30.8) 
A 53 53 52.6 (48.7, 56.6) 
 
Adjusting calculations for different designs 
So far, we have assumed that each script will be used in exactly one paired comparison. 
However, the above formulae can still be used if this is not the case. All that is required is to 
adjust the method of logistic regression. In particular, if the same scripts are used multiple times, 
the way in which 𝑽𝑽(𝜷𝜷) is estimated should reflect the non-independence of different pairs. The 
bullet points below give details of how the logistic regression model should be fitted in difference 
scenarios. 
 

• Each script used in a single pair. In this case every pair is independent of every other 
pair5, and so ordinary logistic regression can be used. 

• Each script is used in a single pack producing several pairs. For example, judges 
might rank packs of 6 scripts (3 from each form) yielding 9 cross-form comparisons6. 
These 9 pairs are clustered within a single pack and are not independent of one another. 
To address this, we may use any method of logistic regression that adjusts standard 
errors to account for clustering. In our analyses we have used the function svyglm from 
the R package survey (Lumley, 2004). 

• Each script from one form used in multiple pairs but scripts from the other form 
used only once. This might occur if one form has an abundant availability of script 
evidence whereas the other does not. In this instance, we can treat all pairs as being 
clustered within scripts from the form used multiple times, and again adjust the standard 
errors accordingly. 

• Scripts from both forms used multiple times. If scripts from both forms are used in 
many paired comparisons, we account for the impact of individual scripts using mixed 
effect (multilevel) logistic modelling. One set of random effects are included in the model 
to relate to the impact of individual form A scripts, and another set are included relating to 
the impact of individual form B scripts. Note that, since we never compare scripts within 
the same form, such a multilevel logistic model is fairly easy to set up. In practice, we 
have used the function glmer from the R package lme4 (Bates et al, 2015) to fit this kind 
of model. 

Once the logistic regression model has been fitted in the appropriate manner, analysis proceeds 
using exactly the same set of formulae as described earlier.  

5 If we ignore judge effects. These could theoretically be captured within the logistic regression model 
(possibly as random effects within a multilevel model) but this is beyond the scope of this report. 
6 Within-form comparisons are discarded. 
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2. Evaluating simplified pairs by comparison to 
equating 
Having thoroughly described the method of simplified pairs, this section gives details of an 
experiment designed to evaluate whether the method is actually effective in identifying the 
relative difficulty of two tests. 
 
In order to make such an evaluation of the simplified pairs method, it is necessary to compare 
the outcome of this method with an empirical estimate of the difference in the difficulty of the two 
tests, such as would be provided by statistical equating (Kolen & Brennan, 2004). In other 
words, we need to compare the difference in difficulty between two assessments as indicated by 
the simplified pairs methods, with ‘known’ differences in difficulty that can be derived from 
statistical equating of actual assessment results. Crucially, however, in order to establish these 
‘known’ differences in difficulty, it is essential that at least one of the following three conditions 
be satisfied in the study: that some of the students take both of the assessments being equated; 
that some of the same items are present in both assessments; or, that some students taking 
either assessment version also take a common anchor assessment.  

Using the first of these criteria, the present study will compare the results of the simplified pairs 
method to the outcome of statistical equating on two assessments that were undertaken by the 
same set of students. In this way, the study will satisfy one of the conditions needed for 
generating a ‘known’ difference. Note that, beyond its direct relevance to simplified pairs, this 
study will also overcome the limitations of previous studies into the use of CJ in standard 
maintaining in general (e.g. Bramley, 2005; Curcin et al, 2019; Gill, Bramley, & Black, 2007). 
These earlier studies evaluated the application of CJ by simply comparing grade boundaries that 
would be set based on the CJ method to those that were used in practice. While this type of 
comparison does provide some evidence of the plausibility of the results from the CJ method, it 
does not - owing to its failure to satisfy any of the three conditions (referred to above) for 
statistical equating - generate a ‘known’ difference to which the results of CJ studies can be 
compared. With this is mind, the present study was purposively designed to allow direct 
comparison to a ‘known’ difference. This, in turn, provides the study with the capacity to directly 
evaluate the accuracy of the simplified pairs CJ method. 

Moreover, beyond this aim of evaluating the accuracy of the simplified pairs method, the present 
study attempts to address a further, separate, concern: that raised by Baird (2007) that 
“examiners cannot adequately compensate in their judgements of candidates’ work for the 
demands of the question papers” (page 142). In order that the truth of this claim can be 
investigated, this study has deliberately chosen two assessments that were known in advance 
by the researchers to have notably different levels of difficulty. Using assessments with a notable 
disparity in difficulty allows us to observe whether the judges, across the totality of their 
judgements, are able to account for the demands of the questions in their judgements of 
corresponding answers. It is important to note here that the difference in difficulty between the 
papers (while known to the researchers) was not be known to the judges prior to them reading 
the scripts (the respective marking schemes for the two assessments give no indication of this 
difference). Consequently, in the case where the judges are indeed able to accurately identify 
this difference, their being able to do so could not be attributed to their prior knowledge of these 
disparities. Rather, their accuracy would attest to their ability to judiciously account for 
differences in difficulty between assessments and would thus provide some evidence that 
Baird’s concern is not always justified.  
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Choice of assessments 
The first step in this study involved selecting appropriate assessments to be used for the 
analysis. The assessments chosen for this study were from GCSE English Literature exams and 
required students to write a single essay in response to a prompt. The specific essay questions 
are provided below: 
 

1) Assessment 1 (A1). Maximum available score of 40. Students were given 45 minutes to 
answer the following question. 

“In what ways does Priestley make this such a striking and revealing moment in the play? 
Remember to support your ideas with details from the passage and the rest of the play.” 

 
2) Assessment 2 (A2). Maximum available score of 24. Students were given 90 minutes to 

answer the question below and one other question. Only scores from the question below 
were used in analysis.  

“How does Orwell make this moment in the novel so shocking? Remember to support your 
ideas with details from the passage as well as the rest of the novel.” 

 
There were several reasons why the above assessments were chosen for analysis. Firstly, a 
large sample of students completed both these assessments7 thus allowing us to complete 
formal statistical equating as a comparator to the simplified pairs method. 
 
Secondly, as is indicated from the similarity of text of the questions, the two assessment were 
both designed to measure the same assessment objectives. This was further confirmed by 
reviewing the mark schemes. These indicated that, for both of the two assessments, equal 
weight should be given to the following two assessment objectives (AOs): 
 

1) Respond to texts critically and imaginatively; select and evaluate relevant textual detail to 
illustrate and support interpretations. 

2) Explain how language, structure and form contribute to writers’ presentations of ideas, 
themes and settings. 

The identical weighting of assessment objectives made it easier for the judges to make a clean 
comparison that is based solely on the relative quality of the two essays. That is, the comparison 
process is not confounded by the judges having to account for the two assessments having 
different assessment objectives. 
 
The final reason for selecting these particular assessments relates to the aim outlined above: the 
notable difference in their level of difficulty. This will be illustrated later. 
 
Collecting paired comparison data 
Once the assessments had been chosen, 6 experienced markers were recruited from OCR to 
act as judges of the exam scripts for the simplified pairs method. These judges were each 
issued with 50 pairs of scripts, with each pair containing one script from assessment A1 and one 
from A2. The judges were then asked to indicate “which is the better essay in response to the 
question?”. To help them make judgements, each judge was provided with the original mark 
schemes from the examinations. Judgements were made on-screen using the Cambridge 
Assessment Comparative Judgement Tool (https://cjscaling.cambridgeassessment.org.uk/). No 

7 On separate days within the same exam session. 
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marks or other annotations were visible to the judges on any of the scripts. As such, judges’ 
decisions were based purely on the content of students’ responses. 
 
By design, the pairs shown to judges were compiled such that, across the whole set of pairs, 
there was a wide range in mark differences between the A1 and A2 scripts. In other words, there 
were some pairs composed of scripts with identical (or very similar) marks as a percentage of 
the number available, some pairs containing scripts with radically different marks (e.g. a 40% 
difference between the two scripts), and other pairs with mark differences somewhere in 
between. Ensuring this wide range of mark differences within the pairs was of vital importance: 
only by including judgements from across a wide range of mark differences do we allow 
ourselves scope to accurately identify the specific mark difference where the two scripts are 
deemed to be of equal quality. Details of the scripts that were included in the pairs are displayed 
below in Table 4.  
 
Table 4: Descriptive information on scripts from each paper included in the simplified pairs study 
 Assessment – A1 Assessment – A2 
Number of scripts 300 300 
Mean score 23.49 (out of a possible 40) 13.47 (out of a possible 24) 
Standard Deviation 6.66 5.09 
Mean score (as % of max) 58.7 56.1 
SD of score (as % of max) 16.7 21.2 
Minimum score included 7  4  
Maximum score included 36 22 
 
Once each judge had made their decisions on of their 50 allocated pairs, these decisions were 
analysed using the method described in section 1. The results of this analysis were 
subsequently compared to the ‘known’ difference generated by the statistical equating of the 
actual scores given to each assessment. This comparison subsequently provided us with a 
means of observing the accuracy of the results of the simplified pairs method.  

It is important to note here that only scripts marked by team leaders were included in the study. 
This criterion was implemented because, as would be expected, team leaders are generally the 
most experienced and competent markers. Consequently, their marking is, on average, likely to 
be more reliable than that of the wider pool of examiners. Ensuring this maximum reliability in 
the marks of the included scripts was done to help maximise the reliability of the study with 
respect to its central aim. Note that, for consistency, equating was also conducted using only 
scripts marked by team leaders. 

Another element of interest in this study relates to understanding the relationship between judge 
speed (i.e., how long does a judge take between first being presented with the scripts and 
making a final judgement) and the accuracy of their judgement. Accordingly, the time taken by 
each judge to make each decision was recorded for all their judgements.  
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Results 
Overall difference in difficulty  
 
Table 5:  Results from the statistical equating of the actual scores of pupils taking the A1 and A2 
assessments. All pupils who took either test and those who took both tests are shown 
separately.  
 All Pupils Pupils taking both tests 
 A1 A2 A1 A2 
Number of pupils 1638 1429 145 145 
Mean score (as % of total) 66.28 56.89 65.17 55.89 
SD (as % of total) 13.06 17.13 12.57 16.49 
Difference in means -9.38 -9.28 
SE of difference in means 0.56 1.18 
Confidence interval for 
difference in means 

 
[-10.47, -8.29] 

 
[-11.59, -6.97] 

 
To begin with, we show the actual empirical difference in the difficulty of the two assessments. 
Table 5 shows the results both for all pupils who took either one of the assessments and for 
those pupils who took both assessments. Starting with those pupils that took both assessments 
(the right-hand side of Table 5), we can see that A2 was substantially harder than A1. For the 
same set of pupils, the difference in mean scores was around 9 per cent of the maximum 
number of marks available. In other words, assessment A2 is about 9 per cent harder than 
assessment A1 overall. 
 
Table 5 shows a similar difference in means if we base analysis on all pupils (the left-hand side 
of Table 5). In other words, these are students who completed one of the assessments (and 
were marked by a team leader) but not necessarily the other. This suggests that the pupils 
taking both tests are fully representative of the wider body of pupils who took either one of them. 
As a consequence of this, we were able to use the data from the wider body of pupils in the 
equipercentile equating method, which is outlined later. This was clearly advantageous given 
that the equipercentile method requires as large a volume of data as possible, and that being 
able to use around 1,500 pupils from each exam is a substantial improvement upon having to 
rely upon the 145 pupils who took both of them.  
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Simplified pairs results 
 
Having determined using empirical equating that A2 is harder than A1 by about 9 per cent, we 
next generate an estimate of the difference in difficulty using the data from the simplified pairs 
study. This analysis is shown in Figure 1. 
  

Figure 5: Graphical depiction of the results of using simplified pairs to gauge the relative difficulty 
of two assessment versions.  

 
Figure 5 depicts the relationship between the difference in percentage mark awarded to two 
scripts in a pair, and the probability of the A2 script being judged superior. Accordingly, the blue 
points on the graph represent the proportion of pairs with a given difference in percentage marks 
between the A2 and A1 script where the A2 script was selected as being superior. It is worth 
noting at this stage the use of percentage difference (as opposed to absolute difference) in 
marks between the two scripts. This is to account for the difference in total available scores of on 
the two assessments (A1 is scored out of a possible mark of 40; A2 out of a possible mark of 
24); a difference which – because it means that a single mark is not of the same worth on both 
scripts - renders any comparison based on absolute marks difficult to interpret. Also note that, to 
improve readability on this chart (but not for the analysis more generally) percentage differences 
in marks represented by the blue dots have been rounded to the nearest 5 per cent. Larger 
points depict mark differences where a larger number of pairs were included in the study. 
 
Before going any further, it can be seen immediately that judges tended to infer for themselves 
that A2 was harder than A1. For example, where both scripts had been awarded a similar 
percentage of marks (e.g. between -5 and +5 per cent of one another), more often than not 
judges selected the A2 script as being superior. Thus, the results from simplified pairs agree with 
those from empirical analysis with regard to which of the two assessments was more difficult. 
 
The solid red line running through Figure 5 represents the outcome of a logistic regression 
analysis. The x-axis value that corresponds to the point at which this line crosses 0.5 probability 
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constitutes the percentage mark difference whereby both scripts have an equal chance of being 
judged superior. In this case, the line crosses the 0.5 probability mark at a percentage mark 
difference of -11.9 per cent. In other words, the simplified pairs method estimated that A2 was 
11.9 per cent harder than A1; that is, an A2 script had an even chance of being judged superior 
to an A1 script even if it had been awarded 11.9 per cent fewer marks. A 95 per cent confidence 
interval for this value (the dashed vertical lines) indicate that the results from simplified pairs 
analysis are consistent with any actual difference in difficulty between -6.8 and -17.0 per cent.  
 
With regard to the study’s primary objective -  the accuracy of the results generated by the 
simplified pairs method - the most noteworthy result of this comparison is that both simplified 
pairs and equating identified A2 to be significantly harder than A1 (9.3 and 11.9 per cent more 
difficult for the statistical equating and simplified pairs methods, respectively). Beyond these 
similar mean differences, the agreement between the methods is further reflected in the clear 
overlap between the confidence intervals for the mean difference indicated by the simplified 
pairs methods and the ‘known’ mean difference emanating from the statistical equating method. 
This tells us that the real difference in difficulty between the tests fits nicely within the range of 
possible differences in marks indicated by the simplified pairs method. Clearly, this agreement 
between the simplified pairs method and the ‘known’ /difference constitutes strong evidence in 
support of the capacity of the simplified pairs method to generate accurate results.  
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Judge fit 
 
Before generating more detailed results on the relative difficulty of the two tests across the score 
range, we first review the data on the fit of the 6 judges involved in the study. Statistics on the 
decisions made by each of the judges are shown in Table 6. 
 
Table 6: Displays figures which show judge fit and speed for each of the 6 judges.  

Judge 

Number 
of  
Pairs 
judges 

Proportion 
of 
times 
selected 
A2 INFIT OUTFIT 

Point biserial 
Correlation between 
difference in percentage 
marks and selecting A2 

Median time 
per judgement 

1 50 0.58 1.03 0.96 0.46 3.63 
2 50 0.56 0.81 0.74 0.62 1.62 
3 50 0.68 1.15 1.22 0.33 1.53 
4 50 0.58 0.90 0.82 0.60 4.04 
5 50 0.52 1.11 1.10 0.42 2.53 
6 50 0.62 1.06 1.00 0.44 8.60 
 
A key point from Table 6 lies in the general agreement between the judges in relation to the 
proportion of times they selected assessment A2 to be of higher quality. Indeed, for the random 
selection of 50 pairs assigned to each of them, all 6 judges were more likely to select the script 
from A2 as being superior than the script from A1. This indicates some agreement across all the 
judges that A2 was a harder assessment. 
 
With respect to the point biserial correlations, there was found to be no statistically significant 
differences between the values for any of the judges. This is important because it indicates a 
high level of consistency between the way in which judges handled the CJ task.  
 
This agreement between the judges is further illustrated in graphical form in Figure 6. The most 
evident feature of this chart is the similar trajectories for the line of best fit representing each of 
the judges: all of the lines move from a lower probability on the left of the chart to a higher 
probability on the right of the chart. This tells us that there is general agreement among the 
judges concerning their probabilities of judging the A2 script to be superior across all the 
percentage differences shown in the chart.  
 
Beyond this general trend, the most significant finding indicated here relates to all the judges 
having deemed the A2 assessment question to be harder than A1. This is reflected – as with 
Figure 5, above - in the observation that the points on the x-axis that align with each line of best 
fit crossing 0.5 probability, all lie to the left of 0. This, in effect, tells us that all the judges deemed 
the answers to be of equal quality when A2 had been awarded somewhere between 5 per cent 
and 25 per cent fewer marks, thus clearly implying that the A2 question was harder.  
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Figure 6: Graphical depiction of the relationship between difference in percentage marks and the 
likelihood of selecting A2 as being of superior quality for each judge.  

Beyond this agreement between the judges, a second key finding displayed in Table 6 is the 
lack of any relationship between median time per judgement and the point biserial correlation. 
This is perhaps best reflected in the observation that the highest median time per judgement (8.6 
minutes for judge 6) corresponds to only the fourth highest point biserial value. Similarly, further 
illustrating this lack of relationship, the two quickest median judgement times (1.53 and 1.62 
minutes for judges 3 and 2 respectively) correspond to the lowest and highest point biserial 
values respectively. As such, these observations suggest that the speed at which the judges 
made their decisions had no meaningful relationship with their overall accuracy.  
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Equating across the score range 
 
Both equating and simplified pairs methods were used to estimate the mapping from of scores 
from A1 to A2 across the available range. For empirical equating, this was done using the 
equipercentile method. Because equipercentile equating requires a large amount of data, data 
from all students was used for this analysis (as opposed to just those who had both essays 
marked by a team leader). As outlined above, the descriptive analysis found that there was no 
notable evidence of any systematic difference in these groups of students, meaning that we 
could use the larger data set without it having any substantive impact on the conclusions. For 
simplified pairs, this was done using the method described in section 1. 
 

Figure 7: Graphical depiction of the results of the equating across the score range.  

Figure 7 shows us the equivalent mark on A2 for any given mark on A1 for both the 
equipercentile equating and the simplified pairs method. As is displayed in the graph’s key, the 
solid blue line represents the simplified pairs method and the solid red line represents the 
equipercentile equating. The dashed lines represent the corresponding confidence intervals for 
each of the methods.  

For reference a straight diagonal line of proportional equivalence is provided in Figure 7. This 
broadly reflects the equivalencies we might expect from looking at the bands within the mark 
schemes. For example, for A1 the mark scheme indicated that a mark of at least 35 out of 40 
(87.5 per cent) should be awarded for answers in the top band of marks that demonstrate 
“sophisticated critical perception in response to and interpretation of text”, “cogent and precise 
evaluation of well-selected detail from the text” and “sensitive understanding of the significance 
and effects of writers’ choices of language, structure and form”. Exactly the same descriptors 
were used for the top band in assessment A2 with the expectation that such answers should be 
awarded at least 22 out of 24 (91.6 per cent).  

The results from empirical equating again confirm that A2 tends to be harder than A1. For 
example, a mark of 20 out of 40 (50 per cent of the maximum) on A1 equates to a score of 8.2 
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on A2 (34 per cent). This difference in difficulty is particularly evident towards the middle of the 
score range. 

The result of most interest from this chart is the close agreement between mapping identified 
using simplified pairs and the results of equipercentile equating. Across most of the score range 
the two lines themselves are very close, and, even where some differences are visible (for 
example at a score of 30 on A1), the “known” mapping of equivalent scores from equating is 
within the confidence interval for the simplified pairs method. This finding concerning the similar 
trajectories of the two methods clearly constitutes further evidence in support of the capacity of 
the simplified pairs method to produce results with a level of accuracy which is somewhere close 
to that of the statistical equating methods – even for two tests with differing levels of difficulty. 

Conclusion 

This primary objective of this study was to evaluate the accuracy of the results generated by 
Benton’s (2019) simplified pairs method by comparing them to a ‘known’ difference generated by 
statistical equating methods. The second objective was to address a concern raised by Baird 
(2008) relating to the supposed inability of examiners to account for varying levels of demand 
associated with different exam papers when they are deciding where to place grade boundaries. 

With respect to the first of these objectives, the main finding to emerge from this study concerns 
the agreement between the results of the simplified pairs method and those of the statistical 
equating: both methods found assessment A2 to be notably harder than assessment A1. This 
finding clearly provides strong support for the potential accuracy of the simplified pairs method in 
determining the relative difficulty of two papers. The uncovering of such accuracy is likely - given 
the attendant time efficiency benefits of simplified pairs - to be particularly encouraging for those 
with an interest in enhancing the CJ process. As such, in line with this suggestion, we hope that 
this finding will serve as a catalyst for future research that seeks to replicate, and further develop 
where possible, the findings uncovered herein. Such research may constitute a key step on the 
path towards simplified pairs being established as a widely adopted means of operationalising 
CJ processes within awarding. 

Relating to the second aim of the study, it appears that the judges were indeed able to account 
in their decisions for varying levels of demand associated with different assessment papers. This 
conclusion was rendered even more robust by the fact – as outlined above – that the judges had 
no prior knowledge of differences in difficulty between the two papers. As such, the judges’ 
accurately determining that A2 was a more difficult assessment clearly reflects their ability to 
reliably distinguish between answers that display differential levels of quality. Such a finding 
would, then, appear to lend support to the notion that there is indeed some value in retaining a 
prominent role for expert judges in the positioning of grades boundaries.  

It may be evident from our results that expert judges were not able to match the levels of 
precision that can be attained through statistical equating. That is, the confidence intervals for 
simplified pairs are usually somewhat wider than those from equating. For this reason, where 
formal statistical equating is possible, it is likely to provide a superior source of evidence to 
expert judgements of script quality such as those based on CJ. In addition, formal equating 
provides the most relevant measure of the relative difficulty of tests in terms of how well pupils 
performed on each of them. However, given the difficulty of meeting the requirements for formal 
statistical equating in many practical situations, it is encouraging that a method based on expert 
judgement such as simplified pairs may provide a workable alternative form of evidence.  
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As mentioned above, the data required for formal statistical equating, by which we mean 
equating supported by common items or pupils across different test forms, cannot be obtained in 
many practical situations. However, other forms of statistical evidence may be available. For 
example, in England, setting grade boundaries often makes use of the “Similar Cohort Adage” 
described by Newton (2011) above saying “if the cohort hasn’t changed much, then don’t expect 
the pass rate to change much either”. This adage is converted into a more formal statistical 
methodology by the comparable outcomes approach to awarding high stakes qualifications in 
England described by Benton & Sutch (2014).  

Statistical evidence such as that provided by the comparable outcomes approach to awarding 
provides a healthy dose of common sense into the way we award grade boundaries. However, 
such an approach only accounts for evidence about pupil ability in previous exams and not for 
evidence about the quality of work they have produced (Benton & Bramley, 2015). Simplified 
pairs provides a way for this important second source of evidence to influence decisions about 
grade boundaries. Rather than replacing statistical sources of evidence, we would envisage it 
supplementing them. For instance, results from simplified pairs could be used to verify whether 
grade boundaries set using comparable outcomes are plausible or whether they have failed to 
identify substantial improvements in the quality of work produced by students. Ensuring that any 
changes in the quality of work are recognised and may help maintain public confidence in 
examination standards. 
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