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Abstract:
An important application of Comparative Judgement (CJ) methods is to assist 
in the maintenance of standards from one series to another in high stakes 
qualifications, by informing decisions about where to place grade boundaries 
or cut scores. This article explores the extent to which standard-maintaining 
activities based on Comparative Judgement would be robust to mismarking in the 
sample of scripts used for the comparison exercise. While extreme marking errors 
are unlikely, we know that mismarking can occur in live assessments, and quality of 
marking can vary. This research investigates how this could affect the outcomes of 
CJ-based methods, and therefore contributes to better understanding of the risks 
associated with using CJ-based methods for standard maintaining. The article 
focuses on the ‘simplified pairs’ method (Benton et al., 2020), an example of the 
‘universal method’ discussed by Benton (this issue). 
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How are standard-maintaining 
activities based on Comparative 
Judgement affected by mismarking 
in the script evidence? 

Joanna Williamson (Research Division)

Introduction

Providing evidence that can inform awarding is an important application of 
Comparative Judgement (CJ) methods in high-stakes qualifications. The process 
of marking scripts is not changed, but CJ methods can assist in the maintenance of 
standards from one series to another by informing decisions about where to place 
grade boundaries or cut scores. The research described in this article set out to 
increase understanding of the risks associated with this use of CJ. Specifically, 
the research explored how robust the outcomes of CJ-based awarding activities 
would be to mismarking in the script evidence.

In recent years, Ofqual has investigated various CJ methods for identifying cut 
scores in standard maintaining, and Curcin et al. (2019) reported the results of a 
large-scale pilot of several variants. This article focuses on the “simplified pairs” 
method (Benton et al., 2020), an example of the “universal method” discussed 
by Benton et al. (2022, this issue). Like other CJ methods, simplified pairs (SP) 
harnesses the information from paired comparisons in order to put the scores 
from two different assessments onto a common scale, but it does so without the 
need to fit a Bradley-Terry model and without the need to include individual 
scripts in multiple comparisons. Previous research has shown SP to be an efficient 
method, and comparisons with statistical equating have provided further 
evidence of the ability of SP to correctly determine the relative difficulty of two 
assessments, as well as for the ability of judges to account for the difficulty of 
different assessments in their comparisons (Benton et al., 2020). 

In this article we explore the extent to which the SP method would be robust 
to mismarking in the sample of scripts used for the comparison exercise. In a 
particularly extreme case (e.g., if every script sampled from one assessment 
happened to be marked by a particularly harsh examiner, who undermarked by 
10 marks), it is clear that the relationship estimated between scores on assessment 
A and assessment B would reflect this. More realistically, we know that mismarking 
can occur in live assessments, and quality of marking can vary, and it is therefore 
desirable to know how CJ-based awarding activities may be affected. 

https://www.cambridgeassessment.org.uk/Images/research-matters-33-a-summary-of-ocrs-pilots-of-the-use-of-comparative-judgement-in-setting-grade-boundaries.pdf
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The simplified pairs method

In a typical application of SP for standard maintaining, there are two assessments 
(form A and form B), and existing grade boundaries or cut scores for form A. 
The SP method is applied in order to find the scores on form B that represent 
an equivalent level of performance to the grade boundary scores on form A. In 
the most straightforward case, we assume a fixed overall difference in difficulty 
between the two assessments, and the purpose of SP in this context is to find 
the difference d such that for scores xA and xB representing equivalent levels of 
performance on forms A and B respectively, xB = xA + d. 

In an SP study, judges are asked to compare pairs of scripts, always comparing 
one form A script with one form B script, and decide which one is superior. Scripts 
from the extremes of the score distribution are excluded from the judging process, 
since where candidates have answered everything (or nothing) correctly, there is 
no basis for judging either to be superior. Scripts are sampled from a sub-range 
(e.g., those with scores between 20 and 90 per cent of the total available score), 
and paired for comparison in such a way that pairs include a wide range of score 
differences – Benton et al. (2020) recommend differences should span at least 
-20 to +20 per cent of the maximum available score. A typical SP study uses each 
script only once, to maximise the new information gained from each judgement, 
and can include several hundred pairs of scripts (Benton et al., 2020, pp. 5–6). This 
contrasts with typical CJ study designs, which would involve a smaller set of scripts 
from each assessment, that are then judged multiple times.

The overall difference in difficulty between form A and form B is found via logistic 
regression analysis of the judges’ decisions. For the ith pair of scripts judged by 
judge j, the decision is represented by the outcome variable yi j, where yi j = 0 if the 
form A script is judged superior, and yi j = 1 if the form B script is judged superior. 
The difference between the form A script score and form B script score is the 
independent variable and is notated di j, so that the modelled relationship is the 
following:

log odds (yi j = 1) = β0 + β1di j

where  β0 and β1 are the intercept and slope in the linear relationship between 
score difference di j and the log odds1 of the event yi j = 1 (the event that the form 
B script is judged superior) in the logistic regression model. Since scores on form 
A and form B are considered equivalent when scripts with those scores have an 
equal probability of being judged superior, the overall difference d is di j where 
Ρ(yi j=1) = 0.5. Figure 1 gives a graphical example of this analysis: the blue markers 
and blue line show the percentage of script pairs at each mark difference where 
the form B script was judged to be superior to the form A script. The solid red line 
shows the fitted logistic regression line, and the dotted red lines show its 95 per 
cent confidence interval. The purple lines show d, the estimated overall difference 
in difficulty between form B and form A (in this example, 8 marks) and its estimated 
confidence interval.

1 The log odds or logit of the event yi j=1 is ln
1

p
p

 
 − 

, where p is the probability 
that yi j=1. 



Research Matters • Issue 33 82©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

If the estimated relationship between script mark differences and judgement 
of superiority is very weak, the slope of the fitted logistic regression will be 
shallow and – in extreme cases – the SP analysis may result in ‘flatlining’. This 
term describes a result such as that shown in Figure 2, where the dotted red 
lines representing the upper and/or lower 95 per cent confidence intervals for 
the logistic regression line fail to intersect the line y=0.5 at all. This indicates “a 
complete failure of the CJ method” (Benton et al., 2020, p. 8) – the relationship 
between script marks and judges’ CJ decisions is so weak that it is impossible to 
produce a reliable confidence interval for the estimated difference in difficulty, 
meaning that the CJ method is unable to produce the evidence sought for 
awarding. The occurrence of mismarked scripts is a factor that can weaken 
the estimated relationship between mark differences and judgements of script 
superiority. It is, therefore, important to investigate quantitatively how robust SP 
analyses are to changes in the quality of marking in the selected script evidence. 

Figure 1: Example of a successful simplified pairs analysis.
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Figure 2: Example of a flatlining simplified pairs analysis.

Research overview

The overarching research question was addressed via three specific sub-
questions, to explore robustness against mismarking in slightly different scenarios:

1. What is the impact on SP outcomes of large, one-off marking errors in the
script evidence?

2. How many moderately sized marking errors can occur in the script evidence
before SP analyses fail?

3. What is the impact on SP outcomes of a degradation in marking quality?

The first two questions were addressed using simulations based on data from 
previous SP studies, while the final question was addressed by simulating a large 
number of SP studies from scratch. All data simulation and analysis was carried 
out in R (R Core Team, 2021). 

Impact of single large marking errors
The first set of simulations explored the impact on SP analyses of single large 
marking errors in the script evidence – such as could be introduced by a 
transcription error on a script (e.g., recording 13 as 31). These simulations were 
based on data from three real-life SP studies comparing different versions (forms) 
of various GCSE and AS level components.

To simulate a large one-off marking error in one of these SP studies, the mark 
difference for a single pair of scripts was manually altered (without changing 
the judge’s decision) before re-running the SP analysis. To investigate the range 
of outcomes that such an error could cause, this was repeated, in turn, for every 
paired judgement in the dataset. For each SP study, we investigated four variants 
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of large errors, so each of the original SP studies therefore resulted in 4n simulated 
SP studies, where n was the number of pairs in the original study. The four types of 
large error were generated by altering the mark difference of the “marking error” 
script pair to one of the following values:

1. The largest positive mark difference between paired scripts in the study.

2. The largest negative mark difference between paired scripts in the study.

3. 70 per cent of the component maximum mark.

4. -70 per cent of the component maximum mark.

Figure 3 shows the distributions of estimated mark differences d for one of the 
original SP studies, under the four simulation conditions. The estimated 
difference between form B and form A in the original study (i.e., before 
deliberately introducing error) was -3.38 marks, and this value is shown by the 
vertical dotted line in each panel. The largest positive mark difference (form B 
script–form A script) between paired scripts in the original study was 15 marks, 
the largest negative mark difference was -15 marks, and the component 
maximum mark was 50 marks. A script pair selected as the “marking error” pair 
therefore had its mark difference altered to 15 marks, -15 marks, 35 marks and 
-35 marks in the four simulation conditions respectively. It is worth noting that 
the “error” introduced could therefore change the direction as well as the 
magnitude of the actual mark difference for the pair. It is clear from Figure 3 
that the estimated mark differences from the simulated studies were all close to 
the originally estimated mark difference. While the shape of the distribution 
differed according to which particular large error was simulated, in all cases the 
estimated differences were very close to the originally estimated difference d in 
absolute terms. Although the values appear spread out along the x-axis, the 
scale is very fine-grained, and all estimates from the simulated studies were 
within a fifth of a mark of the originally estimated value for d.
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Figure 3: Estimated difficulty differences from simulating one-off large 
marking errors, Assessment 2 (reference line shows the original estimated d, 
before simulation of marking error).

For all four of the original SP studies, the estimated difficulty differences and 
associated standard errors changed little when a single large marking error 
was simulated. Table 1 summarises the range of outcomes from the simulated SP 
studies, in comparison with the original SP study results. In all cases, the estimated 
difference d was very close to the estimated difference from the original study 
(i.e., before simulating a large marking error), and the standard errors of 
estimates increased only moderately. 

Table 1: Summary of single large marking error simulations in comparison with 
original studies.

Component
Max. 

mark
Pairs 

(n)

Original 
study d 

(SE) 

Min d (SE) from 
simulated 

studies

Median d (SE) 
from simulated 

studies

Max d (SE) 
from simulated 

studies
Assessment 1 
(English Language)

80 292 1.38 (1.14) 1.25 (1.10) 1.43 (1.16) 1.72 (1.36)

Assessment 2 
(Maths)

50 300
-3.38

(0.49)
-3.54 (0.48) -3.39 (0.49) -3.28 (0.54)

Assessment 3 
(Sociology)

75 289 -2.61 (1.33) -3.04 (1.29) -2.65 (1.35) -2.43 (1.53)

How many marking errors can occur before SP fails?
The second set of simulations made use of data from the same three real-life SP 
studies (Table 1), but this time simulated the occurrence of multiple moderately 
large marking errors. The purpose of these simulations was to explore how many 
such errors could occur before the SP method broke down. 



Research Matters • Issue 33 86©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

For each original SP study, the simulations were carried out as follows:

1. Randomly select n pairs from the original study.
2. Add a fixed “marking error” e to the observed mark difference for each of

these pairs2.
3. Re-run the SP analysis.
4. Retain/calculate:

a. whether the analysis flatlined or not
b. whether the 95 per cent confidence interval for the estimated

overall difference d includes the value estimated in the original
study (pre-error d)

c. the difference between the estimated d and the value estimated in
the original study (pre-error d).

These steps were carried out for two values of “marking error” e, equal to 10 per 
cent of component maximum mark, and -10 per cent of component maximum, 
and 1000 studies were simulated for each combination of conditions. For each 
n investigated, 6000 simulations were therefore carried out (3 original studies x 
2 values of “marking error” x 1000 repetitions). The simulations were carried out 
at values of n from 10 up to 150. To give some context to the “marking errors” in 
this set of simulations, the value of 10 per cent of component maximum mark was 
chosen as a marking error that would be moderately large but of the magnitude 
that could occur in real life assessment scenarios. In the case studies presented 
by Ofqual (2014, pp. 31–32), for example, which analyse mark changes following 
enquiries about results for Geography A level and French A level, 1 per cent of 
mark changes made were of a magnitude of 10 per cent of the total raw marks,  
or larger. 

As in the simulation of single large marking errors, the results showed that the 
SP studies were robust. Figure 4 shows the proportion of simulated studies for 
which the 95 per cent confidence interval for d contained the original (pre-error) 
estimate, according to number of marking errors introduced. The proportion only 
fell below 1 once the number of pairs of scripts containing marking error was large: 
around 50 pairs (out of 300) for Assessment 2, and only after 75 pairs for the 
other two studies.

Figure 5 shows how the estimated overall differences d deviated from the original 
(pre-error) estimates as more marking errors were introduced. The mean size of 
these deviations (expressed as percentages of component maximum) increased 
linearly, and at a moderate rate: for simulations adding marking errors to 50 
pairs of scripts, the average deviation from original d was up to 2 per cent of 
the component maximum mark. The size of the deviations in d increased at a 

2 This method (adding “error” to pairs of scripts selected on the basis of their 
original marks) results in a set of script pairings with a different distribution 
of mark differences than if scripts were selected on the basis of observed 
marks that already included large marking errors. Most obviously, the added 
“error” may cause mark differences to fall outside the original range of mark 
differences. The method used here should produce similar or worse 
outcomes (i.e., overestimate rather than underestimate risk). 
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higher rate when the sign of the marking errors introduced matched the sign of 
the original difference d. For Assessment 1, for example, the originally estimated 
overall difference was positive (1.38 marks), and the mean size of deviations in d 
increased faster for marking errors of +10 per cent than for marking errors of -10 
per cent. The results show that, across all cases studied, at least 25 script pairs 
would need to contain such a marking error in order to alter the estimate by at 
least 1 per cent of the maximum.

None of the simulated SP studies resulted in flatlining. 

Figure 4: Proportion of simulated SP studies on target, by number of script 
pairs containing marking error.

Figure 5: Mean absolute difference between original and estimated d, as a 
percentage of maximum mark.
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The impact of progressively degrading marking quality
The third and final research question was addressed by simulating a large 
number of SP studies from scratch. The purpose of these simulations was to 
investigate the impact on SP results of progressively degrading quality of 
marking. These simulations differed from the earlier simulations by focusing on the 
overall relationship between awarded marks and script quality, rather than on 
single large marking errors or a fixed number of over- or under-marked scripts. 
The simulated SP data therefore needed to contain plausible data on mark 
differences, and simulated comparative judgements for these mark differences, 
and we needed to simulate how the relationship between mark differences and 
judgements would vary if marking quality decreased. 

In the section below, we first explain the model relating marks and CJ measures, 
and how this relationship varies with marking quality. We then describe how the 
relationship between mark differences and CJ judgements can be expected to 
vary as marking quality varies, which is the foundation for the simulations. Finally, 
we explain how specific values for the key parameters were chosen. 

Simulating SP study data
Throughout this section, we label all marks as xi and all true CJ measures as θi. The 
CJ measures θi are the holistic measures of script quality that would result from 
analysing the outcomes of paired script comparisons using a Bradley-Terry model 
(Bradley & Terry, 1952). By “true” CJ measures, we mean the CJ measures if they 
were measured without error (i.e., with an extremely large number of comparisons 
for each script). The CJ measures are on a logit scale, which means that the 
difference between two scripts’ measures (θj  − θi) is equal to the log of the odds of 
script j being judged higher quality than script i in any single paired comparison. 
For the time being we ignore differences in difficulty between different versions of 
assessments that may be included in a CJ exercise.

Following the approach in Benton and Elliott (2016) and Bramley and Gill (2010) we 
assume that over the range of interest3, the relationship between marks and CJ 
measures can be summarised in the form:

θi= βxi+ εi

where εi~N(0, σ2). There are two parts to the relationship between marks and 
measures:

1. First is “σ" (the standard deviation of the normally distributed residuals), 
which expresses the extent to which scripts with the same mark may have 
different “true” CJ measures. This might be because marking and CJ in fact 
measure slightly different constructs – so that even if scripts were marked 
perfectly and even if we included each script in a huge number of pairwise 
comparisons, we still wouldn’t achieve a perfect correlation between marks 

3 As previously noted, SP studies – like other CJ studies – exclude scripts from 
the extremes of the mark distribution, where the linear regression relationship 
would be affected by the floor and ceiling effects of the fixed total mark range. 
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and measures. It might also be a result of marking error. Higher levels of 
marking error will result in a larger value of σ.

2. Second is the coefficient “β”, which expresses the strength of the association
between marks and the decisions made by judges. Even if σ =0 (meaning 
that CJ and marking measure the same construct, and there is no marking 
error) it is likely that individual judges’ decisions will not correspond perfectly 
to the marks that were awarded. However, the higher β is, the stronger the 
association. The CJ measures (θi) are constrained to have a mean of zero and 
the unit size (the logit) is directly related to judges’ discrimination between 
scripts: a difference between two scripts of zero logits means that the scripts 
are equally likely to be judged superior (i.e., the probability of script j being 
judged superior is 0.5), and a difference of 1 logit between scripts means 
that the higher-rated script is judged superior with a probability of just over 
0.7. When the coefficient β is higher, the same level of discrimination (e.g.,
a 1 logit difference) is associated with a smaller mark difference than when 
the coefficient β is lower. Alternatively, seen from the perspective of marks, 
a higher value of β means that the same mark difference between scripts 
corresponds to a higher probability of the higher-rated script being judged 
superior than when β is lower. Assuming a fixed level of reliability for CJ itself, 
then lower marking reliability would result in a lower value for β.

The logistic model describing CJ judgements tells us that for true CJ measures θi, 
the probability of script j being judged superior to script i is:

P(j beats i) =
exp( )

1 exp( )
j i

j i

θ θ
θ θ
−

+ −

Via transformation and substitution (shown step by step in the Technical 
Appendix), we can re-express the likelihood of a script j “win” in terms of the 
mark difference between the scripts compared, and the two parameters β and 
σ reflecting marking quality. This means that the slope of the logistic regression 
linking mark differences and the probability of judges deciding script j is superior 
to script i (for brevity, written “GLM slope” from here on, for Generalised Linear 
Model slope) is given by:

GLM slope = 
2 2

1.7
1.7 2

β
σ+

Once a plausible value for the GLM slope is chosen, this value, together with a 
suitable set of mark differences (consistent with the methods used to sample pairs 
of scripts for an SP study) is sufficient to simulate a dataset of SP judgements. 

Choosing values for β and σ 

To simulate the SP studies, we estimated values of β and σ using data published 
in the appendices of Curcin et al. (2019). Using data from 20 pairwise comparison 



Research Matters • Issue 33 90©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

studies4 we used linear regression to estimate the relationship between marks 
(as a percentage of the total) and CJ measures of the holistic quality of papers. 
Across all 20 linear regressions, the median coefficient for β was 0.13 and the 
median value of σ (the standard deviation of estimated residual variance in 
the regression) was 1.3. Using these values with the GLM slope formula above, 
the expected slope of the logistic regression between mark difference (as a 
percentage of maximum mark) and judges’ decisions would be the following:

GLM slope = 
2 2

1.7*0.13
1.7 2(1.3)+

 = 0.09

For the purposes of simulating a realistic SP study, 0.09 is therefore a reasonable 
value for the GLM slope of simulated data. The focus of this research, however, 
was on the extent to which the SP method would be robust to decreases in 
marking quality. Higher levels of marking error will result in higher values for σ and 
lower values for β, and hence smaller slope values. 

In general, then, the simulations explored slope values lower than 0.09. In order to 
link slope values to a (quantified) degradation in marking quality, we calculated 
the values of σ and β (and hence, slope) that would correspond to specific 
decreases in marking reliability for a given SP study. This was done via substituting 
in marks *

ix  with added marking error, in the following way:

( )21 ρρ= + −i i i
*x x

where var(ϵi)=400, and ρ represents the level of marking degradation – so 
that if the original marks xi are perfectly reliable, then *

ix  would have marking 
reliability of ρ2. The variance of ϵi in these simulated error-affected marks is set 
at 400 because a typical CJ study includes scripts with marks between 20 and 
90 per cent of the available total, and roughly evenly spread (as reflected by the 
simulation steps in the next section). If the script marks are evenly spread between 
20 and 90 per cent, their variance will be approximately 4005. 

Now, ( )( )21θ ρβ β εε ρ β= + = − ++ i i
*

i i i ix x , so we can use new values of beta 
and sigma to calculate the likely slope of the GLM, using β* = ρβ and σ*2 = σ2 + 
400β2 (1 − ρ2).

Simulation steps

We simulated a large number of SP studies from scratch. Varying levels of 
marking quality degradation were simulated via varying the GLM slope linking 

4 Data from the rank ordering, “pinpointing” paired comparisons, and teacher 
paired comparison studies were not included. The rank ordering studies were 
analysed as pairs (and this may not be accurate), while the “pinpointing” and 
PCJ with teachers do not reflect Cambridge University Press & Assessment’s 
normal practice.

5 The variance of a single-variable uniform distribution between values min 
and max is 1

12  (max − min)2, see https://reference.wolfram.com/language/ref/
UniformDistribution.html

https://reference.wolfram.com/language/ref/UniformDistribution.html
https://reference.wolfram.com/language/ref/UniformDistribution.html
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mark differences and probability of script 2 “win”. As shown above, this slope 
is dependent on both marking reliability and the strength of the relationship 
between marks and CJ measures. 

The steps carried out were the following:

1. Simulate data from an SP “study” comparing two assessments (form A and 
form B) with 300 pairs of scripts, on a 0–100 mark scale:

a. Simulate 300 script 1 marks from form A, sampled uniformly 
between 20 and 90 marks.

b. Simulate 300 script 2 marks from form B, in the same way as for the 
script 1 marks.

c. Pair “scripts” from form A and form B and calculate the mark 
difference (script 2–script 1). Scripts were paired so that the mark 
differences were approximately normally distributed around zero 
and 90 per cent of mark differences lay between -30 and 30 
marks. The maximum mark differences ranged from ~-60 to ~60.

d. Simulate a paired comparison decision for each pair of scripts by 
random draw from a binomial distribution, with the probability 
of success (script 2 “win”) for each judgement being given by the 
logistic function of g*(mark difference - d), where g is the GLM slope 
and d is the overall difficulty difference (in marks) between form A 
and form B. 

2. Analyse the simulated SP data using logistic regression.

3. Retain/calculate:

a. estimated difficulty difference in marks (d)

b. 95 per cent confidence intervals for d

c. whether the estimated slope flatlined or not.

A simulated study was recorded as flatlining whenever either boundary of the 95 
per cent confidence interval for the predicted probability of a script 2 “win” failed 
to intersect the line y=0.5 within the study’s range of mark differences. This would 
occur, for example, if all lower bounds of the 95 per cent confidence intervals were 
lower than 0.5, or all upper bounds of the intervals were above 0.5, for the study’s 
range of mark differences. 

The simulation steps were carried out for two levels of true mark difference 
between form A and form B (d=0 and d=10), and for slope values ranging from 0.01 
to 0.09, with 5000 “studies” simulated per condition. The entire set of simulations 
was then repeated for a simulated study size of 150 pairs of scripts, to give a 
sense of the impact on smaller SP studies. A true mark difference of 10 marks (i.e., 
10 per cent of the mark range) between the two assessments compared is a fairly 
large difference, and the purpose of simulating at d=10 was to explore outcomes 
for a difference at the upper end of normal variation. 



Research Matters • Issue 33 92©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

Results

As GLM slope value decreased, that is, the simulated relationship between 
mark difference and judges’ decisions weakened, the proportion of simulated SP 
studies that flatlined increased (Figure 6). The size of confidence intervals for the 
estimated d increased (Figure 7) along with the variability of estimates, although 
estimates for d remained on target until the very lowest slope values (Figure 8). In 
comparison with the full SP studies using 300 pairs, outcomes deteriorated sooner 
when the number of pairs per simulated SP study was reduced to 150. Outcomes 
were better for the SP studies with no overall difficulty difference (d=0) than for 
those with an overall difference of 10 marks. 

At a slope value of 0.09 (the GLM slope estimated from the median values for 
β and σ in the Ofqual studies), the simulated SP studies were successful: none 
flatlined, and the difficulty difference was estimated with confidence intervals 
comfortably smaller than 10 marks for 300-pair studies, and smaller than 15 marks 
for 150-pair studies. The “worst” values6  in the Ofqual studies reported by Curcin 
et al. (2019) were σ =2 and β =0.09, which produced an estimated GLM slope of 
0.046. The simulated SP study outcomes for a slope of this magnitude were slightly 
worse: Figure 6 shows that flatlining occurred for such studies with a non-zero 
difficulty difference, and for the 150-pair studies; and Figure 7 shows that 95 per 
cent confidence intervals for the estimated difficulty difference had a median size 
of around 10 marks, for the “best case” condition of no overall difficulty difference 
and n=300 pairs. 

6 The study producing these values was AS Psychology specification 2, paper 1, 
year 1.
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Figure 6: Proportion of SP studies flatlining.

Figure 7: Distributions of confidence interval sizes (outliers not plotted; y-axis 
cropped).



Research Matters • Issue 33 94©
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

 &
 A

ss
es

sm
en

t 2
0

22

Figure 8: Distributions of estimated overall differences (outliers not plotted).

To consider the impact of specific levels of marking degradation, we simulated 
reductions in marking quality from the starting point of these “worst” values from 
the Ofqual studies (σ =2 and β =0.09, producing estimated GLM slope 0.046). 
Since the assessments in the Ofqual studies represent a selection of typical actual 
GCSE and AS level assessments (not chosen to be in any way extreme), this is a 
reasonable starting point to consider. Table 2 shows the estimated GLM slopes 
corresponding to increasing levels of marking degradation from this starting 
point, and the corresponding percentages of studies that flatlined at each level. 
Table 3 shows the median confidence interval sizes at each level of  
marking degradation. 

For ρ =0.9, a modest degradation in marking that would result in a slope value 
of 0.04 (and corresponds to reliability of 0.81, if the original marking reliability 
is assumed to have been perfect), less than 1 per cent of 300-pair studies 
flatlined when the difficulty difference was zero, and 2.4 per cent flatlined when 
the difficulty difference was 10 marks (Table 2). The widths of the 95 per cent 
confidence intervals for d were about 12 marks and 14 marks respectively (Table 
3). When the number of pairs per simulated SP study was reduced to 150, however, 
the same levels of marking degradation resulted in much more problematic 
outcomes: 7.3 per cent of studies flatlined when the difficulty difference was zero, 
and almost 20 per cent when the difference was 10 marks (Table 2). The median 
confidence interval sizes, meanwhile, were around 17 and 19 marks respectively 
(Table 3).

For higher levels of marking degradation, the results of the simulated SP studies 
deteriorated further. At marking degradation of ρ =0.775 (corresponding to 
reliability of 0.60, if original marking assumed perfect) the estimated GLM slope 
was 0.032. Of the 300-pair SP studies simulated with this slope, 1.8 per cent and 
9.5 per cent flatlined (for d=0 and d=10 respectively), and median confidence 
interval sizes were around 15 and 17 marks. In the simulated 150-pair studies, the 
proportions flatlining were 18.4 per cent (d=0) and 32.9 per cent (d=10), and the 
median confidence interval sizes were around 21 and 24 marks. 
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Table 2: Flatlining in simulated SP studies, by condition (n=5000 studies per 
condition).

Marking 
degradation 

(ρ)

Revised 
slope

Percentage of studies that flatlined
300-pair studies 150-pair studies

d = 0 d = 10 d = 0 d = 10
1 0.046 0.04 0.50 2.42 9.76

0.975 0.045 0.00 1.10 3.02 11.68
0.95 0.043 0.02 1.40 4.76 14.64

0.925 0.041 0.06 1.78 5.24 16.90
0.9 0.040 0.06 2.38 7.26 19.94

0.875 0.038 0.34 3.20 9.06 22.90
0.85 0.037 0.48 4.26 11.32 23.62

0.825 0.035 1.14 5.78 13.66 27.06
0.8 0.034 1.34 7.90 16.54 30.26

0.775 0.032 1.78 9.48 18.38 32.90
0.75 0.031 2.64 11.36 23.02 36.90

0.725 0.030 4.32 13.40 25.16 40.96
0.7 0.028 6.02 16.00 30.88 43.24

0.65 0.026 10.22 22.34 38.42 50.10
0.6 0.024 15.78 30.32 45.64 54.56

0.55 0.021 24.24 38.02 54.42 61.02
0.5 0.019 34.02 46.50 62.04 68.32

Table 3: Confidence interval sizes for d in simulated SP studies, by condition 
(n=5000 studies per condition).

Marking 
degradation 

(ρ)

Revised 
slope

Median size of 95% CI for d
300-pair studies 150-pair studies

d = 0 d = 10 d = 0 d = 10
1 0.046 10.46 11.98 14.96 16.81

0.975 0.045 10.81 12.49 15.46 17.56
0.95 0.043 11.23 12.97 16.08 18.19

0.925 0.041 11.79 13.33 16.63 18.84
0.9 0.040 12.13 13.92 17.33 19.91

0.875 0.038 12.59 14.34 18.10 20.51
0.85 0.037 13.08 14.85 18.91 20.93

0.825 0.035 13.65 15.70 19.43 21.98
0.8 0.034 14.15 16.11 20.45 22.92

0.775 0.032 14.83 16.69 21.10 23.72
0.75 0.031 15.37 17.53 22.12 24.84

0.725 0.030 16.06 18.12 23.01 26.20
0.7 0.028 16.68 18.92 24.10 27.06

0.65 0.026 18.29 20.76 26.53 29.78
0.6 0.024 19.86 22.67 29.12 32.07

0.55 0.021 22.33 25.13 32.80 35.41
0.5 0.019 25.03 28.19 36.62 40.41
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Conclusions

The research has two main conclusions. The first is that the SP method appears 
robust to single large marking errors, and to fairly large marking errors in quite 
high proportions of sampled scripts. The simulations of one-off large marking 
errors indicated that the estimated overall difficulty difference was affected only 
slightly, with numerical values very close to the originally estimated value, and 
only slightly increased standard errors. The simulations of multiple marking errors 
with a magnitude of 10 per cent of the component maximum mark, meanwhile, 
showed that the SP method failed only when large numbers of sampled scripts 
were affected – starting at around 50 out of 300 pairs. Similarly, it would take 
the occurrence of such marking errors in at least 25 out of 300 pairs to alter 
the estimated difference in difficulty between two tests by even 1 per cent of the 
maximum. These results are both reassuring and encouraging – the SP analyses 
proved robust even in the face of unusually large and unusually numerous errors 
in the script evidence, increasing confidence that the outcomes of SP analyses can 
be used to support maintenance of standards. 

The second conclusion is that the SP method is more vulnerable to a general 
degradation of marking quality. The final set of simulations showed how SP 
analyses became problematic when the relationship between marks and CJ 
measures weakened – from whatever cause. The simulations showed that a non-
extreme degradation in marking quality, from the starting point of values seen in 
published CJ studies, could result in failure of analysis (flatlining) and/or very wide 
confidence intervals around estimated differences. Importantly, the simulations 
showed that the deterioration in outcomes occurred much sooner for smaller 
studies (n=150 pairs), and when the actual overall difference between assessments 
was non-zero. Reducing the sample size in operational SP studies would, therefore, 
represent a substantial increase in risk to the success of the SP analysis and its 
ability to provide useful information for standard maintaining. In practical terms, 
SP analyses for a reduced sample size such as n=150 pairs have a much higher 
likelihood of failure than SP analyses for a full study of n=300 pairs, which would 
more than offset the advantages associated with choosing to run a smaller study. 
The actionable recommendation from this finding, therefore, is to avoid reducing 
sample sizes in operational SP studies for standard maintaining.
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Technical Appendix: simulating SP studies

This appendix shows the derivation of the equation that expresses the slope 
of the logistic regression linking mark differences and judges’ comparative 
judgements in terms of the two parameters β and σ reflecting marking quality. 

As stated in the main article, we assume that over the range of interest, the 
relationship between marks and CJ measures can be summarised in the form:

θi = βxi + εi

where εi~N(0, σ2).

Representing the true CJ measures as θi, we know that the probability of script j 
being judged superior to script i is: 

P(j beats i) = 
exp( )

1 exp( )
j i

j i

θ θ
θ θ
−

+ −

At this point, we can usefully approximate this logistic model using the probit link 
function. This relies on a transformation constant of 1.7 as recommended by Haley 
(1952) and described in Camilli (1994). Having made this approximation, we can 
use:

P(j beats i) =
1.7
j iθ θ− 

Φ 
 

where Φ is the cumulative distribution function for the standard normal 
distribution. 

Combining this equation above with the equation describing the relationship 
between marks and CJ measures, we get the following: 

P(j beats i) = 
( )

1.7
β ε ε + −

 Φ
 
 

j i j ix   −x

We can define ϵji = εj − εi, and since the difference of two independent normally 
distributed variables also follows a normal distribution, we know that ϵji~N(0, 2σ2).

Next, we think about the nature of the probit function. What it explicitly does is 
calculate the following: Φ(y) = P(z < y), where z~N(0, 1).

Thus, 

( ) ( ) ( ) ( )( )1.7
1.7 1.7

P z P z
β β

β
   + +
   Φ = ≤ = − ≤
   
   

 
j

i
j i

j
ji j i

i
i

j

x −x x −x
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By the properties of normal distributions, we know that (1.7z − ϵji) ~ N(0, 1.72 + 2σ2). 
By realising that by dividing (1.7z−ϵji) by 2 21.7 2σ+ gets us back to a variable with 
a standard normal distribution we can see that: 

P(j beats i) = 
( ) ( )

2 21.7 1.7 2

β β

σ

   +
   Φ =Φ
   +   

j i j j iix − x x − x

Finally, by reversing the approximation between the logistic and normal 
distributions we saw to begin with (i.e., multiplying the numerator of the subject of 
the function by 1.7), we can say: 

P(j beats i) = 

( )

( )

exp
2 2

2 2

1.7

1.7 2

1.7
1 exp

1.7 2

β

σ

β

σ

 
 
 + 
 
 +
 + 

j i

j i

x −x

x −x

This means that the slope of the logistic regression linking mark differences and 
the probability of judges deciding script j is superior to script i is given by:

GLM slope = 
2 2

1.7
1.7 2

β
σ+




